A Moving Least Squares Material Point Method with Displacement Discontinuity and Two-Way Rigid Body Coupling **SIGGRAPH 2018**

- ¹MIT CSAIL

Yuanming Hu¹ Yu Fang² Ziheng Ge³ Ziyin Qu⁴ Yixin Zhu⁵ Andre Pradhana⁴ Chenfanfu Jiang⁴

> ²Tsinghua University ³University of Science and Technology of China ⁴University of Pennsylvania ⁵UCLA

Particle to Grid (P2G)

Grid to Particle (G2P)

Particles (Constitutive models) Snow [Stomakhin et al. 2013], Foam [Ram et al. 2015, Yue et al. 2015] Sand [Klar et al. 2015, Pradhana et al 2017]

Particle to Grid (P2G)

Grid to Particle (G2P)

Particles (Constitutive models) Snow [Stomakhin et al. 2013], Foam [Ram et al. 2015, Yue et al. 2015] Sand [Klar et al. 2015, Pradhana et al 2017]

Particle to Grid (P2G)

Grid to Particle (G2P)

SPGrid [Setaluri et al. 2014], OpenVDB [Museth 2013] Multiple Grids [Pradhana et al. 2017]

Affine PIC, APIC [Jiang et al. 2016] Polynomial PIC, PolyPIC [Fu et al. 2017] High-performance GIMP [Gao et al. 2017] Moving Least Squares [Hu et al. 2018] **Compatible PIC** [Hu et al. 2018]

Particles (Constitutive models) Snow [Stomakhin et al. 2013], Foam [Ram et al. 2015, Yue et al. 2015] Sand [Klar et al. 2015, Pradhana et al 2017]

Particle to Grid (P2G)

Grid to Particle (G2P)

Transfer (Particle-in-Cell, PIC)

SPGrid [Setaluri et al. 2014], OpenVDB [Museth 2013] Multiple Grids [Pradhana et al. 2017]

Contributions

+ Part I: Moving Least Squares Discretization (MLS-MPM) Unifying Affine Particle-In-Cell and MPM force discretization

- Weak-form consistent
- Faster and Easier

+ Part II: Compatible Particle-in-Cell (CPIC) Velocity field discontinuity • Enables cutting and rigid body coupling

Contributions

+ Part I: Moving Least Squares Discretization (MLS-MPM) Unifying Affine Particle-In-Cell and MPM force discretization

- Weak-form consistent
- Faster and easier

+ Part II: Compatible Particle-in-Cell • Velocity field discontinuity • Enables cutting and rigid body coupling

$$f(x) = b$$

1D Curve Fitting $f = \arg\min_{\hat{f} \in \mathcal{F}} \sum_{i} (\hat{f}(x_i) - y_i)^2 \int_{i}^{f(x)} f(x) dx$

$$f(x) = b$$

1D Curve Fitting $f = \arg\min_{\hat{f}\in\mathcal{F}}\sum_{i}(\hat{f}(x_i) - y_i)^2 \int_{i}^{f(x)} f(x)$

Grid to Particle (G2P)

Grid to Particle (G2P)

Figure from A Polynomial Particle-In-Cell Method, Fu et al. 2017

Figure from A Polynomial Particle-In-Cell Method, Fu et al. 2017

Figure from A Polynomial Particle-In-Cell Method, Fu et al. 2017

PolyPIC

Figure from A Polynomial Particle-In-Cell Method, Fu et al. 2017 **18 DoFs=9 nodes x 2 DoFs per node: Lossless transfer!**

1D Curve Fitting: Spline Interpolation

"Shape functions" in FEM and MPM

Super Imposed Shape Functions: Continuous Function from **Discrete** DoFs

Material Point Method

Affine Particle-in-Cell

Material Point Method

Affine Particle-in-Cell

Moving Least Squares

MLS-MPM faster & easier

#include "taichi.h"

