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Linked Lists

• list elements are stored, in 

memory, in an arbitrary order

• explicit information (called a link)  

is used to go from one element 

to the next
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Memory Layout

a b c d e

c a e d b

A linked representation uses an arbitrary layout.

Layout of L = (a,b,c,d,e) using an array 

representation.



3

Linked Representation

pointer (or link) in e is NULL

c a e d b

use a variable first to get to the first 

element a

first
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Normal Way To Draw A Linked List

link or pointer field of node

data field of node

a b c d e

NULL

first
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Node Representation

link

data
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Constructors Of ChainNode

node = ChainNode()

?

?

?

data

link

data

node = ChainNode(data)

node = ChainNode(data, link)
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Chain

•A chain is a linked list in which each node 

represents one element.

• There is a link or pointer from one element 

to the next.

• The last node has a NULL (or 0) pointer.

a b c d e

NULL

first
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The Class Chain

a b c d e

NULL

first

8

link

data

Use ChainNode
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The Template Class Chain (P 4.6)
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The Method IndexOf
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The Method IndexOf
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Delete An Element

delete(0)

a b c d e

NULL

first

deleteNode = first

first = first.link

del deleteNode
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Delete An Element(0)
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Delete(2)

Find & change pointer in beforeNode

beforeNode.link = beforeNode.link.link

del deleteNode

beforeNode

a b c d e

null

first
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Delete An Element
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One-Step Insert(0,’f’)

a b c d e

NULL

first

f

newNode

first = ChainNode(‘f’, first)
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Insert An Element
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Two-Step Insert(3,’f’)

beforeNode = first.link.link

beforeNode.link = ChainNode(‘f’, beforeNode.link)

a b c d e

NULL

first

f

newNode

beforeNode

c
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Inserting An Element
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Circular List

a b c d e

firstNode
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Doubly Linked List

a b c d e

NULL

firstNode

NULL

lastNode
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Doubly Linked Circular List

a b c d e

firstNode
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Doubly Linked Circular List With Header Node

a b c e

headerNode

d
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Trees



About Tree

• Definition of Tree

• Tree and Binary Tree

• What it can be used for ? An example

• Postfix, Infix, Prefix

• Full binary Tree and Complete Binary tree

• How to keep the tree data in array or 

linked list

26
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Nature Lover’s View Of A 

Tree

root

branches

leaves
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Computer Scientist’s View

branches

leavesroot

nodes
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Linear Lists And Trees
• Linear lists are useful for serially ordered 

data.

– (e0, e1, e2, …, en-1)

– Days of week.

– Months in a year.

– Students in this class.

• Trees are useful for hierarchically ordered 

data.

– Employees of a corporation.

• President, vice presidents, managers, and so on.
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Hierarchical Data And Trees

• The element at the top of the hierarchy is 

the root.

• Elements next in the hierarchy are the 

children of the root.

• Elements next in the hierarchy are the 

grandchildren of the root, and so on.

• Elements that have no children are leaves.



31great grand child of root

grand children of root

children of root

Example Tree

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

root
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Definition

• A tree t is a finite nonempty set of 

elements.

• One of these elements is called the root.

• The remaining elements, if any, are 

partitioned into trees, which are called the 

subtrees of t.
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Subtrees

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

root
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Leaves

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee
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Parent, Grandparent, Siblings, Ancestors, 

Descendants

President

VP1 VP2 VP3

Manager2 Manager Manager

Worker Bee

Manager1
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Level 3

Level 2

Levels

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

Level 1
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height = depth = number of levels

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee
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Node Degree = Number Of Children
President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

3

2 1 1

0 0 1 0

0
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Tree Degree = Max Node Degree

Degree of tree = 3.

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

3

2 1 1

0 0 1 0

0
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Binary Tree

• Finite (possibly empty) collection of 

elements.

• A nonempty binary tree has a root element.

• The remaining elements (if any) are 

partitioned into two binary trees.

• These are called the left and right subtrees 

of the binary tree.
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Differences Between A Tree & A Binary 

Tree

• The subtrees of a binary tree are 

ordered; those of a tree are not ordered.

a

b

a

b

• Are different when viewed as binary trees.

• Are the same when viewed as trees.
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Arithmetic Expressions

• (a + b) * (c + d) + e – f/g*h + 3.25

• Expressions comprise three kinds of entities.

– Operators (+, -, /, *).

– Operands (a, b, c, d, e, f, g, h, 3.25, (a + b), (c + 

d), etc.).

– Delimiters ((, )).
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Operator Degree

• Number of operands that the operator 
requires.

• Binary operator requires two operands.

– a + b

– c / d

– e - f

• Unary operator requires one operand.

