
1

Data Structures

王惠嘉

2

Sorting

• Rearrange n elements into ascending order.

• 7, 3, 6, 2, 1 ➔ 1, 2, 3, 6, 7

3

Insertion Sort

• n <= 1 ➔ already sorted. So, assume n > 1.

• a[0:n-2] is sorted recursively.

• a[n-1] is inserted into the sorted a[0:n-2].

• Complexity is O(n2).

• Usually implemented nonrecursively (see

text).

a[0]
a[n-1]a[n-2]

5

Quick Sort
• When n <= 1, the list is sorted.

• When n > 1, select a pivot element from out of the n

elements.

• Partition the n elements into 3 segments left, middle

and right.

• The middle segment contains only the pivot element.

• All elements in the left segment are <= pivot.

• All elements in the right segment are >= pivot.

• Sort left and right segments recursively.

• Answer is sorted left segment, followed by middle

segment followed by sorted right segment.

6

Example

6 2 8 5 11 10 4 1 9 7 3

Use 6 as the pivot.

2 85 11104 1 973 6

Sort left and right segments recursively.

7

Choice Of Pivot

• Pivot is leftmost element in list that is to be

sorted.

▪ When sorting a[6:20], use a[6] as the pivot.

▪ Text implementation does this.

• Randomly select one of the elements to be

sorted as the pivot.

▪ When sorting a[6:20], generate a random number

r in the range [6, 20]. Use a[r] as the pivot.

8

Choice Of Pivot
• Median-of-Three rule. From the leftmost,

middle, and rightmost elements of the list to be

sorted, select the one with median key as the

pivot.

▪ When sorting a[6:20], examine a[6], a[13]

((6+20)/2), and a[20]. Select the element with

median (i.e., middle) key.

▪ If a[6].key = 30, a[13].key = 2, and a[20].key = 10,

a[20] becomes the pivot.

▪ If a[6].key = 3, a[13].key = 2, and a[20].key = 10,

a[6] becomes the pivot.

9

Choice Of Pivot

▪ If a[6].key = 30, a[13].key = 25, and a[20].key = 10,
a[13] becomes the pivot.

• When the pivot is picked at random or when
the median-of-three rule is used, we can use
the quick sort code of the text provided we first
swap the leftmost element and the chosen
pivot.

pivot

swap

11

Partitioning Example Using

Additional Array

6 2 8 5 11 10 4 1 9 7 3a

b 2 85 11104 1 973 6

Sort left and right segments recursively.

13

In-Place Partitioning Example
6 2 8 5 11 10 4 1 9 7 3a 6 8 3

6 2 3 5 11 10 4 1 9 7 8a 6 11 1

6 2 3 5 1 10 4 11 9 7 8a 6 10 4

6 2 3 5 1 4 10 11 9 7 8a 6 104

bigElement is not to left of smallElement,

terminate process. Swap pivot and smallElement.

4 2 3 5 1 4 11 9 7 8a 6 106

14

Merge Sort
• Partition the n > 1 elements into two smaller

instances.

• First ceil(n/2) elements define one of the smaller

instances; remaining floor(n/2) elements define the

second smaller instance.

• Each of the two smaller instances is sorted

recursively.

• The sorted smaller instances are combined using a

process called merge.

• Complexity is O(n log n).

• Usually implemented nonrecursively.

15

Merge Two Sorted Lists

• A = (2, 5, 6)

B = (1, 3, 8, 9, 10)

C = ()

• Compare smallest elements of A and B and

merge smaller into C.

• A = (2, 5, 6)

B = (3, 8, 9, 10)

C = (1)

16

Merge Two Sorted Lists

• A = (5, 6)

B = (3, 8, 9, 10)

C = (1, 2)

• A = (5, 6)

B = (8, 9, 10)

C = (1, 2, 3)

• A = (6)

B = (8, 9, 10)

C = (1, 2, 3, 5)

17

Merge Two Sorted Lists

• A = ()

B = (8, 9, 10)

C = (1, 2, 3, 5, 6)

• When one of A and B becomes empty,

append the other list to C.

• O(1) time needed to move an element into C.

• Total time is O(n + m), where n and m are,

respectively, the number of elements initially

in A and B.

18

Merge Sort

[8, 3, 13, 6, 2, 14, 5, 9, 10, 1, 7, 12, 4]

[8, 3, 13, 6, 2, 14, 5] [9, 10, 1, 7, 12, 4]

[8, 3, 13, 6] [2, 14, 5]

[8, 3] [13, 6]

[8] [3] [13] [6]

[2, 14] [5]

[2] [14]

[9, 10, 1] [7, 12, 4]

[9, 10] [1]

[9] [10]

[7, 12] [4]

[7] [12]

19

Merge Sort

[3, 8] [6, 13]

[3, 6, 8, 13]

[8] [3] [13] [6]

[2, 14]

[2, 5, 14]

[2, 3, 5, 6, 8, 13, 14]

[5]

[2] [14]

[9, 10]

[1, 9, 10]

[1]

[9] [10]

[7, 12]

[4, 7, 12]

[1, 4, 7, 9, 10,12]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13,14]

[4]

[7] [12]

20

Time Complexity
• Let t(n) be the time required to sort n

elements.