MLS-MPM faster & easier

// The Moving Least Squares Material Point Method in 88 Lo
<pre>// To compile: g++ mpm.cpp -std=c++14 -g -lX11 -lpthre</pre>
<pre>#include "taichi.n" // Single neader version of (a small p wring nemocrace taichi.</pre>
const int n = 64 /*orid resolution (cells)*/. window size -
const real dt = le-4 f, frame dt = le-3 f, dx = 1.0 f / n,
real mass = 1.0_f, vol = 1.0_f; // Particle mass and volum
<pre>real hardening = 10, E = 1e4 /* Young's Modulus*/, nu = 0.</pre>
<pre>real mu_0 = E/(2*(1+nu)), lambda_0=E*nu/((1+nu)*(1-2*nu));</pre>
using vec = vector2; using Mat = Matrix2; //Handy abbrivia struct Particle /Vec v/#position#/ v/#velocity#/, Mat P/#
Mat F/*elastic deformation grad.*/: real Jp /*det(plas
Particle(Vec x, Vec v=Vec(0)) : x(x), v(v), B(0), F(1),
<pre>std::vector<particle> particles; // Particle states</particle></pre>
<pre>Vector3 grid[n + 1][n + 1];// velocity with mass, note tha</pre>
void advance(real dt) / // Simulation
std::nemset(arid, 0, sizeof(arid)): // Reset arid
for (auto &p : particles) { // P2G
<pre>Vector21 base_coord = (p.x*inv_dx-Vec(0.5_f)).cast<int< pre=""></int<></pre>
<pre>Vec fx = p.x * inv_dx - base_coord.cast<real>();</real></pre>
// Quadratic kernels, see http://mpm.graphics Formula
Vec(0.5) * sqr(vec(1.5) * tx); vec(0.75) * sq
auto e = std::exp(hardening * (1.0_f - p.Jp)), mu=mu θ
<pre>real J = determinant(p.F); //Current volume</pre>
<pre>Mat r, s; polar_decomp(p.F, r, s); //Polor decomp. for</pre>
auto force = // Negative Cauchy stre
for (int i = 0: i < 3: i++) for (int i = 0: i < 3: i++)
auto dpos = fx - Vec(1, 1);
<pre>Vector3 contrib(p.v * mass, mass);</pre>
<pre>grid[base_coord.x + i][base_coord.y + j] +=</pre>
<pre>w[i].x*w[j].y*(contrib+Vector3(4.0_f*(force+p.B*))</pre>
for(int i = 0: 1 <= n: 1++) for(int 1 = 0: 1 <= n: 1++)
auto &g = grid[i][j];
if (g[2] > 0) { // No
g /= g[2]; // No
g += dt * Vectors(θ, -100, θ); // Ap real boundary=0.05 x=(real)i/n-v=real(i)/n+//boundar
if (x < boundary x > 1-boundary y > 1-boundary) g=
<pre>if (y < boundary) g[1]=std::max(0.0_f, g[1]);</pre>
} // "BC" stands for "boundary condition", which is
} for (auto &n : particles) { // Grid to particle
Vector21 base coord = (p.x * inv dx - Vec(0.5 f)).cast
<pre>Vec fx = p.x * inv_dx - base_coord.cast<real>();</real></pre>
<pre>Vec w[3]{Vec(0.5) * sqr(Vec(1.5) - fx), Vec(0.75) - sq</pre>
<pre>Vec(0.5) * sqr(fx - Vec(0.5))};</pre>
p.B = Mat(0); p.V = Vec(0); for (int i = 0; i < 3; i++) for (int i = 0; i < 3; i++
auto dpos = fx - Vec(1, 1),
<pre>grid_v = Vec(grid[base_coord.x + i][base_coord.</pre>
<pre>auto weight = w[i].x * w[j].y;</pre>
<pre>p.v += weight * grid_v; p.P += Mativator product/upight * grid v. door);</pre>
p.b += Mat::outer_product(weight + grid_v, opos);
p.x += dt * p.v;
<pre>auto F = (Mat(1) - (4 * inv_dx * dt) * p.B) * p.F;</pre>
<pre>Mat svd_u, sig, svd_v; svd(F, svd_u, sig, svd_v); // S</pre>
TOP (10T 1 = 0; 1 < 2; 1++) // See SIGGRAPH 2013: M
real oldJ = determinant(F); F = svd u * sig * transpos
real Jp_new = clamp(p.Jp * oldJ / determinant(F), 0.6_
p.Jp = Jp_new; p.F = F;
<pre>void add_object(Vec center) { // Seed particles</pre>
<pre>for (int i = 0; i < 1000; i++) // Randomly sample 1000 p</pre>
particles.push_back(Particle((Vec::rand()*2.0_1-Vec(1)
int main() /
GUI qui("Taichi Demo: Real-time MLS-MPM 2D ". window siz
add_object(Vec(0.5,0.4));add_object(Vec(0.45,0.6));add_o
for (int i = 0;; i++) { //
advance(dt); //
<pre>ui.canvas->clear(Vector4(0 7 0 4 0 2 1 0 f))* //</pre>
for (auto p : particles) //
<pre>gui.buffer[(p.x * (inv_dx*window_size/n)).cast<int< pre=""></int<></pre>
gui.update(); 77
//Reference: A Moving Least Squares Material Point Me
// By Yuanming Hu (who also wrote this 88-line version)
, , , , , , , , , , , , , , , , , , ,

