
Blog Content Search Engine
Albert Folch

University of Amsterdam
Amsterdam, The Netherlands

albertfolchg@gmail.com

Xavi Moreno
University of Amsterdam

Amsterdam, The Netherlands
xaviml.93@gmail.com

Ben Wilmers
University of Amsterdam

Amsterdam, The Netherlands
benwilmers@me.com

ABSTRACT
Information retrieval systems have revolutionized the way people
interact with the internet. They are tools with a wide array of uses
which give rise to the need for web search engines that are spe-
cialised for specific use cases. In this paper, we describe a new blog
post search engine and its architecture, starting with data acquisi-
tion and followed by data processing and storage. We combined
these modules into a single web application where a user is able
to query for blog posts in a standard or advanced way. Finally, we
discuss the evaluation of the system with collected validation data
and discuss our system performance using offline metrics.

KEYWORDS
blog, search engine, scrapy, elasticsearch, angular

1 INTRODUCTION
Since their emergence in the early 1990s, web search engines have
transformed the nature of research and knowledge acquisition
through their utility as research tools. The fundamental function
of a search engine is to retrieve relevant information to a query
from a given knowledge domain, but their applications are wide
and far-reaching. From entertainment to news to shopping to aca-
demic research papers, search engines facilitate the instantaneous
retrieval of many diverse kinds of knowledge. Over 1 trillion Google
searches are made every year[1], with this number continuing to
rise as more and more people gain access to the internet. This wide-
spread availability of knowledge, irrespective of physical location,
which has been made possible by web search engines, has revolu-
tionized the way in which we learn and consume information.

2 PROJECT DESCRIPTION
The goal of this project was to create a blog content search engine.
The steps that led to the construction of this engine are described
in the following subsections. As well as detailing the system and
its architecture in this paper, we documented everything and made
it all publicly available on Github 1.

2.1 Data Acquisition
Data gathering is the foundation of any search engine. It should
focus on the topic of the engine and gather sufficient varied and
meaningful pages to be effective. We crawled seven blog and ar-
ticle websites with 10,000 web pages each, all diverse and with
enough content (21GB) —Medium2, Wired3, Gizmodo4, The Verge5,

1https://github.com/xaviml/bloogle
2https://medium.com
3https://www.wired.com
4https://gizmodo.com
5https://www.theverge.com

TechCrunch6, BuzzFeed7 and Steemit8. Together with the webpages
crawled, we attached a file containing the URLs crawled and their
connected links.

In order to make this project possible, we used Scrapy, an open
source Python framework for extracting relevant data from web-
sites. This framework facilitates the way the data is extracted from
the aforementioned blogs. Moreover, it controls concurrency and
politeness by adding flags in a settings file.

2.1.1 Politeness. Crawling can be performed in many different
ways and using different technologies. Regardless of the tools used,
it is important to ensure the process is carried out politely. Polite-
ness here refers to the behaviour of the crawler when gathering
data. It is important to remember that when a crawler visits a cer-
tain web page, it consumes the resources of its servers, such as CPU
power and bandwidth. This process, therefore, should be done in a
respectful manner by obeying the robots.txt of each website. Web-
site managers often welcome well-behaved crawlers because they
increase exposure of the website, which in turn normally translates
to more traffic and/or more revenue (if applicable). On the other
hand, an ill-behaved crawler can be banned from crawling that
site and from other sites it has not even visited yet. This can be
done through automatic detection systems or the website manager
himself can ban the crawlers by looking at the servers’ logs, where
he can find the date, time, the URL requested and the IP address of
the bot. The crawler should also identify itself with a User-Agent
name and provide a means of contact such as an e-mail.

Scrapy has an option (ROBOTSTXT_OBEY) that we enabled to
obey the robots.txt files. After changing this setting, we could see
in the logs whether each URL to be requested was forbidden or not.

The next option we added was the name of our bot’s user agent
and email so the web manager could contact us in case they had any
issue with our bot. This setting helps to prevent the web manager
from having to look at the logs for our IPs.

Introducing delays is often advised as it reduces consumption of
the servers’ resources. We decided to set the DOWNLOAD_DELAY
to 1 second to avoid hitting the servers too frequently as well as
disabling RANDOMIZE_DOWNLOAD_DELAY. This randomiza-
tion policy reduces the chance of being detected and blocked by
bot detection systems but is not transparent.

