

Thank you Florence for the introduction and thank you all for coming. I'm Yuanming from MIT.

The Material Point Method (MPM)

MPM is a hybrid Eulerian-Lagrangian method, which means both particles[click] and grids[click] are used, and information is transferred [click] back-and-forth. There have been a lot of recent work on MPM, on particles [click] and on grids [click]. Our work, like many previous work, is about how information is transferred between particles and grids.

The Material Point Method (MPM)

MPM is a hybrid Eulerian-Lagrangian method, which means both particles[click] and grids[click] are used, and information is transferred [click] back-and-forth. There have been a lot of recent work on MPM, on particles [click] and on grids [click]. Our work, like many previous work, is about how information is transferred between particles and grids.

MPM is a hybrid Eulerian-Lagrangian method, which means both particles[click] and grids[click] are used, and information is transferred [click] back-and-forth. There have been a lot of recent work on MPM, on particles [click] and on grids [click]. Our work, like many previous work, is about how information is transferred between particles and grids.

MPM is a hybrid Eulerian-Lagrangian method, which means both particles[click] and grids[click] are used, and information is transferred [click] back-and-forth. There have been a lot of recent work on MPM, on particles [click] and on grids [click]. Our work, like many previous work, is about how information is transferred between particles and grids.

MPM is a hybrid Eulerian-Lagrangian method, which means both particles[click] and grids[click] are used, and information is transferred [click] back-and-forth. There have been a lot of recent work on MPM, on particles [click] and on grids [click]. Our work, like many previous work, is about how information is transferred between particles and grids.

MPM is a hybrid Eulerian-Lagrangian method, which means both particles[click] and grids[click] are used, and information is transferred [click] back-and-forth. There have been a lot of recent work on MPM, on particles [click] and on grids [click]. Our work, like many previous work, is about how information is transferred between particles and grids.

MPM is a hybrid Eulerian-Lagrangian method, which means both particles[click] and grids[click] are used, and information is transferred [click] back-and-forth. There have been a lot of recent work on MPM, on particles [click] and on grids [click]. Our work, like many previous work, is about how information is transferred between particles and grids.

The Material Point Method (MPM)

When talking about MPM, everybody mentions particles and grids. However, there is another important concept usually missing in people's discussion on MPM. [Click] That is the continuous field approximated by discrete particles and nodes. In fact, the continuous field is where all physics happen. Essentially, MPM is a discretisation method that projects the continuous quantities to discrete particles and nodes.

The Material Point Method (MPM)

When talking about MPM, everybody mentions particles and grids. However, there is another important concept usually missing in people's discussion on MPM. [Click] That is the continuous field approximated by discrete particles and nodes. In fact, the continuous field is where all physics happen. Essentially, MPM is a discretisation method that projects the continuous quantities to discrete particles and nodes.

Contributions

```
& Part I: Moving Least Squares Discretization (MLS-MPM)
    - Unifying Affine Particle-In-Cell and MPM force discretization
    0 Weak-form consistent
    o Faster and Easier
```

ャ Part II: Compatible Particle-in-Cell (CPIC)
- Velocity field discontinuity
- Enables cutting and rigid body coupling

Contributions

† Part I: Moving Least Squares Discretization (MLS-MPM)

- Unifying Affine Particle-In-Cell and MPM force discretization
- Weak-form consistent
- Faster and easier
+ Part II: Compatible Particle-in-Cell
- Velocity field discontinuity

Emables cutting and nigid body coupling

1D Curve Fitting

1D Curve Fitting

1D Curve Fitting

So lets regularise it a bit. Maybe it is good to constraint our choice in only constant functions, like $\mathrm{f}(\mathrm{x})=\mathrm{b}$.
Of course you want to pick one constant function [click] that minimise certain error metric. We use the least squares reconstruction error here [click], which is defined as the total squares distance from the data points to the projected points on the curve.

1D Curve Fitting

\[

\]

So lets regularise it a bit. Maybe it is good to constraint our choice in only constant functions, like $f(x)=b$.
Of course you want to pick one constant function [click] that minimise certain error metric. We use the least squares reconstruction error here [click], which is defined as the total squares distance from the data points to the projected points on the curve.
$\mathrm{f}=\backslash \mathrm{text}\{a r g\} \backslash m i n _\{\backslash h a t\{f\} \backslash \text { in\mathcal\{F\}\} \sum_i }(\text { (hat\{ff(x_i)-y_i)^2 }$

1D Curve Fitting

$$
\begin{gathered}
f=\underset{\hat{f} \in \mathcal{F}}{\arg \min _{i} \sum_{i}\left(\hat{f}\left(x_{i}\right)-y_{i}\right)^{2}}{ }^{f(x)} \\
\hline
\end{gathered}
$$

So lets regularise it a bit. Maybe it is good to constraint our choice in only constant functions, like $f(x)=b$.
Of course you want to pick one constant function [click] that minimise certain error metric. We use the least squares reconstruction error here [click], which is defined as the total squares distance from the data points to the projected points on the curve.
$\mathrm{f}=\backslash \mathrm{text}\{a r g\} \backslash m i n _\{\backslash h a t\{f\} \backslash \text { in\mathcal\{F\}\} \sum_i }(\text { (hat\{ff(x_i)-y_i)^2 }$

1D Curve Fitting

Apparently this function is not a good choice. Let's move it higher so that the distance gets minimized. If we consider the green dots to be the velocity values on the grid, this is exactly what happens during traditional particle-in-cell methods [click], when the particle is at the origin. Estimating the particle velocity is done by finding such function.