С	(with	C	omme	nts)
ad	-02	- 0	mpm	
	k = -40.4			

art of) taichi

500;

inv_	_dx	=	1.0	f	/	dx;

2	/*	Poi	S S O		s F	Rat	10		i
		17	Lan		pai	ram	ete	en	
ti	Lons	s f	٥r	li	n.	al	gel	bra	
at	ffi		non	ien	tur	n*/			
ti	ic (ief	. g	ıra	d.))*/			
Jţ	(1)) {	}	\$					

>();

(123) r(fx - Vec(1.0)),

Fixed Corotated Model ss times dt and inv_dx lambda * (J-1) * J):

lambda=lambda 0*

) { // Scatter to grid

mass)*dpos));

{ //For all grid nodes

need for epsilon here rmalize by mass

ply gravity

Vector3(0);//Sticky BC //"Separate" BC applied to grid nodes

<int>();

r(fx - Vec(1.0)),

) {

y + jl);

			11		Ve	10	ci	t	y
			11			AP	IC		B
			-11	' A	١đ٧	ec	t1	0	n
		MLS	- MF	M	F-	up	da	t	
٧D	for	s n	ow	P٦	as	ti	ci	t	y
РМ	for	' Sn	ow	Si	imu	la	ti	0	n
٠	7.5	ie-3	_f)	;					
ed (svo	(v)							
f,	20.	0_f);						

articles in the square)*0.08_f+center)); }

e, window_size); bject(Vec(0.55,0.8)); Main Loop

Redraw frame

Clear background

Draw particles

>()] = Vector4(0.8);
Update GUI

thod with Displacement upling (SIGGRAPH 2018)), Yu Fang, Ziheng Ge, dhana, Chenfanfu Jiang

#include "taichi.h"