2.1.2 Distributed crawling. The first setting that we changed to
achieve distributed crawling was the CONCURRENT_REQUESTS
_PER_DOMAIN. We used the default value of 8 to define the maxi-
mum number of requests to any domain. Next, we also left as 16
the CONCURRENT_REQUESTS which defines the maximum con-
current requests that our computer will carry out when crawling

6https://techcrunch.com
7https://www.buzzfeed.com/
8https://steemit.com

https://github.com/xaviml/bloogle

different domains simultaneously. Finally, in the settings config-
uration, we enabled the setting AUTOTHROTTLE_ENABLED to
adjust the delays between requests based on their latency.

Furthermore, Scrapy provides a class called CrawlerProcesswhich
allows you to run different spiders simultaneously. These spiders
were totally independent, so each of them was tasked with crawling
content from one website with no overlap.

2.1.3 Refreshing repository. One feature which we implemented
in our system was refreshing of the repository. There are two as-
pects to consider — updating existing posts and retrieving new ones.
Articles and blog posts rarely receive significant updates after the
time of creation so we did not deem this necessary for our system.
However, every day thousands of posts are created on sites such
as Medium or Buzzfeed so we decided to implement this aspect of
updating in our solution.

Every time we run the crawl process, we save a metadata file
with the date that the crawler was run. This metadata is used
the next time the crawler is run, so that only posts made more
recently than the time of the last crawling process are downloaded.
Thus, refreshing of the repository can be implemented through the
creation of an automatic process that checks every 12 hours for
new content. This allowed us to solve the issue of adding recent
posts to the repository.

2.2 Data Processing and Storage
Carrying out the data acquisition resulted in 70,000 pages in raw
HTML. These served as the input for the following step of data pro-
cessing and storage. In this section, we explain how we processed
the pages and created an inverted index with Elasticsearch.

Elasticsearch is an open-source search engine which is built on
the Lucene library. It allows for storage, retrieval and management
of data and comes with a large range of features and customizability.

2.2.1 Text Preprocessing. The first step in text processing is
cleaning the raw HTML. All websites are different and are struc-
tured differently, so we used the readability-lxml library in order
to extract the title and main text content from the HTML, which
was then sent to Elasticsearch.

2.2.2 Extraction of Additional Information. In addition to ex-
tracting the title and main text content from each article, we also
extracted various metadata, namely the author, date of publication
and date of most recent update (if applicable). We achieved this
through the use of the BeautifulSoup and readability-lxml libraries.

Secondly, after obtaining structured data from the HTML, we
processed the text in order to create the inverted index. Elasticsearch
provides a settings API where all of this is configurable. These are
the followed steps in text preprocessing:

(1) Tokenization. When the data is submitted to Elasticsearch,
the tokenization is automatically done by dividing the text
into a list of words.

(2) Possessives removal. We configured Elasticsearch to remove
possessive endings (’s) before applying the stop-word re-
moval filter.

(3) Stop-word removal. We also configured Elasticsearch to re-
move stop-words using the pre-defined English stop-word
list.

(4) Stemming. The final pipeline step is stemming. This can also
be easily implemented automatically in Elasticsearch. The
stemming type we chose to apply was Porter stemming.[2]

We also removed documents with content of less than 150 char-
acters, resulting in 55,000 indexed posts from the initially crawled
set of 70,000.

2.2.3 Distributed Indexing. Distributed indexing can be imple-
mented in Elasticsearch by simply setting the number of shards
for each index. A shard is defined as a subset or segment of an
index. When an index is created the shards are distributed among
the nodes of the cluster. In our case, we set the number of shards
to 2.

2.2.4 Structured Indexing. Using the information crawled and
preprocessed in the previous steps, we indexed the title, the content
(body), the author, the published date and the last modified date for
each post, using the URL as the primary key.

