

Data Structures

Sorting

- Rearrange n elements into ascending order.
- 7, 3, 6, 2, 1 \rightarrow 1, 2, 3, 6, 7

Insertion Sort

 $a[0]$ $a[n-2]$ $a[n-1]$

• $n \leq 1$ \rightarrow already sorted. So, assume $n > 1$.

- a^[O:n-2] is sorted recursively.
- a[n-1] is inserted into the sorted a[0:n-2].
- Complexity is $O(n^2)$.
- Usually implemented nonrecursively (see text).

Quick Sort

- When $n \leq 1$, the list is sorted.
- When $n > 1$, select a pivot element from out of the n elements.
- Partition the n elements into 3 segments left, middle and right.
- The middle segment contains only the pivot element.
- All elements in the left segment are \leq pivot.
- All elements in the right segment are $>=$ pivot.
- Sort left and right segments recursively.
- Answer is sorted left segment, followed by middle segment followed by sorted right segment.

Example 6 2 8 5 11 10 4 1 9 7 3

Use 6 as the pivot.

<mark>2 | 5 | 4 | 1 | 3 | 6 | 7 | 9 | 10</mark> 11 <mark>| 8</mark>

Sort left and right segments recursively.

Choice Of Pivot

- Pivot is leftmost element in list that is to be sorted.
	- \blacksquare When sorting a[6:20], use a[6] as the pivot.
	- **Text implementation does this.**
- Randomly select one of the elements to be sorted as the pivot.
	- When sorting a[6:20], generate a random number r in the range [6, 20]. Use a[r] as the pivot.

Choice Of Pivot

- Median-of-Three rule. From the leftmost, middle, and rightmost elements of the list to be sorted, select the one with median key as the pivot.
	- \blacksquare When sorting a[6:20], examine a[6], a[13] ((6+20)/2), and a[20]. Select the element with median (i.e., middle) key.
	- **If a[6].key = 30, a[13].key = 2, and a[20].key = 10,** a[20] becomes the pivot.
	- 8 **• If a[6].key = 3, a[13].key = 2, and a[20].key = 10,** a^[6] becomes the pivot.

Choice Of Pivot

- **If a[6].key = 30, a[13].key = 25, and a[20].key = 10,** a[13] becomes the pivot.
- When the pivot is picked at random or when the median-of-three rule is used, we can use the quick sort code of the text provided we first swap the leftmost element and the chosen pivot.

Partitioning Example Using Additional Array

a 6 2 8 5 11 10 4 1 9 7 3

b 2541367910118

Sort left and right segments recursively.

bigElement is not to left of smallElement, terminate process. Swap pivot and smallElement.

a 4 2 3 5 1 46 10 11 9 7 8

Merge Sort

- Partition the $n > 1$ elements into two smaller instances.
- First ceil(n/2) elements define one of the smaller instances; remaining floor(n/2) elements define the second smaller instance.
- Each of the two smaller instances is sorted recursively.
- The sorted smaller instances are combined using a process called merge.
- Complexity is $O(n \log n)$.
- Usually implemented nonrecursively.

Merge Two Sorted Lists

- $A = (2, 5, 6)$ $B = (1, 3, 8, 9, 10)$ $C = ()$
- Compare smallest elements of A and B and merge smaller into C.
- $A = (2, 5, 6)$ $B = (3, 8, 9, 10)$ $C = (1)$

Merge Two Sorted Lists

- $A = (5, 6)$ $B = (3, 8, 9, 10)$ $C = (1, 2)$
- $A = (5, 6)$ $B = (8, 9, 10)$ $C = (1, 2, 3)$
- $A = (6)$ $B = (8, 9, 10)$ $C = (1, 2, 3, 5)$

Merge Two Sorted Lists

- $A = ()$ $B = (8, 9, 10)$ $C = (1, 2, 3, 5, 6)$
- When one of A and B becomes empty, append the other list to C.
- $O(1)$ time needed to move an element into C.
- Total time is $O(n + m)$, where n and m are, respectively, the number of elements initially in A and B.

Time Complexity

- Let t(n) be the time required to sort n elements.
- $t(0) = t(1) = c$, where c is a constant.
- When $n > 1$,

 $t(n) = t(\text{ceil}(n/2)) + t(\text{floor}(n/2)) + dn,$ where **d** is a constant.

- To solve the recurrence, assume n is a power of 2 and use repeated substitution.
- $t(n) = O(n \log n)$.