1D Curve Fitting

Apparently this function is not a good choice. Let's move it higher so that the distance gets minimized. If we consider the green dots to be the velocity values on the grid, this is exactly what happens during traditional particle-in-cell methods [click], when the particle is at the origin. Estimating the particle velocity is done by finding such function.

Apparently this function is not a good choice. Let's move it higher so that the distance gets minimized. If we consider the green dots to be the velocity values on the grid, this is exactly what happens during traditional particle-in-cell methods [click], when the particle is at the origin. Estimating the particle velocity is done by finding such function.

And during particle to grid transfer, the grid velocity will be overwritten by the reconstructed values. This is why we want to minimise the reconstruction distance: smaller distance means better conversation of energy and less dissipation.

It's clear that just using a constant function is usually not sufficient. Let's include linear functions as well.

We can scale it [click] to make it match the slope of these points.

1D Curve Fitting

1D Curve Fitting

Least-Squares Transfers in 2D

Figure from A Polynomial Particle-In-Cell Method, Fu et al. 2017

In 2D things get a bit more complex, but the idea is the same: use basis function to get least squares reconstructions.

Least-Squares Transfers in 2D

Figure from A Polynomial Particle-In-Cell Method, Fu et al. 2017

Least-Squares Transfers in 2D

Figure from A Polynomial Particle-In-Cell Method, Fu et al. 2017

Least-Squares Transfers in 2D

Figure from A Polynomial Particle-In-Cell Method, Fu et al. 2017 18 DoFs=9 nodes x 2 DoFs per node: Lossless transfer!

PolyPIC further introduces bilinear and quadratic basis functions, leading to lossless grid-particle transfer. The more basis we use, the less dissipation we have.

1D Curve Fitting: Spline Interpolation

1D Curve Fitting: Spline Interpolation

"Shape functions" in FEM and MPM

1D Curve Fitting: Spline Interpolation

Super Imposed Shape Functions:
Continuous Function from Discrete DoFs

Which one to use?

So we have talked about two ways of reconstructing a continuous field out of discrete samples. It seems that for some reason we have been using MLS interpolation for APIC, but B-Spline interpolation for MPM discretization.
One natural question here is, can we only use one single interpolation method for both? If we can do so, maybe we can simplify and optimise our algorithm.

Which one to use?

Which one to use?

But after some attempts it turns out that doing so doesn't bring much advantage. In fact, it is not only hard to compute but also leads to no angular momentum conservation

Which one to use?

Which one to use?

Moving least squares makes MPM work together with APIC better [click]. Before I dive into a little bit of math, I want to highlight that MLS-MPM is actually even simpler to implement than traditional MPM. [click] In fact, it can be implemented within 88 lines of code. [click] This is the first time to the best of our knowledge, when MPM becomes so simple to implement.

Material Point Method

Affine Particle-in-Cell

Moving Least Squares

Moving least squares makes MPM work together with APIC better [click]. Before I dive into a little bit of math, I want to highlight that MLS-MPM is actually even simpler to implement than traditional MPM. [click] In fact, it can be implemented within 88 lines of code. [click] This is the first time to the best of our knowledge, when MPM becomes so simple to implement.

Moving least squares makes MPM work together with APIC better [click]. Before I dive into a little bit of math, I want to highlight that MLS-MPM is actually even simpler to implement than traditional MPM. [click] In fact, it can be implemented within 88 lines of code. [click] This is the first time to the best of our knowledge, when MPM becomes so simple to implement.

Moving least squares makes MPM work together with APIC better [click]. Before I dive into a little bit of math, I want to highlight that MLS-MPM is actually even simpler to implement than traditional MPM. [click] In fact, it can be implemented within 88 lines of code. [click] This is the first time to the best of our knowledge, when MPM becomes so simple to implement.

Moving least squares makes MPM work together with APIC better [click]. Before I dive into a little bit of math, I want to highlight that MLS-MPM is actually even simpler to implement than traditional MPM. [click] In fact, it can be implemented within 88 lines of code. [click] This is the first time to the best of our knowledge, when MPM becomes so simple to implement.