2.2.5 Updating Index. Elasticsearch provides aHTTP Postmethod
called _refresh (see Figure 1) that is automatically called every time
a new (blog) post is saved. First, Elasticsearch detects whether that
post already exists by checking the primary key. If it already exists,
it overwrites the previous post; otherwise it creates a new one.
An issue that may arise is deleted content. To avoid showing the

Figure 1
Refreshing index

user posts that no longer exist, we implemented a script to remove
unavailable posts. Although blog posts are generally unlikely to be
deleted, it is important to ensure this content is removed from the
index so that users are not presented with results which no longer
exist. To achieve this, the script iterates over all the posts that have
been indexed and checks whether each one still exists by sending a
GET request for the URL. The system checks whether the server
returns an HTTP success code or redirect, which range between
200 and 399. If the server does not return a success code, the post
is removed from the index. By executing this script periodically we
can ensure that the index remains up-to-date.

2.3 Basic Search
Having built the index, the next step was to implement search
functionality. Elasticsearch provides a domain-specific language
which can be used to carry out queries over an existing Elasticsearch
index. In addition, one of the advantages of Elasticsearch is that it
provides an out-of-the-box search implementation.

2

2.3.1 Query Preprocessing. Elasticsearch allows for queries to
be preprocessed in the same way as documents. Thus, tokenization
was automatically implemented and possessives removal, stopword
removal and English Porter stemming were enabled using the Elas-
ticsearch settings API.

2.3.2 Term-based Search. Elastic search allows for out-of-the-
box implementation of BM25. Although it is implemented by default,
we still included it in the settings configuration. The formula for
BM25 is as follows:

score(D,Q) =
n∑
i=1

IDF(qi) ·
f (qi ,D) · (k1 + 1)

f (qi ,D) + k1 · (1 − b + b ·
|D |

avgdl)

where k1 and b are hyperparameters for the formula which we
set as b = 0.75 and k1 = 1.2. Parameter b considers the length of
the documents, with larger documents being penalized as words
are more likely to occur in those documents. Parameter k controls
the weighting of the term frequencies relative to the average length
of the documents.

2.3.3 Spelling Correction. We implemented spelling correction
using the Elasticsearch term suggester feature. This is done by
sending an additional suggest request (containing the query) as
part of the main search request. In this subrequest we specified the
query and the raw content of the posts so that Elasticsearch would
return the suggestions based on that field without stemming. For
each word, Elasticsearch returns an object containing the original
word and and a ranked list of alternative words the user might
be referring to. The ordering of the suggestions is based on the
Levenshtein distance to the original word. When there are multiple
suggestions with the lowest Levenshtein distance, the one with the
highest document frequency is chosen.

2.4 Additional Search Features and Interface
Finally, we designed a Google-like interface where users are able
to search for posts via full text query. We decided to use Angular
7 to develop this interface together with elasticsearch-browser.js
so we did not need a backend as a bridge between Angular and
Elasticsearch. To provide a more "Google-like" interface, we created
two pages - the landing page and the listing page. On the landing
page users can type their query and then click on the search button
or the "I feel lucky" button . Clicking on the search button will
redirect the user to the listing page where the relevant documents
(or an error message if no results are found) will be displayed.
Clicking on "I feel lucky" will redirect the user to the URL of the
most relevant result or to the listing page if no results are found. This
page displays the results ordered by relevance with the following
information for each: title, URL, author/s, date published and a
short extract of the content. The number of results available and
the time taken to execute the query is displayed at the top of the
page and there is a paginator at the bottom in case there are too
many results for a single page.

The first additional feature we included was Time. One of the
fields saved in our index is the date published. Using this informa-
tion, we can filter the results for Any time, Past year, Past month
and Past week(see Fig. 2).

Figure 2
Time feature

Another feature we added was querying terms between quotes
(") (see Fig. 3). This allows the user to query exact sentences or
sequences of words. Elasticsearch comes with phrase matching
capability, so all that is required is to parse the query and put the
sentence on Elasticsearch. The terms in the quoted phrase still
undergo the previously described preprocessing and are matched
against the preprocessed documents in the index.

As well as being able to query full exact sentences, we can add
or rule out individual terms by adding a prefix (+,-) to terms (see
Fig. 3). Elasticsearch allows users to indicate which terms must or
must not appear in the results. In the example query, we indicate
that only documents which meet the following conditions should
be returned:

• contains the phrase apple
• contains the term fruit
• does not contain the term ios.

These requirements include morphological variations such as plu-
rals as the query terms are preprocessed and compared to prepro-
cessed documents.