Nonrecursive Version

- Eliminate downward pass.
- Start with sorted lists of size 1 and do pairwise merging of these sorted lists as in the upward pass.

Nonrecursive Merge Sort

Complexity

- Sorted segment size is 1, 2, 4, 8, ...
- Number of merge passes is ceil($log₂n$).
- Each merge pass takes O(n) time.
- Total time is O(n log n).
- Need $O(n)$ additional space for the merge.
- Merge sort is slower than insertion sort when n <= 15 (approximately). So define a small instance to be an instance with $n \leq 15$.
- Sort small instances using insertion sort.
- Start with segment size = 15.

Natural Merge Sort

- Initial sorted segments are the naturally ocurring sorted segments in the input.
- Input = $[8, 9, 10, 2, 5, 7, 9, 11, 13, 15, 6, 12,$ 14].
- Initial segments are: [8, 9, 10] [2, 5, 7, 9, 11, 13, 15] [6, 12, 14]
- 2 (instead of 4) merge passes suffice.
- Segment boundaries have a^[i] > a^[i+1].

External Merge Sort

- Sort 10,000 records.
- Enough memory for 500 records.
- Block size is 100 records.
- $\cdot t_{\text{IO}} =$ time to input/output 1 block (includes seek, latency, and transmission times)
- \cdot t_{is} = time to internally sort 1 memory load
- \bullet t_{IM} = time to internally merge 1 block load

External Merge Sort

- Two phases.
	- Run generation.

➢A run is a sorted sequence of records.

■ Run merging.

Run Generation

- Input 5 blocks.
- Sort.
- Output 5 blocks as a run.
- Do 20 times.
- $5t_{10}$
- \cdot t_{is}
- $-5t_{\text{IO}}$
- $200t_{10} + 20t_{1S}$ 29

Two-Way External Merge Sort

- ❖ Each pass we read + write each page in file.
- \cdot N pages in the file => the number of passes = $\left\lceil \log_2 N \right\rceil + 1$
- ❖ So toal cost is:

 $2N(\lceil \log_2 N \rceil + 1)$

❖ *Idea: Divide and conquer:* sort subfiles and merge

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Run Merging

- Merge Pass.
	- Pairwise merge the 20 runs into 10.
	- In a merge pass all runs (except possibly one) are pairwise merged.
- Perform 4 more merge passes, reducing the number of runs to 1.

Merge 20 Runs

- Fill \vert (Input 0) from R1 and \vert 1 from R2.
- Merge from lo and 1 to output buffer.
- Write whenever output buffer full.
- Read whenever input buffer empty. 33

Time To Merge R1 and R2

- Each is 5 blocks long.
- Input time $= 10t_{\text{IO}}$.
- Write/output time $= 10t_{10}$.
- Merge time $= 10t_{\text{IM}}$.
- Total time $= 20t_{I\Omega} + 10t_{IM}$.

Time For Pass 1 $(R - S)$

- Time to merge one pair of runs $= 20t_{\text{IO}} + 10t_{\text{IM}}$.
- Time to merge all 10 pairs of runs $= 200t_{IO} + 100t_{IM}$.

Time To Merge S1 and S2

- Each is 10 blocks long.
- Input time $= 20t_{\text{I}}$.
- Write/output time $= 20t_{10}$.
- Merge time $= 20t_{\text{IM}}$.
- Total time $= 40t_{I\Omega} + 20t_{IM}$.

Time For Pass 2 $(S - T)$

- Time to merge one pair of runs $= 40t_{I\Omega} + 20t_{IM}$.
- Time to merge all 5 pairs of runs $= 200t_{I} + 100t_{IM}$.

Time For One Merge Pass

- Time to input all blocks = $100t_{\text{IO}}$.
- Time to output all blocks = $100t_{\text{IO}}$.
- Time to merge all blocks $= 100t_{IM}$.
- Total time for a merge pass = $200t_{10}$ + $100t_{IM}$.

Total Run-Merging Time

- (time for one merge pass) * (number of passes)
	- = (time for one merge pass)
		- * ceil(log₂(number of initial runs))
	- $= (200t_{10} + 100t_{1M})$ * ceil(log₂(20))
	- $= (200t_{10} + 100t_{1M})$ * 5

Factors In Overall Run Time

- Run generation. $200t_{\text{IO}}$ + $20t_{\text{IS}}$
	- **E** Internal sort time.
	- **.** Input and output time.
- Run merging. $(200t_{10} + 100t_{1M})$ * $ceil(log_2(20))$
	- Internal merge time.
	- **Input and output time.**
	- Number of initial runs.
	- Merge order (number of merge passes is determined by number of runs and merge order) 40

Improve Run Generation

• Overlap input, output, and internal sorting.