MLS-MPM faster & easier

// The Moving Least Squares Material Point Method in 88 Lo
<pre>// To compile: g++ mpm.cpp -std=c++14 -g -lX11 -lpthre #include "taichi.h" // Single header version of (a small p</pre>
<pre>using namespace taichi; const int n = 64 /*grid resolution (cells)*/, window_size -</pre>
<pre>const real dt = le-4_f, frame_dt = le-3_f, dx = 1.0_f / n, real mass = 1.0_f, vol = 1.0_f; // Particle mass and volum</pre>
<pre>real hardening = 10, E = 1e4 /* Young's Modulus*/, nu = 0. real mu 0 = E/(2*(1+nu)), lambda 0=E*nu/((1+nu)*(1-2*nu));</pre>
using Vec = Vector2; using Mat = Matrix2; //Handy abbrivia struct Particle {Vec x/*position*/, v/*velocitv*/: Mat B/*
Mat F/*elastic deformation grad.*/; real Jp /*det(plas Particle(Vec x Vec v=Vec(0)); x(x) x(x) B(0) F(1)
<pre>std::vector<particle> particles; // Particle states Vector3 arid(n + 1)(n + 1):// velocity with mass</particle></pre>
void advance(real dt) / // Simulation
std::memset(grid, θ, sizeof(grid)); // Reset grid
Vector21 base_coord = (p.x*inv_dx-Vec(0.5_f)).cast <int< td=""></int<>
<pre>Vec fx = p.x * inv_dx - base_coord.cast<real>(); // Quadratic kernels, see <u>http://mpm.graphics</u> Formula</real></pre>
<pre>Vec w[3]{Vec(0.5) * sqr(Vec(1.5) - fx), Vec(0.75) - sq</pre>
<pre>auto e = std::exp(hardening * (1.0_f - p.Jp)), mu=mu_0 real J = determinant(p.F); //Current volume</pre>
Mat r, s; polar_decomp(p.F, r, s); //Polor decomp. for auto force = // Negative Cauchy stre
<pre>inv_dx*dt*vol*(2*mu * (p.F-r) * transposed(p.F) + for (int i = 0; i < 3; i+t) for (int i = 0; i < 3; i+t)</pre>
auto dpos = fx - Vec(1, j);
<pre>vector3 contrib(p.v * mass, mass); grid[base_coord.x + i][base_coord.y + j] +=</pre>
<pre>w[i].x*w[j].y*(contrib+Vector3(4.0_f*(force+p.B*) }</pre>
} for(int i = 0; i <= n; i++) for(int j = 0; j <= n; j++)
auto &g = grid[i][j]; if (g[2] > 0) { // No
g /= g[2]; // No g += dt * Vector3(0, -100, 0); // Ap
<pre>real boundary=0.05,x=(real)i/n,y=real(j)/n;//boundary if (x < boundary lx > 1-boundary ly > 1-boundary) o=</pre>
<pre>if (y < boundary) g[1]=std::max(0.0_f, g[1]); // "PC" stands for "boundary condition" which is</pre>
<pre>} // BC stands for Boundary condition, which is } for doubte for a porticles) f // Grid to porticle</pre>
<pre>Vector21 base_coord = (p.x * inv_dx - Vec(0.5_f)).cast</pre>
<pre>Vec tx = p.x * inv_dx - base_coord.cast<real>(); Vec w[3]{Vec(0.5) * sqr(Vec(1.5) - fx), Vec(0.75) - sq</real></pre>
<pre>Vec(0.5) * sqr(fx - Vec(0.5))}; p.B = Mat(0); p.v = Vec(0);</pre>
<pre>for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++ auto dpos = fx - Vec(i, j),</pre>
<pre>grid_v = Vec(grid[base_coord.x + i][base_coord. auto weight = w[i].x * w[i].y;</pre>
<pre>p.v += weight * grid_v; p.B += Mat::outer product(weight * grid v, doos):</pre>
}
auto F = (Mat(1) - (4 * inv_dx * dt) * p.B) * p.F;
for (int i = 0; i < 2; i++) // See SIGGRAPH 2013: M
<pre>real oldJ = determinant(F); F = svd_u * sig * transpos</pre>
p.Jp = Jp_new; p.F = F;
} }
<pre>void add_object(Vec center) { // Seed particles</pre>
<pre>for (int i = 0; i < 1000; i++) // Randomly sample 1000 p particles.push_back(Particle((Vec::rand()*2.0_f-Vec(1)))</pre>
int main() {
GUI gui("Taichi Demo: Real-time MLS-MPM 2D ", window_siz add_object(Vec(0.5,0.4));add_object(Vec(0.45,0.6));add_o
for (int i = 0;; i++) { // // // // // // //
<pre>if (1 % int(frame_dt / dt) == 0) {</pre>
for (auto p : particles) //
gui.update(); //
<pre>} // Discontinuity and Two-Way Rigid Body Co</pre>
J // By ruanning Hu (who also wrote this 88-line version

С	(with	C	omme	nts)
ad	-02	- 0	mpm	
	k = -40.4			

art of) taichi

500;

inv_	_dx	=	1.0	f	/	dx;

2	/*	Poi	S S O		s F	Rat	10		i
		17	Lan		pai	ram	ete	en	
ti	Lons	s f	٥r	li	n.	al	gel	bra	
at	ffi		non	ien	tur	n*/			
ti	ic (ief	. g	ıra	d.))*/			
Jţ	(1)) {	}	\$					

>();

(123) r(fx - Vec(1.0)),

Fixed Corotated Model ss times dt and inv_dx lambda * (J-1) * J):

) { // Scatter to grid

mass)*dpos));

{ //For all grid nodes

need for epsilon here rmalize by mass

ply gravity

Vector3(0);//Sticky BC //"Separate" BC applied to grid nodes

<int>();

r(fx - Vec(1.0)),

) {

y + jl);

			11		Ve	10	ci	t	y
			11			AP	IC		B
			-11	' A	١đ٧	ec	t1	0	n
		MLS	- MF	M	F-	up	da	t	
VD	for	s n	ow	P٦	as	ti	ci	t	y
РМ	for	' Sn	ow	Si	imu	la	ti	0	n
٠	7.5	ie-3	_f)	;					
ed (svo	(v)							
f,	20.	0_f);						

articles in the square)*0.08_f+center)); }

e, window_size); bject(Vec(0.55,0.8)); Main Loop

Advance simulation Redraw frame

Clear background

Draw particles

>()] = Vector4(0.8); Update GUI

thod with Displacement upling (SIGGRAPH 2018)), Yu Fang, Ziheng Ge, dhana, Chenfanfu Jiang

