gpu.js is a JavaScript Acceleration library for GPGPU (General purpose computing on GPUs) in Javascript. gpu.js will automatically compile simple JavaScript functions into shader language and run them on the GPU. In case a GPU is not available, the functions will still run in regular JavaScript.
Matrix multiplication written in gpu.js:
const gpu = new GPU();
// Create the GPU accelerated function from a kernel
// function that computes a single element in the
// 512 x 512 matrix (2D array). The kernel function
// is run in a parallel manner in the GPU resulting
// in very fast computations! (...sometimes)
const matMult = gpu.createKernel(function(a, b) {
var sum = 0;
for (var i = 0; i < 512; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}).setOutput([512, 512]);
// Perform matrix multiplication on 2 matrices of size 512 x 512
const c = matMult(a, b);
You can run a benchmark of this here. Typically, it will run 1-15x faster depending on your hardware.
Or alternatively you can experiment around with the kernel playground here
- Installation
- Options
- Creating and Running Functions
- Accepting Input
- Graphical Output
- Combining Kernels
- Create Kernel Map
- Adding Custom Functions
- Adding Custom Functions Directly to Kernel
- Loops
- Pipelining
- Supported Math functions
- Full API reference
- Automatically-built Documentation
- Contributors
- Contributing
- Terms Explained
- License
npm install gpu.js --save
yarn add gpu.js
Download the latest version of gpu.js and include the files in your HTML page using the following tags:
<script src="/path/to/js/gpu.min.js"></script>
In JavaScript, initialize the library:
const gpu = new GPU();
Options are an object used to create a kernel
or kernelMap
. Example: gpu.createKernel(options)
output
: array or object that describes the output of kernel.- as array:
[width]
,[width, height]
, or[width, height, depth]
- as object:
{ x: width, y: height, z: depth }
- as array:
- outputToTexture: boolean
- graphical: boolean
- loopMaxIterations: number
- constants: object
- wraparound: boolean
- hardcodeConstants: boolean
- floatTextures: boolean
- floatOutput: boolean
- functions: array or boolean
- nativeFunctions: object
- subKernels: array
Depending on your output type, specify the intended size of your output. You cannot have an accelerated function that does not specify any output size.
Output size | How to specify output size | How to reference in kernel |
---|---|---|
1D | [length] |
myVar[this.thread.x] |
2D | [width, height] |
myVar[this.thread.y][this.thread.x] |
3D | [width, height, depth] |
myVar[this.thread.z][this.thread.y][this.thread.x] |
const opt = {
output: [100]
};
or
// You can also use x, y, and z
const opt = {
output: { x: 100 }
};
Create the function you want to run on the GPU. The first input parameter to createKernel
is a kernel function which will compute a single number in the output. The thread identifiers, this.thread.x
, this.thread.y
or this.thread.z
will allow you to specify the appropriate behavior of the kernel function at specific positions of the output.
const myFunc = gpu.createKernel(function() {
return this.thread.x;
}, opt);
The created function is a regular JavaScript function, and you can use it like one.
myFunc();
// Result: [0, 1, 2, 3, ... 99]
Note: Instead of creating an object, you can use the chainable shortcut methods as a neater way of specifying options.
const myFunc = gpu.createKernel(function() {
return this.thread.x;
}).setOutput([100]);
myFunc();
// Result: [0, 1, 2, 3, ... 99]
Kernel functions can accept numbers, or 1D, 2D or 3D array of numbers as input. To define an argument, simply add it to the kernel function like regular JavaScript.
const myFunc = gpu.createKernel(function(x) {
return x;
}).setOutput([100]);
myFunc(42);
// Result: [42, 42, 42, 42, ... 42]
Similarly, with array inputs:
const myFunc = gpu.createKernel(function(x) {
return x[this.thread.x % 3];
}).setOutput([100]);
myFunc([1, 2, 3]);
// Result: [1, 2, 3, 1, ... 1 ]
Sometimes, you want to produce a canvas
image instead of doing numeric computations. To achieve this, set the graphical
flag to true
and the output dimensions to [width, height]
. The thread identifiers will now refer to the x
and y
coordinate of the pixel you are producing. Inside your kernel function, use this.color(r,g,b)
or this.color(r,g,b,a)
to specify the color of the pixel.
For performance reasons, the return value of your function will no longer be anything useful. Instead, to display the image, retrieve the canvas
DOM node and insert it into your page.
const render = gpu.createKernel(function() {
this.color(0, 0, 0, 1);
})
.setOutput([20, 20])
.setGraphical(true);
render();
const canvas = render.getCanvas();
document.getElementsByTagName('body')[0].appendChild(canvas);
Note: To animate the rendering, use requestAnimationFrame
instead of setTimeout
for optimal performance. For more information, see this.