From MPM toMLS-MPM	
Shape/Test function B-spline	MLS Shape function weighted by B-spline
Lumped mass matrix $\quad m_{i}^{n}=\sum_{p} m_{p} \omega_{i p}$	$m_{i}^{n}=\sum_{p} m_{p} \omega_{i p}$
APIC P2G Momentum Contribution $m_{p} \mathbf{C}_{p}^{n}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{p}}\right) \omega_{i p}$	$m_{p} \mathbf{C}_{p}^{n}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{p}}\right) \omega_{i p}$
Stress Momentum Contribution $\Delta t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T} \nabla \omega_{i p}$	$\frac{4}{\Delta x^{2}} \Delta t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$
$\begin{gathered}\text { APIC G2P Affine Velocity } \\ \text { Reconstruction }\end{gathered} \mathbf{C}_{p}^{n+1}=\frac{4}{\Delta x^{2}} \sum_{i} v_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$	$\mathbf{C}_{p}^{n+1}=\frac{4}{\Delta x^{2}} \sum_{i} v_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$
$\begin{aligned} & \text { Velocity Gradient } \\ & \text { Evaluation }\end{aligned} \quad \nabla \boldsymbol{v}_{p}^{n+1}=\sum_{i} \boldsymbol{v}_{\boldsymbol{i}}^{n+1}\left(\nabla w_{i p}^{n}\right)^{T}$	$\nabla \boldsymbol{v}_{p}^{n+1}=\mathrm{C}_{p}^{n+1}$
Deformation Gradient Update$\quad \mathrm{F}_{p}^{n+1}=\left(\mathrm{I}+\Delta t \frac{\partial \mathrm{v}^{n+1}}{\partial \mathrm{x}}\left(\mathrm{x}_{p}^{n}\right)\right) \mathrm{F}_{p}^{n}$	$\mathrm{F}_{p}^{n+1}=\left(\mathrm{I}+\Delta t \frac{\partial \hat{\mathrm{v}}^{n+1}}{\partial \mathrm{x}}\left(\mathrm{x}_{p}^{n}\right)\right) \mathrm{F}_{p}^{n}$

Here I summarize elements of traditional MPM and MLS-MPM. This table does look a bit scary, but I promise that I will only spend one minute on it, and fortunately most entries are actually the same for MPM and MLS-MPM.
\Delta t V_p^0 \frac\{\partial\Psi\}\{\partial\mathbf\{F\}\}(\mathbf\{F\}_p^n)\mathbf\{F\}_p^\{nT\}\nabla \omega_\{ip\}
$\backslash f r a c\{4\} \backslash \backslash$ Delta $\left.x^{\wedge} 2\right\} \backslash$ Delta $t V_{-} p^{\wedge} 0 \backslash f r a c\{\backslash$ partial\Psi\}$\left.\} \backslash p a r t i a l \backslash m a t h b f\{F\}\right\}\left(\backslash m a t h b f\{F\}_{_} p^{\wedge} n\right) \backslash m a t h b f\{F\} _p^{\wedge}\{n T\}\left(\right.$ (mathbf $\left.\{x\} _i-\backslash m a t h b f\{x\} _p\right) \backslash o m e g a _\{i p\}$
m_p\mathbf\{C\}_p^\{n\}(\mathbf\{x_i\}-\mathbf\{x_p\})\omega_\{ip\}
m_i^n=\sum_p m_p \omega_\{ip\}
\mathbf\{C\}_p^\{n+1\}=\frac\{4\}\{\Delta $\left.x^{\wedge} 2\right\} \backslash s u m _i\left\{v _i\left(\backslash m a t h b f\{x\} _i-\backslash m a t h b f\{x\} _p\right)\right\} \backslash o m e g a _\{i p\}$

From MPM to MLS-MPM	
Shape/Test function B-spline	MLS Shape function weighted by B-spline
Lumped mass matrix $\quad m_{i}^{n}=\sum_{p} m_{p} \omega_{i p}$	$m_{i}^{n}=\sum_{p} m_{p} \omega_{i p}$
APIC P2G Momentum Contribution $m_{p} \mathbf{C}_{p}^{n}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{p}}\right) \omega_{i p}$	$m_{p} \mathbf{C}_{p}^{n}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{p}}\right) \omega_{i p}$
Stress Momentum Contribution $\Delta t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T} \nabla \omega_{i p}$	$\frac{4}{\Delta x^{2}} \Delta t t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$
$\begin{gathered}\text { APIC G2P Affine Velocity } \\ \text { Reconstruction }\end{gathered} \mathbf{C}_{p}^{n+1}=\frac{4}{\Delta x^{2}} \sum_{i} v_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$	$\mathbf{C}_{p}^{n+1}=\frac{4}{\Delta x^{2}} \sum_{i} v_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$
$\begin{gathered}\text { Velocity Gradient } \\ \text { Evaluation }\end{gathered} \quad \nabla \boldsymbol{v}_{p}^{n+1}=\sum_{i} \boldsymbol{v}_{\boldsymbol{i}}^{n+1}\left(\nabla w_{i p}^{n}\right)^{T}$	$\nabla \boldsymbol{v}_{p}^{n+1}=\mathrm{C}_{p}^{n+1}$
Deformation Gradient Update$\quad \mathrm{F}_{p}^{n+1}=\left(\mathrm{I}+\Delta t \frac{\partial \hat{\mathrm{v}}^{n+1}}{\partial \mathrm{x}}\left(\mathrm{x}_{p}^{n}\right)\right) \mathrm{F}_{p}^{n}$	$\mathrm{F}_{p}^{n+1}=\left(\mathrm{I}+\Delta t \frac{\partial \hat{\mathrm{v}}^{n+1}}{\partial \mathrm{x}}\left(\mathrm{x}_{p}^{n}\right)\right) \mathrm{F}_{p}^{n}$

