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Thank you Florence for the introduction and thank you all for coming. I’m Yuanming from MIT.



The Material Point Method (MPM)

MPM is a hybrid Eulerian-Lagrangian method, which means both particles[click] and grids[click] are used, and information is transferred [click] back-and-forth. 

There have been a lot of recent work on MPM, on particles [click] and on grids [click]. Our work, like many previous work, is about how information is transferred between 
particles and grids.
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OpenVDB [Museth 2013] 
Multiple Grids [Pradhana et al. 2017]

Particle to Grid (P2G)

Grid to Particle (G2P)

Transfer (Particle-in-Cell, PIC) 
Affine PIC, APIC [Jiang et al. 2016] 

Polynomial PIC, PolyPIC [Fu et al. 2017] 
High-performance GIMP [Gao et al. 2017] 

Moving Least Squares [Hu et al. 2018] 
Compatible PIC [Hu et al. 2018] 

…
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The Material Point Method (MPM)

When talking about MPM, everybody mentions particles and grids. However, there is another important concept usually missing in people’s discussion on MPM. [Click] 
That is the continuous field approximated by discrete particles and nodes. In fact, the continuous field is where all physics happen. Essentially, MPM is a discretisation 
method that projects the continuous quantities to discrete particles and nodes.  



The Material Point Method (MPM)

Continuous Field 
e.g. velocity field

v = v(x)

When talking about MPM, everybody mentions particles and grids. However, there is another important concept usually missing in people’s discussion on MPM. [Click] 
That is the continuous field approximated by discrete particles and nodes. In fact, the continuous field is where all physics happen. Essentially, MPM is a discretisation 
method that projects the continuous quantities to discrete particles and nodes.  



Contributions

✦ Part I: Moving Least Squares Discretization (MLS-MPM) 
๏ Unifying Affine Particle-In-Cell and MPM force discretization 
๏ Weak-form consistent 
๏ Faster and Easier

✦ Part II: Compatible Particle-in-Cell (CPIC) 
๏ Velocity field discontinuity 
๏ Enables cutting and rigid body coupling

I will talk about two contributions in our work, namely the moving least squares discretisation and the compatible particle in cell method. 



Contributions

✦ Part I: Moving Least Squares Discretization (MLS-MPM) 
๏ Unifying Affine Particle-In-Cell and MPM force discretization 
๏ Weak-form consistent 
๏ Faster and easier

✦ Part II: Compatible Particle-in-Cell 
๏ Velocity field discontinuity 
๏ Enables cutting and rigid body coupling

The first part introduces MLS-MPM.



1D Curve Fitting

x

f(x)

Let’s start with some high-school math. Given several data points, we want to to reconstruct a smooth curve to fit them.




1D Curve Fitting

x

f(x)

Apparently this is a under constraint problem and there are many possible solutions. One guess may look like this…



1D Curve Fitting

x

f(x)

Another guess may look like this.



1D Curve Fitting

x

f(x)

f(x) = b

So lets regularise it a bit. Maybe it is good to constraint our choice in only constant functions, like f(x)=b.

Of course you want to pick one constant function [click] that minimise certain error metric. We use the least squares reconstruction error here [click], which is defined as 
the total squares distance from the data points to the projected points on the curve. 


f=\text{arg}\min_{\hat{f}\in\mathcal{F}} \sum_i (\hat{f}(x_i)-y_i)^2
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1D Curve Fitting

x

f(x)

Apparently this function is not a good choice. Let’s move it higher so that the distance gets minimized. If we consider the green dots to be the velocity values on the grid, 
this is exactly what happens during traditional particle-in-cell methods [click], when the particle is at the origin. Estimating the particle velocity is done by finding such 
function.
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1D Curve Fitting

x

f(x)
Grid to Particle (G2P)
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1D Curve Fitting

x

f(x)
Grid to Particle (G2P)

And during particle to grid transfer, the grid velocity will be overwritten by the reconstructed values. This is why we want to minimise the reconstruction distance: smaller 
distance means better conversation of energy and less dissipation. 



1D Curve Fitting

x

f(x)

f(x) = ax

It’s clear that just using a constant function is usually not sufficient. Let’s include linear functions as well. 