– + g

– - h
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Infix Form

• Normal way to write an expression.

• Binary operators come in between their left 

and right operands.

– a * b

– a + b * c

– a * b / c

– (a + b) * (c + d) + e – f/g*h + 3.25
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Operator Priorities

• How do you figure out the operands of an 
operator?

– a + b * c

– a * b + c / d

• This is done by assigning operator priorities.

– priority(*) = priority(/) > priority(+) = priority(-)

• When an operand lies between two 
operators, the operand associates with the 
operator that has higher priority.
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Tie Breaker

• When an operand lies between two 

operators that have the same priority, the 

operand associates with the operator on 

the left.

– a + b - c

– a * b / c / d
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Delimiters

• Subexpression within delimiters is treated 

as a single operand, independent from the 

remainder of the expression.

– (a + b) * (c – d) / (e – f)
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Infix Expression Is Hard To 

Parse

• Need operator priorities, tie breaker, 
and delimiters.

• This makes computer evaluation more 
difficult than is necessary.

• Postfix and prefix expression forms do 
not rely on operator priorities, a tie 
breaker, or delimiters.

• So it is easier for a computer to 
evaluate expressions that are in these 
forms.
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Postfix Form

• The postfix form of a variable or 

constant is the same as its infix form.

– a, b, 3.25

• The relative order of operands is the 

same in infix and postfix forms.

• Operators come immediately after the 

postfix form of their operands.

– Infix = a + b

– Postfix = ab+
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Postfix Examples
• Infix = a + b * c

–Postfix = a b c * +

• Infix = a * b + c

▪ Postfix = a b * c +

• Infix = (a + b) * (c – d) / (e + f)

▪ Postfix = a b + c d - * e f + /
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Unary Operators

• Replace with new symbols.

– + a => a @

– + a + b => a @ b +

– - a => a ?

– - a-b => a ? b -
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Postfix Evaluation

• Scan postfix expression from left to right 
pushing operands on to a stack.

• When an operator is encountered, pop as 
many operands as this operator needs; 
evaluate the operator; push the result on 
to the stack.

• This works because, in postfix, operators 
come immediately after their operands.
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Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d - * e f + /

• a b + c d - * e f + /

stack

a

• a b + c d - * e f + /

b
• a b + c d - * e f + /
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Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d - * e f + /

• a b + c d - * e f + /

stack

(a + b)

• a b + c d - * e f + /

• a b + c d - * e f + /

• a b + c d - * e f + /
c

• a b + c d - * e f + /

d

• a b + c d - * e f + /
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Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d - * e f + /

stack

(a + b)

• a b + c d - * e f + /

(c – d)
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Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d - * e f + /

stack

(a + b)*(c – d)

• a b + c d - * e f + /

e

• a b + c d - * e f + /

• a b + c d - * e f + / f

• a b + c d - * e f + /
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Postfix Evaluation

• (a + b) * (c – d) / (e + f) 

• a b + c d - * e f + /

stack

(a + b)*(c – d)

• a b + c d - * e f + /

(e + f)

• a b + c d - * e f + /

• a b + c d - * e f + /

• a b + c d - * e f + /
• a b + c d - * e f + /
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Prefix Form

• The prefix form of a variable or constant 
is the same as its infix form.

– a, b, 3.25

• The relative order of operands is the 
same in infix and prefix forms.

• Operators come immediately before the 
prefix form of their operands.

– Infix = a + b

– Postfix = ab+

– Prefix = +ab
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Binary Tree Form

• a + b +

a b

• - a -

a



60

Binary Tree Form

• (a + b) * (c – d) / (e + f)

/

+

a b

-

c d

+

e f

*

/
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Merits Of Binary Tree Form

• Left and right operands are easy to 

visualize.

• Code optimization algorithms work with 

the binary tree form of an expression.

• Simple recursive evaluation of expression.

+

a b

-

c d

+

e f

*

/
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Binary Tree Properties & Representation



63

Minimum Number Of Nodes
• Minimum number of nodes in a binary 

tree whose height is h.

• At least one node at each of first h
levels.

minimum number of 

nodes is h
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Maximum Number Of Nodes
• All possible nodes at first h levels are 

present.

Maximum number of nodes

= 1 + 2 + 4 + 8 + … + 2h-1

= 2h - 1
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Number Of Nodes & Height

• Let n be the number of nodes in a binary 

tree whose height is h.

• h <= n <= 2h – 1

• log2(n+1) <= h <= n
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Full Binary Tree

• A full binary tree of a given height h has 
2h – 1 nodes.

Height 4 full binary tree.
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Numbering Nodes In A Full 

Binary Tree

• Number the nodes 1 through 2h – 1. 

• Number by levels from top to bottom.