Figure 3
Query example

When the queries are sent to Elasticsearch, we search over all
fields — title, content, author and date published. By default, all
fields are weighted equally in Elasticsearch, so we had to indicate
manually which fields are more important when we created the
index. We boosted the title with scale factor 3, content with scale
factor 2, and the author and date published with scale factor 1.

Finally, we implemented highlighting of all the query terms
which appear in the content and/or title of a relevant document,
displaying them in bold (see Fig. 4). The highlighted terms of the
content are displayed in context and joined with ellipses.

When the user makes a query, Elasticsearch returns the closest
spelling correction for the query (if a term is not found in the
index) as described in the previous section. This correction will be
shown to the user with the misspelt term highlighted. However, the
displayed results are those for the misspelt query, so the user has
the freedom to look at the content they queried. A link is displayed
giving the option to make a new query with the corrected spelling.

3

Figure 4
Result example

2.5 Offline Evaluation
In this section, we describe how the system evaluation was done.

2.5.1 Interface for Gathering Data. First, we added two new
buttons to each retrieved document on the listing page (see Fig.
5) for the assessors to indicate the relevance of the documents.
Once each assessor had finished their judgments, a structured JSON
file (see Fig. 6) was downloaded containing a list of elements that
have the query and all the documents assessed for that query. Each
document consists of the URL and rank of that document on that
query and its relevance. Note that there is one JSON file per assessor.

Figure 5
Feedback buttons

1 {
2 "queries": [
3 {
4 "data": [
5 {
6 "relevant": true,
7 "url": "www.example.com",
8 "rank": 1
9 },
10 {
11 ...
12 }
13],
14 "query": "query example"
15 },
16 {
17 ...
18 }
19]
20 }

Figure 6: JSON Format example for evaluation

2.5.2 Instructions for Assessors. Before assessing our system, we
prepared a script with instructions for the assessors. This consisted
of:

• A description of the system and its content.

• A brief explanation of the system features.
• A list of queries to be assessed.
• Instructions on How to select the relevance of a document.

2.5.3 Inter-assessor Agreement. In order to validate the judge-
ments, we computed the Cohen’s kappa coefficient, which is a
statistical measure of inter-assessor agreement. This takes into ac-
count the number of agreed judgments between two assessors and
applies the following formula:

κ ≡
po − pe
1 − pe

= 1 −
1 − po
1 − pe

where
po =

agreed
total

pe = pr el + pnonrel
pr el =

a1 relevant
total · # a2 relevant# total

pnonrel =
a1 nonrelevant

total · # a2 nonrelevant# total
In order to compute this coefficient between more than 2 as-

sessors, we took the average of all the pairwise computed kappa
coefficients.

2.5.4 Offline Metrics. All evaluated data is processed automat-
ically so the metrics are computed immediately after evaluation.
These are the metrics we computed per query:

• Precision at rank k. This metric considers the rank by com-
puting the precision of the first k documents. We compute
P@2 since the viewport of the results shows 2 entire re-
trieved documents before scrolling (see Fig. 11). We also
compute P@5 and P@10.

• Reciprocal rank. This is another ranked metric, it considers
the rank of the first relevant document, with a higher score
being preferable. Thus, the score is calculated by:

RR =
1

rank of first element item
• Average precision. This metric is the average of precision
at rank k, where element k is relevant. The formula is as
follows:

AP =

∑
d ∈r el P@kd

#(relevant items)
• Normalized DCG. Finally, we computed the normalized dis-
counted cumulative gain. This is the only metric based on
user behaviour that we considered. The formula is as follows:

DCG =
N∑
k=1

2Rk − 1
log(k + 1)

NDCG =
DCG

DCGideal

It is not possible for us to compute any metric that considers
recall since it is unfeasible to obtain judgments for the relevance of
all documents for most queries. Another metric we did not consider
was the expected reciprocal rank. This is a user-oriented evaluation
that assumes users have a given probability of continuing to look
for relevant results when a non-relevant document is returned. The
formula is defined as follows:

4

ERR =
N∑
k=1

1
k
· θk−1 · Rk ·

k−1∏
i=1

(1 − Ri)

where
Rk ∈ {0, 1} since we classify documents as relevant and
not relevant
θ is the probability of continuing to look

However, as we consider binary relevancy, the formula is reduced
to:

ERR =
1
k
· θk−1

where k is the rank of the first relevant item. If we assume users
always continue to look until they find a relevant result, we can
compute ERR with θ = 1 (it is normally considered to be close to 1):

ERR(θ = 1) = RR =
1
k

With this assumption the expected reciprocal rank will be equiv-
alent to the reciprocal rank, a metric we had already computed.

