Skip to content

Object detection on multiple datasets with an automatically learned unified label space.

Notifications You must be signed in to change notification settings

xingyizhou/UniDet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Simple multi-dataset detection

An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of ECCV 2020 Robust Vision Challenges.

Simple multi-dataset detection,
Xingyi Zhou, Vladlen Koltun, Philipp Krähenbühl,
CVPR 2022 (arXiv 2102.13086)

Contact: [email protected]. Any questions or discussions are welcomed!

Features at a glance

  • We trained a unified object detector on 4 large-scale detection datasets: COCO, Objects365, OpenImages, and Mapillary, with state-of-the-art performance on all of them.

  • The model predicts class labels in a learned unified label space.

  • The model can be directly used to test on novel datasets outside the training datasets.

  • In this repo, we also provide state-of-the-art baselines for Objects365 and OpenImages.

Main results

COCO test-challenge OpenImages public test Mapillary test Objects365 val
52.9 60.6 25.3 33.7

Results are obtained using a Cascade-RCNN with ResNeSt200 trained in an 8x schedule.

  • Unified model vs. ensemble of dataset-specific models with known test domains.
COCO Objects365 OpenImages mean.
Unified 45.4 24.4 66.0 45.3
Dataset-specific models 42.5 24.9 65.7 44.4

Results are obtained using a Cascade-RCNN with Res50 trained in an 8x schedule.

  • Zero-shot cross dataset evaluation
VOC VIPER CityScapes ScanNet WildDash CrowdHuman KITTI mean
Unified 82.9 21.3 52.6 29.8 34.7 70.7 39.9 47.3
Oracle models 80.3 31.8 54.6 44.7 - 80.0 - -

Results are obtained using a Cascade-RCNN with Res50 trained in an 8x schedule.

More models can be found in our MODEL ZOO.

Installation

Our project is developed on detectron2. Please follow the official detectron2 installation.

Demo

We use the same inference API as detectorn2. To run inference on an image folder using our pretrained model, run

python demo.py --config-file configs/Unified_learned_OCIM_R50_6x+2x.yaml --input images/*.jpg --opts MODEL.WEIGHTS models/Unified_learned_OCIM_R50_6x+2x.pth

If setup correctly, the output should look like:

*The sample image is from WildDash dataset.

Note that the model predicts all labels in its label hierarchy tree (for example, both vehicle and car for a car), following the protocol in OpenImages.

Benchmark evaluation and training

After installation, follow the instructions in DATASETS.md to setup the (many) datasets. Then check REPRODUCE.md to reproduce the results in the paper.

License

Our code is under Apache 2.0 license.

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{zhou2021simple,
  title={Simple multi-dataset detection},
  author={Zhou, Xingyi and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp},
  booktitle={CVPR},
  year={2022}
}

About

Object detection on multiple datasets with an automatically learned unified label space.

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published