1D Curve Fitting

x

f(x)

f(x) = ax

We can scale it [click] to make it match the slope of these points.
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1D Curve Fitting

x

f(x)

f(x) = ax

If we super-impose the constant and linear functions, we can get a much better reconstruction. This is what APIC does. Instead of storing a constant velocity field on 
particles, APIC additionally stores information about the velocity field gradient, or the slope. 



1D Curve Fitting

x

f(x)

Of course we can introduce more basis, as in PolyPIC.



Least-Squares Transfers in 2D
Figure from A Polynomial Particle-In-Cell Method, Fu et al. 2017 

In 2D things get a bit more complex, but the idea is the same: use basis function to get least squares reconstructions. 




Least-Squares Transfers in 2D
Figure from A Polynomial Particle-In-Cell Method, Fu et al. 2017 

PIC

Traditional PIC uses only constant basis. 




Least-Squares Transfers in 2D
Figure from A Polynomial Particle-In-Cell Method, Fu et al. 2017 

APIC

APIC uses linear basis




Least-Squares Transfers in 2D
Figure from A Polynomial Particle-In-Cell Method, Fu et al. 2017 

18 DoFs=9 nodes x 2 DoFs per node: Lossless transfer!

PolyPIC

PolyPIC further introduces bilinear and quadratic basis functions, leading to lossless grid-particle transfer. The more basis we use, the less dissipation we have.



1D Curve Fitting: Spline Interpolation

x

f(x)

+

Actually, there is another way to reconstruct the continuous function, which is spline interpolation.



x

f(x)

“Shape functions” in FEM and MPM

1D Curve Fitting: Spline Interpolation

Instead of using polynomials, we can use small splines at each node position. This is actually the “shape function” approach we use in FEM and MPM.



x

f(x)

Super Imposed Shape Functions: 
Continuous Function from Discrete DoFs

1D Curve Fitting: Spline Interpolation

By adding these splines together, we get something like this. The reconstructed function looks smooth and it has been the classical way to discrete PDEs in weak-form 
based methods such as FEM and MPM. 



MPM DiscretizationAPIC/PolyPIC 

Moving Least Squares 
Interpolation

✓

✓?

?

Which one to use?

B-Spline Interpolation

So we have talked about two ways of reconstructing a continuous field out of discrete samples. It seems that for some reason we have been using MLS interpolation for 
APIC, but B-Spline interpolation for MPM discretization.

One natural question here is, can we only use one single interpolation method for both? If we can do so, maybe we can simplify and optimise our algorithm.



MPM DiscretizationAPIC/PolyPIC 

Moving Least Squares 
Interpolation

✓

✓?

?

Which one to use?

B-Spline Interpolation

So let’s try using B-Splines for APIC.



MPM DiscretizationAPIC/PolyPIC 

Moving Least Squares 
Interpolation

B-Spline Interpolation

✓

✓

?

Which one to use?

No Angular 
Momentum 

Conservation

But after some attempts it turns out that doing so doesn’t bring much advantage. In fact, it is not only hard to compute but also leads to no angular momentum 
conservation



MPM DiscretizationAPIC/PolyPIC 

Moving Least Squares 
Interpolation

B-Spline Interpolation

✓

✓

?

Which one to use?

No Angular 
Momentum 

Conservation

So the only hope we have is to MLS interpolation for MPM discretizaiton.



MPM DiscretizationAPIC/PolyPIC 

Moving Least Squares 
Interpolation

B-Spline Interpolation

✓

✓

MLS-MPM!

Which one to use?

No Angular 
Momentum 

Conservation

Fortuantely, it works well! This leads to MLS-MPM.



Material Point Method

Affine Particle-in-Cell

Moving least squares makes MPM work together with APIC better [click]. Before I dive into a little bit of math, I want to highlight that MLS-MPM is actually even simpler 
to implement than traditional MPM. [click] In fact, it can be implemented within 88 lines of code. [click] This is the first time to the best of our knowledge, when MPM 
becomes so simple to implement.
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#include “taichi.h”

Moving least squares makes MPM work together with APIC better [click]. Before I dive into a little bit of math, I want to highlight that MLS-MPM is actually even simpler 
to implement than traditional MPM. [click] In fact, it can be implemented within 88 lines of code. [click] This is the first time to the best of our knowledge, when MPM 
becomes so simple to implement.