In fact, the only difference is the stress momentum contribution and the evaluation of velocity gradient. [click] MLS-MPM reuses the APIC affine velocity field, which makes G2P faster.
\Delta t V_p^0 \frac\{\partial\Psi\}\{\partial\mathbffFf\}\}(\mathbf\{F\}_p^n)\mathbf\{F\}_p^\{nT\}\nabla \omega_\{ip\}
$\backslash f r a c\{4\} \backslash \backslash$ Delta $\left.x^{\wedge} 2\right\} \backslash$ Delta $t V_{-} p^{\wedge} 0 \backslash f r a c\left\{\backslash\right.$ partial\Psi\}$\{\backslash p a r t i a l \backslash m a t h b f\{F\}\}\left(\backslash m a t h b f\{F\} _p^{\wedge} n\right) \backslash m a t h b f\{F\} _p^{\wedge}\{n T\}\left(\right.$ (mathbf $\left.\{x\} _i-\backslash m a t h b f\{x\} _p\right) \backslash o m e g a _\{i p\}$
m_p\mathbf\{C\}_p^\{n\}(\mathbf\{x_i\}-\mathbf\{x_p\})\omega_\{ip\}
$m _i \wedge n=\backslash s u m _p$ m_p \omega_\{ip\}
\mathbff $C\} _p^{\wedge}\{n+1\}=\backslash f r a c\{4\}\left\{\backslash\right.$ Delta $\left.x^{\wedge} 2\right\} \backslash$ sum_i $\left\{v_{-} i\left(\backslash m a t h b f\{x\} _i-\backslash m a t h b f\{x\} _p\right)\right\} \backslash o m e g a _\{i p\}$

From MPM to MLS-MPM	
Shape/Test function B-spline	MLS Shape function weighted by B-spline
Lumped mass matrix $\quad m_{i}^{n}=\sum_{p} m_{p} \omega_{i p}$	$m_{i}^{n}=\sum_{p} m_{p} \omega_{i p}$
APIC P2G Momentum Contribution $m_{p} \mathbf{C}_{p}^{n}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{p}}\right) \omega_{i p}$	$m_{p} \mathbf{C}_{p}^{n}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{p}}\right) \omega_{i p}$
Stress Momentum Contribution $\Delta t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T} \nabla \omega_{i p}$	$\frac{4}{\Delta x^{2}} \Delta t t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$
$\begin{gathered}\text { APIC G2P Affine Velocity } \\ \text { Reconstruction }\end{gathered} \mathbf{C}_{p}^{n+1}=\frac{4}{\Delta x^{2}} \sum_{i} v_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$	$\mathbf{C}_{p}^{n+1}=\frac{4}{\Delta x^{2}} \sum_{i} v_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$
$\begin{gathered}\text { Velocity Gradient } \\ \text { Evaluation }\end{gathered} \quad \nabla \boldsymbol{v}_{p}^{n+1}=\sum_{i} \boldsymbol{v}_{\boldsymbol{i}}^{n+1}\left(\nabla w_{i p}^{n}\right)^{T}$	$\nabla \boldsymbol{v}_{p}^{n+1}=\mathrm{C}_{p}^{n+1}$
Deformation Gradient Update$\quad \mathrm{F}_{p}^{n+1}=\left(\mathrm{I}+\Delta t \frac{\partial \hat{\mathrm{v}}^{n+1}}{\partial \mathrm{x}}\left(\mathrm{x}_{p}^{n}\right)\right) \mathrm{F}_{p}^{n}$	$\mathrm{F}_{p}^{n+1}=\left(\mathrm{I}+\Delta t \frac{\partial \hat{\mathrm{v}}^{n+1}}{\partial \mathrm{x}}\left(\mathrm{x}_{p}^{n}\right)\right) \mathrm{F}_{p}^{n}$

In fact, the only difference is the stress momentum contribution and the evaluation of velocity gradient. [click] MLS-MPM reuses the APIC affine velocity field, which makes G2P faster.
\Delta t V_p^0 \frac\{\partial\Psi\}\{\partial\mathbffFf\}\}(\mathbf\{F\}_p^n)\mathbf\{F\}_p^\{nT\}\nabla \omega_\{ip\}

m_p\mathbf\{C\}_p^\{n\}(\mathbf\{x_i\}-\mathbf\{x_p\})\omega_\{ip\}
$m _i \wedge n=\backslash s u m _p$ m_p \omega_\{ip\}
\mathbff $C\} _p^{\wedge}\{n+1\}=\backslash f r a c\{4\}\left\{\backslash\right.$ Delta $\left.x^{\wedge} 2\right\} \backslash$ sum_i $\left\{v_{-} i\left(\backslash m a t h b f\{x\} _i-\backslash m a t h b f\{x\} _p\right)\right\} \backslash o m e g a _\{i p\}$