APM to	O MLS-MPN
S-spline	MLS Shape function weighted by B-spline
$=\sum_{p}m_{p}\omega_{ip}$	$m_i^n = \sum_p m_p \omega_{ip}$
$\mathcal{Z}_p^n(\mathbf{x_i} - \mathbf{x_p})\omega_{ip}$	$m_p \mathbf{C}_p^n (\mathbf{x_i} - \mathbf{x_p}) \omega_{ip}$
$\frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} \nabla \omega_{ip}$	$\frac{4}{\Delta x^2} \Delta t V_p^0 \frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} (\mathbf{x}_i - \mathbf{x}_p)$
$\sum_{i} v_i (\mathbf{x}_i - \mathbf{x}_p) \omega_{ip}$	$\mathbf{C}_p^{n+1} = \frac{4}{\Delta x^2} \sum_i v_i (\mathbf{x}_i - \mathbf{x}_p) \boldsymbol{\omega}$
$\sum_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}}^{n+1} (abla w_{\boldsymbol{i}p}^n)^T$	$\nabla \boldsymbol{v}_p^{n+1} = \mathbf{C}_p^{n+1}$
$\left[+ \Delta t \frac{\partial \hat{\mathbf{v}}^{n+1}}{\partial \mathbf{x}} (\mathbf{x}_p^n) \right] \mathbf{F}_p^n$	$\mathbf{F}_{p}^{n+1} = \left(\mathbf{I} + \Delta t \frac{\partial \hat{\mathbf{v}}^{n+1}}{\partial \mathbf{x}} (\mathbf{x}_{p}^{n})\right)$

$)\omega_{ip}$

 σ_{ip}

APM to	O MLS-MPN
S-spline	MLS Shape function weighted by B-spline
$=\sum_{p}m_{p}\omega_{ip}$	$m_i^n = \sum_p m_p \omega_{ip}$
$\mathcal{Z}_p^n(\mathbf{x_i} - \mathbf{x_p})\omega_{ip}$	$m_p \mathbf{C}_p^n (\mathbf{x_i} - \mathbf{x_p}) \omega_{ip}$
$\frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} \nabla \omega_{ip}$	$\frac{4}{\Delta x^2} \Delta t V_p^0 \frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} (\mathbf{x}_i - \mathbf{x}_p)$
$\sum_{i} v_i (\mathbf{x}_i - \mathbf{x}_p) \omega_{ip}$	$\mathbf{C}_p^{n+1} = \frac{4}{\Delta x^2} \sum_i v_i (\mathbf{x}_i - \mathbf{x}_p) \boldsymbol{\omega}$
$\sum_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}}^{n+1} (abla w_{\boldsymbol{i}p}^n)^T$	$\nabla \boldsymbol{v}_p^{n+1} = \mathbf{C}_p^{n+1}$
$\left[+ \Delta t \frac{\partial \hat{\mathbf{v}}^{n+1}}{\partial \mathbf{x}} (\mathbf{x}_p^n) \right] \mathbf{F}_p^n$	$\mathbf{F}_{p}^{n+1} = \left(\mathbf{I} + \Delta t \frac{\partial \hat{\mathbf{v}}^{n+1}}{\partial \mathbf{x}} (\mathbf{x}_{p}^{n})\right)$

$)\omega_{ip}$

 σ_{ip}

APM to	O MLS-MPN
S-spline	MLS Shape function weighted by B-spline
$=\sum_{p}m_{p}\omega_{ip}$	$m_i^n = \sum_p m_p \omega_{ip}$
$\mathcal{Z}_p^n(\mathbf{x_i} - \mathbf{x_p})\omega_{ip}$	$m_p \mathbf{C}_p^n (\mathbf{x_i} - \mathbf{x_p}) \omega_{ip}$
$\frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} \nabla \omega_{ip}$	$\frac{4}{\Delta x^2} \Delta t V_p^0 \frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} (\mathbf{x}_i - \mathbf{x}_p)$
$\sum_{i} v_i (\mathbf{x}_i - \mathbf{x}_p) \omega_{ip}$	$\mathbf{C}_p^{n+1} = \frac{4}{\Delta x^2} \sum_i v_i (\mathbf{x}_i - \mathbf{x}_p) \boldsymbol{\omega}$
$\sum_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}}^{n+1} (\nabla w_{\boldsymbol{i}p}^n)^T$	$\nabla \boldsymbol{v}_p^{n+1} = \mathbf{C}_p^{n+1}$
$\left[+ \Delta t \frac{\partial \hat{\mathbf{v}}^{n+1}}{\partial \mathbf{x}} (\mathbf{x}_p^n) \right] \mathbf{F}_p^n$	$\mathbf{F}_{p}^{n+1} = \left(\mathbf{I} + \Delta t \frac{\partial \hat{\mathbf{v}}^{n+1}}{\partial \mathbf{x}} (\mathbf{x}_{p}^{n})\right)$