Material Point Method

Affine Particle-in-Cell

Moving Least Squares 

MLS-MPM 
faster & easier 

#include “taichi.h”

Implement Interactive MLS-MPM within 

88 lines of code (comments included)!

Moving least squares makes MPM work together with APIC better [click]. Before I dive into a little bit of math, I want to highlight that MLS-MPM is actually even simpler 
to implement than traditional MPM. [click] In fact, it can be implemented within 88 lines of code. [click] This is the first time to the best of our knowledge, when MPM 
becomes so simple to implement.



From  MPM   to MLS-MPM
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Here I summarize elements of traditional MPM and MLS-MPM. This table does look a bit scary, but I promise that I will only spend one minute on it, and fortunately most 
entries are actually the same for MPM and MLS-MPM.
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In fact, the only difference is the stress momentum contribution and the evaluation of velocity gradient. [click] MLS-MPM reuses the APIC affine velocity field, which 
makes G2P faster.
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Since the B-spline gradient is replaced by the simple MLS shape function gradient, MLS-MPM avoids the costly B-spline kernel gradients.    
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It is interesting to see how these two gradient kernels look like. In fact, they are very close to each other and are both at least first-order accurate.
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MLS-MPM fuses the computation of APIC and stress momentum contribution into a single matrix-vector multiplication, this halves the required FLOPs.



Performance

Reference: Tampubolon et al. 2017. 
Multi-species simulation of porous sand and water mixtures

We benchmarked our solver against a reliable implementation from Tampubolon et al.



Performance

Baseline: Traditional MPM

Our unoptimized implementation has a comparable performance to theirs. 



Performance

Optimized Traditional MPM

(Low-level performance engineering)

Then we do some low-level performance engineering on traditional MPM. This makes P2G 1.6x faster and G2P 7x faster. 



Performance

Optimized MLS-MPM

(algorithmic improvement)

Finally, we implement MLS-MPM. 



Performance

Optimized MLS-MPM

2.10x faster P2G 
1.94x faster G2P

This algorithmic improvement gives us 2x further speed-up.



Contributions

✦ Part I: Moving Least Squares Discretization (MLS-MPM) 
๏ Unifying Affine Particle-In-Cell and MPM force discretization 
๏ Weak-form consistent 
๏ Faster and easier

✦ Part II: Compatible Particle-in-Cell 
๏ Velocity field discontinuity 
๏ Enables cutting and rigid body coupling

So that’s the first part, where we unified APIC and MPM force discretization. The result is elegant and efficient, and more importantly, easier to implement.

Ladies and gentlemen, it’s not one thousand lines of code, not one hundred lines of code, not even ten lines of code. [click] It’s negative 100 lines of code. At the same 
time, it is mathematically sound and runs faster. The more you use, the less code you write, and the faster your code runs. There is literally no reason not to use it.
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Contributions

✦ Part I: Moving Least Squares Discretization (MLS-MPM) 
๏ Unifying Affine Particle-In-Cell and MPM force discretization 
๏ Weak-form consistent 
๏ Faster and Easier

✦ Part II: Compatible Particle-in-Cell 
๏ Velocity field discontinuity 
๏ Enables cutting and rigid body coupling

Hopefully I have waken people up. Let’s move on to the second part, the compatible particle-in-cell method.



Suppose you get an armadillo. As a simulation guy you can’t wait to do something bad on it. [click] For example, you may want to cut it. However, this turns out to be 
very hard to MPM.
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1D Curve Fitting

x

f(x)

Let’s ask ourselves what is cutting. Clearly the desired behaviour is material separation after cutting. Suppose we are cutting the material at the origin, we want the left 
part moving to the left while the right part moving to the right.




1D Curve Fitting

x
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This means we want the reconstructed velocity field to look like this: a sharp discontinuity as the cut point.



1D Curve Fitting
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Unfortunately this is not supported by PIC, APIC and even PolyPIC. They only have continuous basis functions.



1D Curve Fitting

x

f(x)

If we use APIC, we will get this. 



In traditional MPM we cannot actually simulate cutting. [click]

A moving thin level set of any boundary conditions will either be treated as a collider or completely ignored by the material. 

Putting the level set directly inside also doesn’t work, since the interpolated velocity field is still continuous.