Currently, if you need alpha do something like enabling premultipliedAlpha
with your own gl context:
const canvas = DOM.canvas(500, 500);
const gl = canvas.getContext('webgl', { premultipliedAlpha: false });
const gpu = new GPU({
canvas,
webGl: gl
});
const krender = gpu.createKernel(function(x) {
this.color(this.thread.x / 500, this.thread.y / 500, x[0], x[1]);
})
.setOutput([500, 500])
.setGraphical(true);
Sometimes you want to do multiple math operations on the gpu without the round trip penalty of data transfer from cpu to gpu to cpu to gpu, etc. To aid this there is the combineKernels
method.
Note: Kernels can have different output sizes.
const add = gpu.createKernel(function(a, b) {
return a[this.thread.x] + b[this.thread.x];
}).setOutput([20]);
const multiply = gpu.createKernel(function(a, b) {
return a[this.thread.x] * b[this.thread.x];
}).setOutput([20]);
const superKernel = gpu.combineKernels(add, multiply, function(a, b, c) {
return multiply(add(a, b), c);
});
superKernel(a, b, c);
This gives you the flexibility of using multiple transformations but without the performance penalty, resulting in a much much MUCH faster operation.
Sometimes you want to do multiple math operations in one kernel, and save the output of each of those operations. An example is Machine Learning where the previous output is required for back propagation. To aid this there is the createKernelMap
method.
const megaKernel = gpu.createKernelMap({
addResult: function add(a, b) {
return a[this.thread.x] + b[this.thread.x];
},
multiplyResult: function multiply(a, b) {
return a[this.thread.x] * b[this.thread.x];
},
}, function(a, b, c) {
return multiply(add(a, b), c);
});
megaKernel(a, b, c);
// Result: { addResult: [], multiplyResult: [], result: [] }
const megaKernel = gpu.createKernelMap([
function add(a, b) {
return a[this.thread.x] + b[this.thread.x];
},
function multiply(a, b) {
return a[this.thread.x] * b[this.thread.x];
}
], function(a, b, c) {
return multiply(add(a, b), c);
});
megaKernel(a, b, c);
// Result: [ [], [] ].result []
This gives you the flexibility of using parts of a single transformation without the performance penalty, resulting in much much MUCH faster operation.
Do you have a custom function you'd like to use on the gpu? Although limited, you can:
gpu.addFunction(function mySuperFunction(a, b) {
return a - b;
});
function anotherFunction(value) {
return value + 1;
}
gpu.addFunction(anotherFunction);
const kernel = gpu.createKernel(function(a, b) {
return anotherFunction(mySuperFunction(a[this.thread.x], b[this.thread.x]));
}).setOutput([20]);
function mySuperFunction(a, b) {
return a - b;
}
const kernel = gpu.createKernel(function(a, b) {
return mySuperFunction(a[this.thread.x], b[this.thread.x]);
})
.setOutput([20])
.setFunctions([mySuperFunction]);
Loops just work
const matMult = gpu.createKernel(function(a, b) {
var sum = 0;
for (var i = 0; i < this.constants.size; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}, {
constants: { size: 512 },
output: [512, 512],
});
const matMult = gpu.createKernel(function(a, b) {
var sum = 0;
for (var i = 0; i < 512; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}).setOutput([512, 512]);
Pipeline is a feature where values are sent directly from kernel to kernel via a texture.
This results in extremely fast computing. This is achieved with the kernel option outputToTexture: boolean
option or by calling kernel.setOutputToTexture(true)
To use the useful x
, y
, z
thread
lookup api inside of gpu.js, and yet use flattened arrays, there is the Input
type.
This is generally much faster for when sending values to the gpu, especially with larger data sets. Usage example:
import GPU, { input } from 'gpu.js';
const gpu = new GPU();
const kernel = gpu.createKernel(function(a, b) {
return a[this.thread.y][this.thread.x] + b[this.thread.y][this.thread.x];
}).setOutput([3,3]);
kernel(input(new Float32Array([1,2,3,4,5,6,7,8,9]), [3, 3]), input(new Float32Array([1,2,3,4,5,6,7,8,9]), [3, 3]));
Note: GPU.input(value, size)
is a simple pointer for new GPU.Input(value, size)
Since the code running in the kernel is actually compiled to GLSL code, not all functions from the JavaScript Math module are supported.
This is a list of the supported ones:
abs
acos
asin
atan
atan2
ceil
cos
exp
floor
log
log2
max
min
round
sign
sin
sqrt
tan
You can find a complete API reference here.
Documentation of the codebase is automatically built.
- Fazli Sapuan
- Eugene Cheah
- Matthew Saw
- Robert Plummer
- Abhishek Soni
- Juan Cazala
- Daniel X Moore
- Mark Theng
- Varun Patro
Contributors are welcome! Create a merge request to the develop
branch and we
will gladly review it. If you wish to get write access to the repository,
please email us and we will review your application and grant you access to
the develop
branch.
We promise never to pass off your code as ours.
- Kernel - A function that is tightly coupled to program that runs on the Graphic Processor
- Texture - A graphical artifact that is packed with data, in the case of GPU.js, bit shifted parts of a 32 bit floating point decimal
The MIT License
Copyright (c) 2017 gpu.js Team
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.