$)\omega_{ip}$

 σ_{ip}

APM to	O MLS-MPN
S-spline	MLS Shape function weighted by B-spline
$=\sum_{p}m_{p}\omega_{ip}$	$m_i^n = \sum_p m_p \omega_{ip}$
$\mathcal{Z}_p^n(\mathbf{x_i} - \mathbf{x_p})\omega_{ip}$	$m_p \mathbf{C}_p^n (\mathbf{x_i} - \mathbf{x_p}) \omega_{ip}$
$\frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} \nabla \omega_{ip}$	$\frac{4}{\Delta x^2} \Delta t V_p^0 \frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} (\mathbf{x}_i - \mathbf{x}_p) \mathbf{F}_p^{nT} (\mathbf{x}_p) \mathbf{F}_p^{nT} (\mathbf{x}_p - \mathbf{x}_p) \mathbf{F}_p^{nT} (\mathbf{x}_p - x$
$\sum_{i} v_i (\mathbf{x}_i - \mathbf{x}_p) \omega_{ip}$	$\mathbf{C}_p^{n+1} = \frac{4}{\Delta x^2} \sum_i v_i (\mathbf{x}_i - \mathbf{x}_p) \boldsymbol{\omega}$
$\sum_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}}^{n+1} (abla w_{\boldsymbol{i}p}^n)^T$	$\nabla \boldsymbol{v}_p^{n+1} = \mathbf{C}_p^{n+1}$
$\left[+ \Delta t \frac{\partial \hat{\mathbf{v}}^{n+1}}{\partial \mathbf{x}} (\mathbf{x}_p^n) \right] \mathbf{F}_p^n$	$\mathbf{F}_{p}^{n+1} = \left(\mathbf{I} + \Delta t \frac{\partial \hat{\mathbf{v}}^{n+1}}{\partial \mathbf{x}} (\mathbf{x}_{p}^{n})\right)$

APM to	O MLS-MPN
S-spline	MLS Shape function weighted by B-spline
$=\sum_{p}m_{p}\omega_{ip}$	$m_i^n = \sum_p m_p \omega_{ip}$
$\mathcal{Z}_p^n(\mathbf{x_i} - \mathbf{x_p})\omega_{ip}$	$m_p \mathbf{C}_p^n (\mathbf{x_i} - \mathbf{x_p}) \omega_{ip}$
$\frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} \nabla \omega_{ip}$	$\frac{4}{\Delta x^2} \Delta t V_p^0 \frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} (\mathbf{x}_i - \mathbf{x}_p) \mathbf{F}_p^{nT} (\mathbf{x}_p) \mathbf{F}_p^{nT} (\mathbf{x}_p - \mathbf{x}_p) \mathbf{F}_p^{nT} (\mathbf{x}_p - x$
$\sum_{i} v_i (\mathbf{x}_i - \mathbf{x}_p) \omega_{ip}$	$\mathbf{C}_p^{n+1} = \frac{4}{\Delta x^2} \sum_i v_i (\mathbf{x}_i - \mathbf{x}_p) \boldsymbol{\omega}$
$\sum_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}}^{n+1} (abla w_{\boldsymbol{i}p}^n)^T$	$\nabla \boldsymbol{v}_p^{n+1} = \mathbf{C}_p^{n+1}$
$\left[+ \Delta t \frac{\partial \hat{\mathbf{v}}^{n+1}}{\partial \mathbf{x}} (\mathbf{x}_p^n) \right] \mathbf{F}_p^n$	$\mathbf{F}_{p}^{n+1} = \left(\mathbf{I} + \Delta t \frac{\partial \hat{\mathbf{v}}^{n+1}}{\partial \mathbf{x}} (\mathbf{x}_{p}^{n})\right)$