From MPM to MLS-MPM	
Shape/Test function B-spline	MLS Shape function weighted by B-spline
Lumped mass matrix $\quad m_{i}^{n}=\sum_{p} m_{p} \omega_{i p}$	$m_{i}^{n}=\sum_{p} m_{p} \omega_{i p}$
APIC P2G Momentum Contribution $m_{p} \mathbf{C}_{p}^{n}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{p}}\right) \omega_{i p}$	$m_{p} \mathbf{C}_{p}^{n}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{p}}\right) \omega_{i p}$
Stress Momentum Contribution $\Delta t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T} \nabla \omega_{i p}$	$\frac{4}{\Delta x^{2}} \Delta t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T} \underline{\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}}$
$\begin{array}{cl}\text { APIC G2P Affine Velocity } \\ \text { Reconstruction }\end{array} \quad \mathbf{C}_{p}^{n+1}=\frac{4}{\Delta x^{2}} \sum_{i} v_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$	$\mathbf{C}_{p}^{n+1}=\frac{4}{\Delta x^{2}} \sum_{i} v_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$
$\begin{gathered}\text { Velocity Gradient } \\ \text { Evaluation }\end{gathered} \quad \nabla \boldsymbol{v}_{p}^{n+1}=\sum_{i} \boldsymbol{v}_{i}^{n+1}\left(\nabla w_{i p}^{n}\right)^{T}$	$\nabla \boldsymbol{v}_{p}^{n+1}=\mathrm{C}_{p}^{n+1}$
Deformation Gradient Update$\quad \mathrm{F}_{p}^{n+1}=\left(\mathrm{I}+\Delta t \frac{\partial \hat{\mathrm{v}}^{n+1}}{\partial \mathrm{x}}\left(\mathrm{x}_{p}^{n}\right)\right) \mathrm{F}_{p}^{n}$	$\mathrm{F}_{p}^{n+1}=\left(\mathrm{I}+\Delta t \frac{\partial \hat{\mathrm{v}}^{n+1}}{\partial \mathrm{x}}\left(\mathrm{x}_{p}^{n}\right)\right) \mathrm{F}_{p}^{n}$

From MPM to MLS-MPM	
Shape/Test function B-spline	MLS Shape function weighted by B-spline
Lumped mass matrix $\quad m_{i}^{n}=\sum_{p} m_{p} \omega_{i p}$	$m_{i}^{n}=\sum_{p} m_{p} \omega_{i p}$
APIC P2G Momentum Contribution $m_{p} \mathbf{C}_{p}^{n}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{p}}\right) \omega_{i p}$	$m_{p} \mathbf{C}_{p}^{n}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{p}}\right) \omega_{i p}$
Stress Momentum Contribution $\Delta t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T} \nabla \omega_{i p}$	$\frac{4}{\Delta x^{2}} \Delta t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T} \underline{\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}}$
$\begin{gathered}\text { APIC G2P Affine Velocity } \\ \text { Reconstruction }\end{gathered} \quad \mathbf{C}_{p}^{n+1}=\frac{4}{\Delta x^{2}} \sum_{i} v_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$	$\mathbf{C}_{p}^{n+1}=\frac{4}{\Delta x^{2}} \sum_{i} v_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$
$\begin{aligned} & \text { Velocity Gradient } \\ & \text { Evaluation }\end{aligned} \quad \nabla \boldsymbol{v}_{p}^{n+1}=\sum_{i} \boldsymbol{v}_{i}^{n+1}\left(\nabla w_{i p}^{n}\right)^{T}$	$\nabla \boldsymbol{v}_{p}^{n+1}=\mathrm{C}_{p}^{n+1}$
Deformation Gradient Update$\quad \mathrm{F}_{p}^{n+1}=\left(\mathrm{I}+\Delta t \frac{\partial \hat{\mathrm{v}}^{n+1}}{\partial \mathrm{x}}\left(\mathrm{x}_{p}^{n}\right)\right) \mathrm{F}_{p}^{n}$	$\mathrm{F}_{p}^{n+1}=\left(\mathrm{I}+\Delta t \frac{\partial \hat{\mathrm{v}}^{n+1}}{\partial \mathrm{x}}\left(\mathrm{x}_{p}^{n}\right)\right) \mathrm{F}_{p}^{n}$