2.5.5 Helping Two Other Teams. We evaluated two other sys-
tems developed by group 9 and 20. The former team developed an
unbiased news search engine, diving it on left, neutral and right po-
litical content. We assessed 10 documents per query with a total of
20 queries on a web form that they provided physically. The second
team developed a car search engine. They sent us a document by
email with instructions for assessors to assess their system. As with
the other team, we assessed 10 documents per query for a total of
20 queries on their actual website.

3 SYSTEM ARCHITECTURE/DESIGN
We based our architecture (see Fig. 7) on a simple model consisting
of three chained modules. The modules are as follows:

• bloogle-bot. This module is responsible for data acquisition.
It crawls posts from the aforementioned websites and saves
the data on disk as plain HTML.

• bloogle-indexer. This module is responsible for data process-
ing and storage. It creates an inverted index from the docu-
ments that we crawled with bloogle-bot.

• bloogle-search. This module provides a Google-like interface
that acts as a bridge between the user and Elasticsearch. It
uses the indexed results from the bloogle-indexer.

Figure 7
System Architecture

This modular architecture facilitated the development of the
project since every subsection is independent. This meant that each
module could be coded separately and the workload was easily
spread out amongst the team members. Moreover, we chose three
technologies (Scrapy, Elasticsearch and Angular) that facilitated
the work on each of the modules respectively.

4 PROBLEMS ENCOUNTERED
In this section, we describe the problems we encountered during
this project and our approach to dealing with them.

4.1 Data Acquisition
One of the major problems we encountered while crawling websites
was implementing refreshing of the repository. There are three
major tasks when refreshing a repository — Crawling new content,
updating existing content, and removing non-existent content. The
majority of current web pages, including the ones we crawled, are
dynamic, so the dateModified attribute does not appear on theHTTP
head response. Therefore, given the limitation of not knowing the
most recent date of modification, we had to make the assumption
that the crawled content will never change as blog posts are rarely
altered after their initial publication. Thus, the only factors taken
into account are crawling new content and removing deleted posts.

4.2 Additional Search Features
Another challenge we faced was detecting and obtaining query text
within inverted commas and after - and + signs. To solve this we
used the following regular expressions.

• Inverted commas: "(.*?)"
• Minus sign: -(\w*)
• Plus sign: \+(\w*)

4.3 Search interface
One problem we encountered with the interface was when the
query terms were highlighted on the title only. In this particular
case, Elasticsearch we did not have the highlights of the content
and therefore we had to use the entire content of the post and add
ellipses automatically using CSS when the content text overflowed
the post space. This way of adding the ellipses is more elegant and
does not break words.

5 REFLECTION
In this section, we explain the insights about the values we obtained
from the evaluations of our system.

We picked 4 assessors (3 from group 3 and 1 from group 9). Each
assessor assessed 10 documents per query for a total of 20 queries
(200 documents judged). We computed the Cohen’s kappa coef-
ficient and obtained a value for the average pairwise computed
coefficient of 0.496, which is relatively low. In order to be an accept-
able judgment, the value must be higher than 0.68. Fig. 8 shows that
the high values of the coefficient come from agreements between
the members of group 3. However, the assessor from group 9 does
not agree with them, lowering the average. If we drop the member
from group 9 (considering him to be a poor judge) the average
raises up to 0.588, which is significantly higher than the previous
score.

5

Figure 8
Cohen’s kappa coefficient

Once all judgments were completed, we took the mean judgment
of the 3 assessors for each documeat nnd rounded them to the
closest binary relevance score: 0 (nonrelevant) or 1 (relevant). Then,
we computed the aforementioned offline metrics (see Fig. 9). Since
we computed 6 metrics for 20 different queries (to compare them
individually) this resulted in a total of 120 computed metrics. First
of all, we can see that while the system performs well for some of
the queries, there are several for which the performance is poor.
We observed that the low value queries are either too specific (e.g.
"apple watch" vs. "samsung galaxy watch") or queries for which
there exist few relevant documents within the scope of the index
(e.g. "apple" +fruit -ios) as we mostly crawled technology blog posts.