APM to	O MLS-MPN
S-spline	MLS Shape function weighted by B-spline
$=\sum_{p}m_{p}\omega_{ip}$	$m_i^n = \sum_p m_p \omega_{ip}$
$\mathcal{C}_p^n(\mathbf{x_i} - \mathbf{x_p})\omega_{ip}$	$m_p \mathbf{C}_p^n (\mathbf{x_i} - \mathbf{x_p}) \omega_{ip}$
$\frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} \nabla \omega_{ip}$	$\frac{4}{\Delta x^2} \Delta t V_p^0 \frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} (\mathbf{x}_i - \mathbf{x}_p) \mathbf{F}_p^{nT} (\mathbf{x}_p) \mathbf{F}_p^{nT} (\mathbf{x}_p - \mathbf{x}_p) \mathbf{F}_p^{nT} (\mathbf{x}_p - x$
$\sum_{i} v_i (\mathbf{x}_i - \mathbf{x}_p) \omega_{ip}$	$\mathbf{C}_p^{n+1} = \frac{4}{\Delta x^2} \sum_i v_i (\mathbf{x}_i - \mathbf{x}_p) \boldsymbol{\omega}$
$\sum_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}}^{n+1} (abla w_{\boldsymbol{i}p}^n)^T$	$\nabla \boldsymbol{v}_p^{n+1} = \mathbf{C}_p^{n+1}$
$\left[+ \Delta t \frac{\partial \hat{\mathbf{v}}^{n+1}}{\partial \mathbf{x}} (\mathbf{x}_p^n) \right] \mathbf{F}_p^n$	$\mathbf{F}_{p}^{n+1} = \left(\mathbf{I} + \Delta t \frac{\partial \hat{\mathbf{v}}^{n+1}}{\partial \mathbf{x}} (\mathbf{x}_{p}^{n})\right)$

Timing (ms) Reference	Ours (MPM)	Ours* (MPM)	Ours* (MLS-MPM)	
P2G (1 thread)4760 (1×)P2G (4 threads)1220 (1×)	5744 (0.83×) 1525 (0.80×)	2685 (1.77×) 688 (1.77×)	1283 (3.71×) 328 (3.72×)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7476 (1.10×) 2011 (1.03×)	1144 (7.21×) 313 (6.61×)	589 (14.01×) 163 (12.70×)	
Reference: Tampubolon et al. 2017. Multi-species simulation of porous sand and water mixtures				

Timing (ms)	Reference	Ours (MPM)	Ours* (MPM)	Ours* (MLS-MPM)
P2G (1 thread)	4760 (1×)	5744 (0.83×)	2685 (1.77×)	1283 (3.71×)
P2G (4 threads)	1220 (1×)	1525 (0.80×)	688 (1.77×)	328 (3.72×)
G2P (1 thread)	8255 (1×)	7476 (1.10×)	1144 (7.21×)	589 (14.01×)
G2P (4 threads)	2070 (1×)	2011 (1.03×)	313 (6.61×)	163 (12.70×)

Baseline: Traditional MPM

Timing (ms)	Reference	Ours (MPM)	Ours* (MPM)	Ours* (MLS-MPM)
P2G (1 thread)	4760 (1×)	5744 (0.83×)	2685 (1.77×)	1283 (3.71×)
P2G (4 threads)	1220 (1×)	1525 (0.80×)	688 (1.77×)	328 (3.72×)
G2P (1 thread)	8255 (1×)	7476 (1.10×)	1144 (7.21×)	589 (14.01×)
G2P (4 threads)	2070 (1×)	2011 (1.03×)	313 (6.61×)	163 (12.70×)

Optimized Traditional MPM

(Low-level performance engineering)

Timing (ms)	Reference	Ours (MPM)	Ours* (MPM)	Ours* (MLS-MPM)
P2G (1 thread)	4760 (1×)	5744 (0.83×)	2685 (1.77×)	1283 (3.71×)
P2G (4 threads)	1220 (1×)	1525 (0.80×)	688 (1.77×)	328 (3.72×)
G2P (1 thread)	8255 (1×)	7476 (1.10×)	1144 (7.21×)	589 (14.01×)
G2P (4 threads)	2070 (1×)	2011 (1.03×)	313 (6.61×)	163 (12.70×)

Optimized MLS-MPM

(algorithmic improvement)

Timing (ms) Reference Ours (MPM)	Ours* (MPM)	Ours* (MLS-MPM)	
P2G (1 thread)4760 (1×)5744 (0.83×)P2G (4 threads)1220 (1×)1525 (0.80×)	2685 (1.77×) 688 (1.77×)	1283 (3.71×) 328 (3.72×)	
G2P (1 thread) $8255 (1\times)$ $7476 (1.10\times)$ G2P (4 threads) $2070 (1\times)$ $2011 (1.03\times)$	1144 (7.21×) 313 (6.61×)	589 (14.01×) 163 (12.70×)	
Optimized MLS-MI			PM