Improve Run Generation

- Generate runs whose length (on average) exceeds memory size.
- Equivalent to reducing number of runs generated.

Improve Run Merging

- Reduce number of merge passes.
	- **Use higher-order merge.**
	- Number of passes
		- = ceil(log_k(number of initial runs)) where k is the merge order.

Merge 20 Runs Using 4-Way Merging

Total passes = 1 (run generation) + 3 (mering) = 4_{44}

Time For Pass 1 $(R - S)$

- Time to merge 4-way of runs $40t_{\text{IO}} + 20t_{\text{IM}}$
- Time to merge all runs (5 blocks/run) $200t_{\text{IO}} + 100t_{\text{IM}}$

Total Run-Merging Time

- (time for one merge pass) * (number of passes)
	- = (time for one merge pass)
		- * ceil(log4(number of initial runs))
	- $= (200t_{10} + 100t_{1M})$ * ceil(log₄(20))
	- $= (200t_{I\Omega} + 100t_{I\text{M}})^*$ 3

Run Generation

- Input 6 blocks.
- Sort.
- Output 6 blocks as a run.
- Do 21 times.
- \cdot 6 t_{io}
- \cdot t_{is}
- \cdot 6 t_{io}
- $242t_{10} + 21t_{1S}$ 47

Merge 21 Runs Using 5-Way Merging

Number of merging passes $= 2$

Total passes $= 1$ (run generation)+2 (merging)

Time For Pass 1 $(R - S)$

- Time to merge 5-way of runs $60t_{\text{IO}} + 30t_{\text{IM}}$.
- Time to merge all runs (6 blocks/run) $242t_{10} + 121t_{1M}$

Total Run-Merging Time

- (time for one merge pass) * (number of passes)
	- = (time for one merge pass)
		- * ceil(log₅(number of initial runs))
	- $= (242t_{10} + 121t_{1M})$ * ceil(log₅(21))
	- $= (242t_{10} + 121t_{1M})$ * 2

Run Generation

- Input 10 blocks.
- Sort.
- Output 10 blocks as a run.
- Do 20 times.
- 10 t_{IO}
- \cdot t_{is}
- 10 t_{IO}
- $400t_{10} + 20t_{1S}$ 51

Merge 20 Runs Using 9-Way Merging

Number of merging passes $= 2$

Total passes $= 1$ (run generation)+2 (merging)

 $=$ 3

Time For Pass 1 $(R - S)$

- Time to merge 9-way of runs $180t_{\text{IO}} + 90t_{\text{IM}}$.
- Time to merge all runs $800t_{\text{IO}} + 400t_{\text{IM}}$.

Total Run-Merging Time

- (time for one merge pass) * (number of passes)
	- = (time for one merge pass)
		- * ceil(log₂(number of initial runs))
	- $= (400t_{10} + 200t_{1M}) *$ ceil(log₉(20))
	- $= (400t_{I\Omega} + 200t_{I\text{M}})^*$ 2

I/O Time Per Merge Pass

- Number of input buffers needed is linear in merge order k.
- Since memory size is fixed, block size decreases as k increases (after a certain k).
- So, number of blocks increases.
- So, number of seek and latency delays per pass increases.

I/O Time Per Merge Pass

Total I/O Time To Merge Runs

• (I/O time for one merge pass) * ceil(log_k(number of initial runs))

merge order kan kommerge order kommerge om

Total

 I/O

runs

- Naïve way=> $k 1$ compares to determine next record to move to the output buffer.
- Time to merge n records is $c(k 1)n$, where c is a constant.
- Merge time per pass is $c(k 1)n$.
- Total merge time is $c(k-1) n log_k r$.

Merge Time Using A Selection Tree

- Time to merge n records is dnlog₂k, where d is a constant.
- Merge time per pass is dnlog₂k.
- Total merge time is $(dnlog_2 k) log_k r = dnlog_2 r$.

Improve Run Merging

- Reduce number of merge passes.
	- **Use higher order merge.**
	- Number of passes
		- = ceil(log_k(number of initial runs)) where k is the merge order.
- More generally, a higher-order merge reduces the cost of the optimal merge tree.