Other common approaches include particle deletion and softening. However, due to the fuzzy nature of PIC kernels, a significant amount of particles must be deleted for separation. [Wait] 
Softening creates unpleasant artifacts.
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P2G
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From the MPM point of view, the relative motion of two particles will be smoothed out during P2G.
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From the MPM point of view, the relative motion of two particles will be smoothed out during P2G.



G2P

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.2
0.4
0.6

During resample, because the relative motion on grid is smoothed out by the kernel, the particles will gather almost a rigid velocity field. In other words, a collision 
happens.



Velocity Discontinuity (Compatible Particle-in-Cell, CPIC)
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Unfortunately there is no existing way that can avoid such smoothing. We propose a method to solve this issue. This is achieved by assigning colours to both particles 
and grids, and particle only interact with nodes with the same color.



G2P

Velocity Discontinuity (Compatible Particle-in-Cell, CPIC)
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By doing this, no smoothing happens at the boundary.



We introduce the coloured distance field, which generalises the traditional signed distance field to represent self-intersecting and open boundary. We start with a 
boundary mesh [wait], then rasterise the distance to mesh to grid nodes [wait]. Then we rasterise the color of meshes to classify the grid nodes. [wait] On particles, we 
can reconstruct the distance and normal, again, using moving least squares.
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[click]  With all these included, our MPM world becomes much sharper. We can incrementally cut a piece a jelly [wait], or cut it instantly. [wait] We can even do more than 
one cuts.
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The remaining problem is, how can we assign a colours to particles? Particles gain corresponding color when it moves close to the boundary. [DO not wait] 


note that the color will be persevered even if it moves across the boundary.
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note that the color will be persevered even if it moves across the boundary.



Now we are ready to cut a bunny.
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and some cheese
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Cutting actually cover more natural phenomena. For example, blending.
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Two-way Rigid Body Coupling

 Particle to rigid body 
(P2G)

Rigid body to particle 
(G2P)

If we enable interaction between the boundary mesh and the particles, we can simply implement two-way rigid body coupling. 



Here’s one coupling exmaple.
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A 3D version.



A 3D version.







Terradynamics: 
Robot and granular media

We can even simulate crawling robots entirely in MPM now, and study the motion of the robot.
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[Li et al., A terradynamics of legged 
locomotion on granular media. Science 2013]

This direction should be faster 

There is actually a science paper claiming that the bottom motion will be faster. 
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Contributions

✦ Part I: Moving Least Squares Discretization (MLS-MPM) 
๏ Unifying Affine Particle-In-Cell and MPM force discretization 
๏ Weak-form consistent 
๏ Faster and Easier

✦ Part II: Compatible Particle-in-Cell 
๏ Velocity field discontinuity 
๏ Enables cutting and rigid body coupling

So that’s it. CPIC allows velocity field discontinuity to exist in the reconstructed velocity field, and easily enables cutting and rigid body coupling.
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✦ Part I: Moving Least Squares Discretization (MLS-MPM) 
๏ Unifying Affine Particle-In-Cell and MPM force discretization 
๏ Weak-form consistent 
๏ Faster and Easier

✦ Part II: Compatible Particle-in-Cell 
๏ Velocity field discontinuity 
๏ Enables cutting and rigid body coupling

So we have introduced MLS-MPM and CPIC. Both of them are simple ideas and are easy to implement.



Reproducible every demo with a python script: 
git clone https://github.com/yuanming-hu/taichi_mpm

Apart from the 88-line version of MLS-MPM in 2D, we have also released code and data for the fully functioning high-performance 3D version based on taichi and you 
are welcome to try it.

[click] If you already have taichi installed on Linux, you can just do ‘ti install mpm’, and it will automatically deploy our MPM solver. We hope that this can low the barrier 
for everybody to start playing MPM.

[click]  I would like to thank everyone who made this project possible, and thank you all for listening! That concludes my talk and I’m happy to take some questions.
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From  MPM   to MLS-MPM
Shape/Test function B-spline
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Since the B-spline gradient is replaced by the simple MLS shape function gradient, MLS-MPM avoids the costly B-spline kernel gradients.    


\mathbf{F}_p^{n+1}=\left(\mathbf{F} + \Delta t\nabla\mathbf{v}_p^{n+1} \right) \mathbf{F}_p^{n}