From MPM	
Shape/Test function B-spline	MLS Shape function weighted by B-spline
Lumped mass matrix $\quad m_{i}^{n}=\sum_{p} m_{p} \omega_{i p}$	$m_{i}^{n}=\sum_{p} m_{p} \omega_{i p}$
$\begin{array}{cc} \text { APIC P2G } & m_{p} \mathbf{C}_{p}^{n}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{p}}\right) \omega_{i p} \\ \text { Momentum Contribution } & \end{array}$	$m_{p} \mathbf{C}_{p}^{n}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{p}}\right) \omega_{i p}$
Stress Momentum Contribution $\Delta t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T} \nabla \omega_{i p}$	$\frac{4}{\Delta x^{2}} \Delta t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T} \underline{\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}}$
$\begin{gathered}\text { APIC G2P Affine Velocity } \\ \text { Reconstruction }\end{gathered} \quad \mathbf{C}_{p}^{n+1}=\frac{4}{\Delta x^{2}} \sum_{i} v_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$	$\mathbf{C}_{p}^{n+1}=\frac{4}{\Delta x^{2}} \sum_{i} v_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$
$\begin{aligned} & \text { Velocity Gradient } \\ & \text { Evaluation }\end{aligned} \quad \nabla \boldsymbol{v}_{p}^{n+1}=\sum_{i} \boldsymbol{v}_{i}^{n+1}\left(\nabla w_{i p}^{n}\right)^{T}$	$\nabla \boldsymbol{v}_{p}^{n+1}=\mathrm{C}_{p}^{n+1}$
Deformation Gradient Update$\quad \mathrm{F}_{p}^{n+1}=\left(\mathrm{I}+\Delta t \frac{\partial \hat{\mathrm{v}}^{n+1}}{\partial \mathrm{x}}\left(\mathrm{x}_{p}^{n}\right)\right) \mathrm{F}_{p}^{n}$	$\mathrm{F}_{p}^{n+1}=\left(\mathrm{I}+\Delta t \frac{\partial \hat{\mathrm{v}}^{n+1}}{\partial \mathrm{x}}\left(\mathrm{x}_{p}^{n}\right)\right) \mathrm{F}_{p}^{n}$

Performance

Timing (ms)	Reference	Ours (MPM)	Ours* (MPM)	Ours* (MLS-MPM)
P2G (1 thread)	$4760(1 \times)$	$5744(0.83 \times)$	$2685(1.77 \times)$	$1283(3.71 \times)$
P2G (4 threads)	$1220(1 \times)$	$1525(0.80 \times)$	$688(1.77 \times)$	$328(3.72 \times)$
G2P (1 thread)	$8255(1 \times)$	$7476(1.10 \times)$	$1144(7.21 \times)$	$589(14.01 \times)$
G2P (4 threads)	$2070(1 \times)$	$2011(1.03 \times)$	$313(6.61 \times)$	$163(12.70 \times)$

Reference: Tampubolon et al. 2017.
Multi-species simulation of porous sand and water mixtures

Performance

Timing (ms)	Reference	Ours (MPM)	Ours* (MPM)	Ours* (MLS-MPM)
P2G (1 thread)	$4760(1 \times)$	$5744(0.83 \times)$	$2685(1.77 \times)$	$1283(3.71 \times)$
P2G (4 threads)	$1220(1 \times)$	$1525(0.80 \times)$	$688(1.77 \times)$	$328(3.72 \times)$
G2P (1 thread)	$8255(1 \times)$	$7476(1.10 \times)$	$1144(7.21 \times)$	$589(14.01 \times)$
G2P (4 threads)	$2070(1 \times)$	$2011(1.03 \times)$	$313(6.61 \times)$	$163(12.70 \times)$

Baseline: Traditional MPM

Performance

Timing (ms)	Reference	Ours (MPM)	Ours* ${ }^{*}$ (MPM)	Ours* (MLS-MPM)
P2G (1 thread)	$4760(1 \times)$	$5744(0.83 \times)$	$2685(1.77 \times)$	$1283(3.71 \times)$
P2G (4 threads)	$1220(1 \times)$	$1525(0.80 \times)$	$688(1.77 \times)$	$328(3.72 \times)$
G2P (1 thread)	$8255(1 \times)$	$7476(1.10 \times)$	$1144(7.21 \times)$	$589(14.01 \times)$
G2P (4 threads)	$2070(1 \times)$	$2011(1.03 \times)$	$313(6.61 \times)$	$163(12.70 \times)$

Optimized Traditional MPM

(Low-level performance engineering)

Then we do some low-level performance engineering on traditional MPM. This makes P2G 1.6x faster and G2P 7x faster.

Performance

Timing (ms)	Reference	Ours (MPM)	Ours $^{*}(\mathrm{MPM})$	Ours $^{*}($ MLS-MPM $)$
P2G (1 thread)	$4760(1 \times)$	$5744(0.83 \times)$	$2685(1.77 \times)$	$1283(3.71 \times)$
P2G (4 threads)	$1220(1 \times)$	$1525(0.80 \times)$	$688(1.77 \times)$	$328(3.72 \times)$
G2P (1 thread)	$8255(1 \times)$	$7476(1.10 \times)$	$1144(7.21 \times)$	$589(14.01 \times)$
G2P (4 threads)	$2070(1 \times)$	$2011(1.03 \times)$	$313(6.61 \times)$	$163(12.70 \times)$

(algorithmic improvement)

Finally, we implement MLS-MPM.

This algorithmic improvement gives us $2 x$ further speed-up.