• t(0) = t(1) = c, where c is a constant.

• When n > 1,

t(n) = t(ceil(n/2)) + t(floor(n/2)) + dn,

where d is a constant.

• To solve the recurrence, assume n is a power

of 2 and use repeated substitution.

• t(n) = O(n log n).

23

Nonrecursive Version

• Eliminate downward pass.

• Start with sorted lists of size 1 and do

pairwise merging of these sorted lists as in

the upward pass.

24

Nonrecursive Merge Sort

[8] [3] [13] [6] [2] [14] [5] [9] [10] [1] [7] [12] [4]

[3, 8] [6, 13] [2, 14] [5, 9] [1, 10] [7, 12] [4]

[3, 6, 8, 13] [2, 5, 9, 14] [1, 7, 10, 12] [4]

[2, 3, 5, 6, 8, 9, 13, 14] [1, 4, 7, 10, 12]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14]

25

Complexity
• Sorted segment size is 1, 2, 4, 8, …

• Number of merge passes is ceil(log2n).

• Each merge pass takes O(n) time.

• Total time is O(n log n).

• Need O(n) additional space for the merge.

• Merge sort is slower than insertion sort when

n <= 15 (approximately). So define a small

instance to be an instance with n <= 15.

• Sort small instances using insertion sort.

• Start with segment size = 15.

26

Natural Merge Sort

• Initial sorted segments are the naturally

ocurring sorted segments in the input.

• Input = [8, 9, 10, 2, 5, 7, 9, 11, 13, 15, 6, 12,

14].

• Initial segments are:

[8, 9, 10] [2, 5, 7, 9, 11, 13, 15] [6, 12, 14]

• 2 (instead of 4) merge passes suffice.

• Segment boundaries have a[i] > a[i+1].

External Merge Sort

• Sort 10,000 records.

• Enough memory for 500 records.

• Block size is 100 records.

• tIO = time to input/output 1 block

(includes seek, latency, and transmission times)

• tIS = time to internally sort 1 memory load

• tIM = time to internally merge 1 block load

27

External Merge Sort

• Two phases.

▪ Run generation.

➢A run is a sorted sequence of records.

▪ Run merging.

28

Run Generation

• Input 5 blocks.

• Sort.

• Output 5 blocks as a
run.

• Do 20 times.

• 5tIO
• tIS
• 5tIO
• 200tIO + 20tIS 29

DISK

MEMORY

500 records

10,000 records

5 blocks

100 blocks

100 records/ blocks

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Two-Way External Merge Sort

❖ Each pass we read + write
each page in file.

❖ N pages in the file => the
number of passes

❖ So toal cost is:

❖ Idea: Divide and conquer:
sort subfiles and merge

 = +log2 1N

 ()2 12N Nlog +

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

Run Merging

• Merge Pass.

▪ Pairwise merge the 20 runs into 10.

▪ In a merge pass all runs (except possibly one)

are pairwise merged.

• Perform 4 more merge passes, reducing

the number of runs to 1.

31

Merge 20 Runs

32

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

T1 T2 T3 T4 T5

U1 U2 U3

V1 V2

W1

Merge R1 and R2

• Fill I0 (Input 0) from R1 and I1 from R2.

• Merge from I0 and I1 to output buffer.

• Write whenever output buffer full.

• Read whenever input buffer empty. 33

DISKInput 0 Input 1

Output

Time To Merge R1 and R2

• Each is 5 blocks long.

• Input time = 10tIO.

• Write/output time = 10tIO.

• Merge time = 10tIM.

• Total time = 20tIO + 10tIM .

34

Time For Pass 1 (R S)

• Time to merge one pair of runs

= 20tIO + 10tIM .

• Time to merge all 10 pairs of runs

= 200tIO + 100tIM .

35

Time To Merge S1 and S2

• Each is 10 blocks long.

• Input time = 20tIO.

• Write/output time = 20tIO.

• Merge time = 20tIM.

• Total time = 40tIO + 20tIM .

36

Time For Pass 2 (S T)

• Time to merge one pair of runs

= 40tIO + 20tIM .

• Time to merge all 5 pairs of runs

= 200tIO + 100tIM .

37

Time For One Merge Pass

• Time to input all blocks = 100tIO.

• Time to output all blocks = 100tIO.

• Time to merge all blocks = 100tIM .

• Total time for a merge pass = 200tIO +

100tIM .