Figure 9
Offline metrics evaluations

Finally, we observe that most of the queries present a relevant
document on the first rank (reciprocal rank). In addition to this, a
valuable metric to observe is precision at rank 2 since the viewport
shows two results before scrolling down to see more. We observe
that this metric is quite high for all queries, meaning that the visible
content immediately after querying is relevant. However, if we
take a closer look at p@10, we notice that it is significantly lower,
meaning that while the first results are relevant, the rest are mostly
irrelevant. The system is quite inconsistent when scrolling down
and looking for further results.

Bloogle is a good system for general purpose queries such as
’machine learning’. However, one limitation of the system is that
the relevance of documents is calculated using BM25, which is a
term-based method. While BM25 is considered a state of the art
retrieval function, it does not take into account semantic features of
queries and documents. Implementing a semantic search algorithm
would help with handling issues such as synonymy and polysemy.

Another issue which our system faces is the limited scope of
the content crawled. Given the vast size of the blogosphere and
the limited scope and timeframe of the project, the indiscriminate
crawling strategy we applied within each website meant there were
many topics for which a limited number of posts were scraped and
indexed. However, this problem could be easily solved with more
time or by increasing the number of machines used and distributing
the crawling process further.

6 SUMMARY OF WORK DONE
Fig. 7 shows an overview of the architecture we built. We started by
crawling many blog content web pages in a distributed and polite
manner and also enabled refreshing of the repository through the
gathering of new posts.

We then pre-processed the crawled content for indexing. This
included stemming and stop-word removal. We also allowed dis-
tributed indexing and updating of the index for updated and deleted
blogs. Additionally, we extracted time as meta information and in-
dexed the different parts of the blog posts separately.

The next step was implementing the basic search. Here, we cre-
ated the search engine that used the same text processing pipelines
so that queries could return and match real content accordingly.
We also offered spelling correction so that users can see if they
misspell any words.

In the additional search features and interface section, we cre-
ated a Google-like UI based on Angular so that the user could feel
comfortable with our engine. The UI also gives the possibility of
full text search, term inclusion and exclusion as well as filtering by
date.

Finally, we created an evaluation system.We added a new feature
to the interface whereby assessors could judge the relevance results
in an easy manner. After evaluation data was collected, we com-
puted the inter-assessor agreement to make sure all the gathered
data was consistent and calculated offline metrics to evaluate the
performance of our system.

7 FUTUREWORK
Some ideas that could be added to our search engine include search
features such as semantic-based search and entities. The former

6

would enrich the results with higher accuracy whereas the latter
could enable the extraction of information about a searched author
and display it using cards on the side. Another possible option
could be to add language detection when indexing so results can
be filtered by language.

8 DISTRIBUTION OF WORK
As mentioned previously, the modularity of our system as well as
the consistent technical knowledge of all team members allowed
an even distribution of work throughout the project.

REFERENCES
[1] [n. d.]. Google Zeitgeist 2012. ([n. d.]). https://archive.google.com/zeitgeist/2012/
[2] Tartarus. [n. d.]. The porter stemming algorithm. ([n. d.]). http://snowball.

tartarus.org/algorithms/porter/stemmer.html

A SCREENSHOTS

Figure 10: Bloogle’s main page

Figure 11: Viewport on 13" screen

7

https://archive.google.com/zeitgeist/2012/
http://snowball.tartarus.org/algorithms/porter/stemmer.html
http://snowball.tartarus.org/algorithms/porter/stemmer.html

Figure 12: Query: "apple" +fruit -ios

Figure 13: Query: "apple" -fruit +ios

8

	Abstract
	1 Introduction
	2 Project Description
	2.1 Data Acquisition
	2.2 Data Processing and Storage
	2.3 Basic Search
	2.4 Additional Search Features and Interface
	2.5 Offline Evaluation

	3 System Architecture/Design
	4 Problems Encountered
	4.1 Data Acquisition
	4.2 Additional Search Features
	4.3 Search interface

	5 Reflection
	6 Summary of Work Done
	7 Future work
	8 Distribution of Work
	References
	A Screenshots