Contributions

```
+ Part I: Moving Least Squares Discretization (MLS-MPM)
    o Unifying Affine Particle-In-Cell and MPM force discretization
    o Weak-form consistent
    o Faster and easier
```

- Part II: Compatible Particle-in-Cell
 - Velocity field discontinuity
Enables cutting and rigid body coupling

So that's the first part, where we unified APIC and MPM force discretization. The result is elegant and efficient, and more importantly, easier to implement. Ladies and gentlemen, it's not one thousand lines of code, not one hundred lines of code, not even ten lines of code. [click] It's negative 100 lines of code. At the same time, it is mathematically sound and runs faster. The more you use, the less code you write, and the faster your code runs. There is literally no reason not to use it.

Contributions

+ Part I: Moving Least Squares Discretization (MLS-MPM)

o Unifying Affine Particle-In-Cell and MPM force discretization
o Weak-form consistent
-100 lines of code!

- Velocity field discontinuity
- Enables cutting and rigid body coupling

So that's the first part, where we unified APIC and MPM force discretization. The result is elegant and efficient, and more importantly, easier to implement. Ladies and gentlemen, it's not one thousand lines of code, not one hundred lines of code, not even ten lines of code. [click] It's negative 100 lines of code. At the same time, it is mathematically sound and runs faster. The more you use, the less code you write, and the faster your code runs. There is literally no reason not to use it.

Contributions

```
+ Part I: Moving Least Squares Discretization (MLS-MPM)
    - Unifying Affine Particle-In-Cell and MPM force discretization
    Weak-form consistent
    - Faster and Easier
```

+ Part II: Compatible Particle-in-Cell
 - Velocity field discontinuity
- Enables cutting and rigid body coupling

Suppose you get an armadillo. As a simulation guy you can't wait to do something bad on it. [click] For example, you may want to cut it. However, this turns out to be very hard to MPM.

Suppose you get an armadillo. As a simulation guy you can't wait to do something bad on it. [click] For example, you may want to cut it. However, this turns out to be very hard to MPM.

1D Curve Fitting

1D Curve Fitting

1D Curve Fitting

Unfortunately this is not supported by PIC, APIC and even PolyPIC. They only have continuous basis functions.

In traditional MPM we cannot actually simulate cutting. [click]
A moving thin level set of any boundary conditions will either be treated as a collider or completely ignored by the material.
Putting the level set directly inside also doesn't work, since the interpolated velocity field is still continuous.
Other common approaches include particle deletion and softening. However, due to the fuzzy nature of PIC kernels, a significant amount of particles must be deleted for separation. [Wait] Softening creates unpleasant artifacts.

In traditional MPM we cannot actually simulate cutting. [click]
A moving thin level set of any boundary conditions will either be treated as a collider or completely ignored by the material.
Putting the level set directly inside also doesn't work, since the interpolated velocity field is still continuous.
Other common approaches include particle deletion and softening. However, due to the fuzzy nature of PIC kernels, a significant amount of particles must be deleted for separation. [Wait] Softening creates unpleasant artifacts.

From the MPM point of view, the relative motion of two particles will be smoothed out during P2G.

From the MPM point of view, the relative motion of two particles will be smoothed out during P2G.

During resample, because the relative motion on grid is smoothed out by the kernel, the particles will gather almost a rigid velocity field. In other words, a collision happens.

Velocity Discontinuity (Compatible Particle-in-Cell, CPIC)

Unfortunately there is no existing way that can avoid such smoothing. We propose a method to solve this issue. This is achieved by assigning colours to both particles and grids, and particle only interact with nodes with the same color.

Velocity Discontinuity (Compatible Particle-in-Cell, CPIC)

We introduce the coloured distance field, which generalises the traditional signed distance field to represent self-intersecting and open boundary. We start with a boundary mesh [wait], then rasterise the distance to mesh to grid nodes [wait]. Then we rasterise the color of meshes to classify the grid nodes. [wait] On particles, we can reconstruct the distance and normal, again, using moving least squares.

We introduce the coloured distance field, which generalises the traditional signed distance field to represent self-intersecting and open boundary. We start with a boundary mesh [wait], then rasterise the distance to mesh to grid nodes [wait]. Then we rasterise the color of meshes to classify the grid nodes. [wait] On particles, we can reconstruct the distance and normal, again, using moving least squares.

[click] With all these included, our MPM world becomes much sharper. We can incrementally cut a piece a jelly [wait], or cut it instantly. [wait] We can even do more than one cuts.

[click] With all these included, our MPM world becomes much sharper. We can incrementally cut a piece a jelly [wait], or cut it instantly. [wait] We can even do more than one cuts.

The remaining problem is, how can we assign a colours to particles? Particles gain corresponding color when it moves close to the boundary. [DO not wait]

The remaining problem is, how can we assign a colours to particles? Particles gain corresponding color when it moves close to the boundary. [DO not wait]

Now we are ready to cut a bunny.

Now we are ready to cut a bunny.

and some cheese

and some cheese

Cutting actually cover more natural phenomena. For example, blending.

Cutting actually cover more natural phenomena. For example, blending.

Two-way Rigid Body Coupling

Particle to rigid body
(P2G)

Rigid body to particle (G2P)

Here's one coupling exmaple.