38

Total Run-Merging Time

• (time for one merge pass) * (number of

passes)

= (time for one merge pass)

* ceil(log2(number of initial runs))

= (200tIO + 100tIM) * ceil(log2(20))

= (200tIO + 100tIM) * 5

39

Factors In Overall Run Time

• Run generation. 200tIO + 20tIS
▪ Internal sort time.

▪ Input and output time.

• Run merging. (200tIO + 100tIM) *

ceil(log2(20))

▪ Internal merge time.

▪ Input and output time.

▪ Number of initial runs.

▪ Merge order (number of merge passes is

determined by number of runs and merge

order)
40

Improve Run Generation
• Overlap input, output, and internal sorting.

41

DISK

MEMORY

DISK

Improve Run Generation

• Generate runs whose length (on average)

exceeds memory size.

• Equivalent to reducing number of runs

generated.

42

Improve Run Merging

• Reduce number of merge passes.

▪ Use higher-order merge.

▪ Number of passes

= ceil(logk(number of initial runs))

where k is the merge order.

43

Merge 20 Runs Using 4-Way

Merging

44

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

T1

S1 S2 S3 S4

Number of merging passes = 3

Total passes = 1 (run generation) + 3 (mering) =4

S5

T2

U1

Time For Pass 1 (R S)

• Time to merge 4-way of runs

40tIO + 20tIM .

• Time to merge all runs (5 blocks/run)

200tIO + 100tIM .

45

Total Run-Merging Time

• (time for one merge pass) * (number of

passes)

= (time for one merge pass)

* ceil(log4(number of initial runs))

= (200tIO + 100tIM) * ceil(log4(20))

= (200tIO + 100tIM) * 3

46

Run Generation

• Input 6 blocks.

• Sort.

• Output 6 blocks as a
run.

• Do 21 times.

• 6 tIO
• tIS
• 6 tIO
• 242tIO + 21tIS 47

DISK

MEMORY

500 records

10,000 records

6 blocks

121 blocks

83 records/ block

83 records/ block

Merge 21 Runs Using 5-Way

Merging

48

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17R18 R19R20

T1

S1 S2 S3 S4

Number of merging passes = 2

Total passes = 1 (run generation)+2 (merging)

= 3

R21

S5

Time For Pass 1 (R S)

• Time to merge 5-way of runs

60tIO + 30tIM .

• Time to merge all runs (6 blocks/run)

242tIO + 121tIM .

49

Total Run-Merging Time

• (time for one merge pass) * (number of

passes)

= (time for one merge pass)

* ceil(log5(number of initial runs))

= (242tIO + 121tIM) * ceil(log5(21))

= (242tIO + 121tIM) * 2

50

Run Generation

• Input 10 blocks.

• Sort.

• Output 10 blocks as a
run.

• Do 20 times.

• 10 tIO
• tIS
• 10 tIO
• 400tIO + 20tIS 51

DISK

MEMORY

500 records

10,000 records

10 blocks

200 blocks

50 records/ blocks

Merge 20 Runs Using 9-Way

Merging

52

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

T1

S1 S2 S3

Number of merging passes = 2

Total passes = 1 (run generation)+2 (merging)

= 3

Time For Pass 1 (R S)

• Time to merge 9-way of runs

180tIO + 90tIM .

• Time to merge all runs

800tIO + 400tIM .

53

Total Run-Merging Time

• (time for one merge pass) * (number of

passes)

= (time for one merge pass)

* ceil(log2(number of initial runs))

= (400tIO + 200tIM) * ceil(log9(20))

= (400tIO + 200tIM) * 2

54

I/O Time Per Merge Pass

• Number of input buffers needed is linear in

merge order k.

• Since memory size is fixed, block size

decreases as k increases (after a certain

k).

• So, number of blocks increases.

• So, number of seek and latency delays per

pass increases.

55

I/O Time Per Merge Pass

56merge order k

I/O

time

per

pass

Total I/O Time To Merge Runs
• (I/O time for one merge pass)

* ceil(logk(number of initial runs))

57

Total

I/O

time to

merge

runs

merge order k

Internal Merge Time

• Naïve way=> k – 1 compares to determine next
record to move to the output buffer.

• Time to merge n records is c(k – 1)n, where c is a
constant.

• Merge time per pass is c(k – 1)n.

• Total merge time is c(k – 1)nlogkr.
58

R1 R2 R3 R4

O

Merge Time Using A Selection Tree

• Time to merge n records is dnlog2k, where d is

a constant.

• Merge time per pass is dnlog2k.

• Total merge time is (dnlog2k) logkr = dnlog2r.
59

R1 R2 R3 R4

O

Improve Run Merging

• Reduce number of merge passes.

▪ Use higher order merge.

▪ Number of passes

= ceil(logk(number of initial runs))

where k is the merge order.

• More generally, a higher-order merge

reduces the cost of the optimal merge tree.

60