2.10x faster P2G 1.94x faster G2P

Contributions

+ Part I: Moving Least Squares Discretization (MLS-MPM) Unifying Affine Particle-In-Cell and MPM force discretization

- Weak-form consistent
- Faster and easier

+ Part II: Compatible Particle-in-Cell • Velocity field discontinuity • Enables cutting and rigid body coupling

Contributions

+ Part I: Moving Least Squares Discretization (MLS-MPM) Unifying Affine Particle-In-Cell and MPM force discretization Weak-form consistent • Faste -100 lines of code! + Part II: Compatible Pa le-in-Cell Velocity field discontinuity Enables cutting and rigid body coupling

Contributions

Part I: Moving Least Squares Discretization (MLS-MPM) Unifying Affine Particle-In-Cell and MPM force discretization

- Weak-form consistent
- Faster and Easier

+ Part II: Compatible Particle-in-Cell Velocity field discontinuity Enables cutting and rigid body coupling

Level Set Cut

Traditional Method

Level Set Appear

Sticky

Level Set Cut

Traditional Method

Level Set Appear

Sticky

-1.0 -0.5 -1.5

Boundary mesh

Grid distance

Particle color

Boundary mesh

Grid distance

Particle color

Level Set Cut

Traditional Method

Level Set Appear

Our Method

Level Set Cut

Traditional Method

Level Set Appear

Our Method

Two-way Rigid Body Coupling

Particle to rigid body (P2G)

Rigid body to particle (G2P)

Inflow speed: 1.0 Wheel density: 4.0

Inflow speed: 0.5 Wheel density: 1.0

L

The second second second second second

Inflow speed: 1.0 Wheel density: 4.0

Inflow speed: 0.5 Wheel density: 1.0

L

The second second second second second

Terradynamics: Robot and granular media

Type-A Motion

Type-B Motion

Terradynamics: Robot and granular media

Terradynamics: Robot and granular media

Contributions

Part I: Moving Least Squares Discretization (MLS-MPM) Unifying Affine Particle-In-Cell and MPM force discretization

- Weak-form consistent
- Faster and Easier

+ Part II: Compatible Particle-in-Cell Velocity field discontinuity Enables cutting and rigid body coupling

Contributions

+ Part I: Moving Least Squares Discretization (MLS-MPM) Unifying Affine Particle-In-Cell and MPM force discretization

- Weak-form consistent
- Faster and Easier

+ Part II: Compatible Particle-in-Cell Velocity field discontinuity • Enables cutting and rigid body coupling

Reproducible every demo with a python script: *git clone https://github.com/yuanming-hu/taichi_mpm*

Reproducible every demo with a python script: *git clone https://github.com/yuanming-hu/taichi_mpm* or use the **taichi project manager**: *ti install mpm*

Reproducible every demo with a python script: git clone https://github.com/yuanming-hu/taichi_mpm or use the taichi project manager: ti install mpm

Thank you! Questions are welcome!

Shape/Test function

Lumped mass matrix

APIC P2G Momentum Contribution

Stress

Momentum Contribution

APIC G2P Affine Velocity Reconstruction

> Velocity Gradient Evaluation

Deformation Gradient Update

to MLS-MPM **MLS Shape function B-spline** weighted by B-spline $m_i^n = \sum m_p \omega_{ip}$ $m_p \mathbf{C}_p^n (\mathbf{x_i} - \mathbf{x_p}) \omega_{ip}$ $\Delta t V_p^0 \frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} \nabla \omega_{ip} \left[\frac{4}{\Delta x^2} \Delta t V_p^0 \frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_p^n) \mathbf{F}_p^{nT} (\mathbf{x}_i - \mathbf{x}_p) \omega_{ip} \right]$ $\mathbf{C}_p^{n+1} = \frac{4}{\Delta x^2} \sum_{i} v_i (\mathbf{x}_i - \mathbf{x}_p) \omega_{ip}$ $\nabla \mathbf{v}_p^{n+1} = \sum_{i} \boldsymbol{v}_i^{n+1} (\nabla w_{ip}^n)^T$ $\nabla \mathbf{v}_p^{n+1} = \mathbf{C}_p^{n+1}$ \boldsymbol{p} $\mathbf{F}_{p}^{n+1} = \left(\mathbf{F} + \Delta t \nabla \mathbf{v}_{p}^{n+1}\right) \mathbf{F}_{p}^{n}$