Here's one coupling exmaple.

A 3D version.

A 3D version.

We can even simulate crawling robots entirely in MPM now, and study the motion of the robot.

We can even simulate crawling robots entirely in MPM now, and study the motion of the robot.

We can even simulate crawling robots entirely in MPM now, and study the motion of the robot.

There is actually a science paper claiming that the bottom motion will be faster.

There is actually a science paper claiming that the bottom motion will be faster.

Contributions

```
& Part I: Moving Least Squares Discretization (MLS-MPM)
    - Unifying Affine Particle-In-Cell and MPM force discretization
    Weak-form consistent
    - Faster and Easier
```

+ Part II: Compatible Particle-in-Cell
 - Velocity field discontinuity
- Enables cutting and rigid body coupling

Contributions

\& Part I: Moving Least Squares Discretization (MLS-MPM)

- Unifying Affine Particle-In-Cell and MPM force discretization
- Weak-form consistent
- Faster and Easier
\uparrow Part II: Compatible Particle-in-Cell
- Velocity field discontinuity
- Enables cutting and rigid body coupling

Reproducible every demo with a python script: git clone https://github.com/yuanming-hu/taichi_mpm

Apart from the 88-line version of MLS-MPM in 2D, we have also released code and data for the fully functioning high-performance 3D version based on taichi and you are welcome to try it.
[click] If you already have taichi installed on Linux, you can just do 'ti install mpm', and it will automatically deploy our MPM solver. We hope that this can low the barrier for everybody to start playing MPM.
[click] I would like to thank everyone who made this project possible, and thank you all for listening! That concludes my talk and l'm happy to take some questions.

Reproducible every demo with a python script: git clone https://github.com/yuanming-hu/taichi_mpm or use the taichi project manager: ti install mpm

Apart from the 88-line version of MLS-MPM in 2D, we have also released code and data for the fully functioning high-performance 3D version based on taichi and you are welcome to try it.
[click] If you already have taichi installed on Linux, you can just do 'ti install mpm', and it will automatically deploy our MPM solver. We hope that this can low the barrier for everybody to start playing MPM.
[click] I would like to thank everyone who made this project possible, and thank you all for listening! That concludes my talk and l'm happy to take some questions.

Reproducible every demo with a python script: git clone https://github.com/yuanming-hu/taichi_mpm
or use the taichi project manager: $\boldsymbol{t i}$ install $\mathbf{m p m}$

Thank you!
 Questions are welcome!

Apart from the 88 -line version of MLS-MPM in 2D, we have also released code and data for the fully functioning high-performance 3D version based on taichi and you are welcome to try it.
[click] If you already have taichi installed on Linux, you can just do 'ti install mpm', and it will automatically deploy our MPM solver. We hope that this can low the barrier for everybody to start playing MPM.
[click] I would like to thank everyone who made this project possible, and thank you all for listening! That concludes my talk and l'm happy to take some questions.

From MPM to MLS-MPM	
Shape/Test function	B-spline $\quad \left\lvert\, \begin{gathered}\text { MLS Shape function } \\ \text { weighted by B-spline }\end{gathered}\right.$
Lumped mass matrix	$m_{i}^{n}=\sum_{p} m_{p} \omega_{i p}$
APIC P2G Momentum Contribution	$m_{p} \mathbf{C}_{p}^{n}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{p}}\right) \omega_{i p}$
Stress Momentum Contribution	$\Delta t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T} \nabla \omega_{i p} \left\lvert\, \frac{4}{\Delta x^{2}} \Delta t V_{p}^{0} \frac{\partial \Psi}{\partial \mathbf{F}}\left(\mathbf{F}_{p}^{n}\right) \mathbf{F}_{p}^{n T}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}\right.$
APIC G2P Affine Velocity Reconstruction	$\mathbf{C}_{p}^{n+1}=\frac{4}{\Delta x^{2}} \sum_{i} v_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{p}\right) \omega_{i p}$
Velocity Gradient Evaluation	$\nabla \mathbf{v}_{p}^{n+1}=\sum_{i} \mathbf{v}_{i}^{n+1}\left(\nabla w_{i p}^{n}\right)^{T} \mid \quad \nabla \mathbf{v}_{p}^{n+1}=\mathrm{C}_{p}^{n+1}$
Deformation Gradient Update	$\mathbf{F}_{p}^{n+1}=\left(\mathbf{F}+\Delta t \nabla \mathbf{v}_{p}^{n+1}\right) \mathbf{F}_{p}^{n}$

Since the B-spline gradient is replaced by the simple MLS shape function gradient, MLS-MPM avoids the costly B-spline kernel gradients.
$\backslash m a t h b f\{F\} _p^{\wedge}\{n+1\}=\operatorname{left}\left(\backslash m a t h b f\{F\}+\backslash \operatorname{Delta} \operatorname{t} \backslash\right.$ nabla\mathbf $\left.\{v\} _p^{\wedge}\{n+1\} \backslash r i g h t\right) \backslash m a t h b f\{F\} _p^{\wedge}\{n\}$