• Within a level number from left to right.
1

2 3

4 5 6 7

8 9 10 11 12 13 14 15
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Node Number Properties 

• Parent of node i is node i / 2, unless i = 1.

• Node 1 is the root and has no parent.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15
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Node Number Properties 

• Left child of node i is node 2i, unless 2i > n, 

where n is the number of nodes.

• If 2i > n, node i has no left child.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15
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Node Number Properties 

• Right child of node i is node 2i+1, unless 

2i+1 > n, where n is the number of nodes.

• If 2i+1 > n, node i has no right child.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15
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Complete Binary Tree With n Nodes

• Start with a full binary tree that has at least 

n nodes.

• Number the nodes as described earlier.

• The binary tree defined by the nodes 

numbered 1 through n is the unique n

node complete binary tree.
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Example

• Complete binary tree with 10 nodes.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15
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Binary Tree Representation

• Array representation.

• Linked representation.
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Array Representation

• Number the nodes using the numbering 
scheme for a full binary tree. The node that 
is numbered i is stored in tree[i].

tree[]
0 5 10

a b c d e f g h i j

b

a

c

d e f g

h i j

1

2 3

4 5 6 7

8 9 10
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Right-Skewed Binary Tree

• An n node binary tree needs an array 
whose length is between n+1 and 2n.

a

b

1

3

c
7

d
15

tree[]
0 5 10

a - b - - - c - - - - - - -

15

d
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Linked Representation

• Each binary tree node is represented 
as an object whose data type is 
TreeNode.

• The space required by an n node 
binary tree is n * (space required by 
one node).
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The Struct binaryTreeNode
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Linked Representation Example

a

cb

d

f

e

g

h
leftChild
data
rightChild

root
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Binary Tree Traversal Methods

• Many binary tree operations are done by 

performing a traversal of the binary tree.

• In a traversal of a binary tree, each 

element of the binary tree is visited exactly 

once.

• During the visit of an element, all action 

(make a clone, display, evaluate the 

operator, etc.) with respect to this element 

is taken.
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Binary Tree Traversal Methods

• Preorder

• Inorder

• Postorder

• Level order
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Preorder Traversal
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Preorder Example (Visit = print)

a

b c

a b c
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Preorder Example (Visit = print)

a

b c

d e
f

g h i j

a b d g h e i c f j
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Preorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives prefix form of expression!

/ * + a b - c d + e f



85

Inorder Traversal
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Inorder Example (Visit = print)

a

b c

b a c
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Inorder Example (Visit = print)

a

b c

d e
f

g h i j

g d h b e i a f j c
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Inorder By Projection (Squishing)

a

b c

d e
f

g h i j

g d h b e i a f j c
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Inorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives infix form of expression (sans parentheses)!

ea + b * c d / + f-
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Postorder Traversal
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Postorder Example (Visit = print)

a

b c

b c a
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Postorder Example (Visit = print)

a

b c

d e
f

g h i j

g h d i e b j f c a
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Postorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives postfix form of expression!

a b + c d - * e f + /
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Traversal Applications
a

b c

d e
f

g h i j

• Make a clone.

• Determine height.

•Determine number of nodes.
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Level Order

Let t be the tree root.

while (t is not None)

{

visit t and put its children on a FIFO 
queue;

if FIFO queue is empty, set t = None;

otherwise, pop a node from the FIFO 
queue and call it t;

}
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Level-Order Example (Visit = 

print)
a

b c

d e
f

g h i j

a b c d e f g h i j
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Binary Tree Construction

• Suppose that the elements in a binary 
tree are distinct.

• Can you construct the binary tree from 
which a given traversal sequence came?

• When a traversal sequence has more 
than one element, the binary tree is not 
uniquely defined.

• Therefore, the tree from which the 
sequence was obtained cannot be 
reconstructed uniquely.
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Some Examples

preorde

r = ab

a

b

a

b

inorder 

= ab

b

a

a

b

postorder 

= ab

b

a

b

a

level order 

= ab

a

b

a

b
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Binary Tree Construction

• Can you construct the binary tree, 

given two traversal sequences?

• Depends on which two sequences 

are given.
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Preorder And Postorder

preorder = ab a

b

a

bpostorder = ba

• Preorder and postorder do not uniquely define a 

binary tree.

• Nor do preorder and level order (same example).

• Nor do postorder and level order (same example).
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Inorder And Preorder
• inorder = g d h b e i a f j c

• preorder = a b d g h e i c f j

• Scan the preorder left to right using the 
inorder to separate left and right 
subtrees.

• a is the root of the tree; gdhbei are in 
the left subtree; fjc are in the right 
subtree. a

gdhbei fjc
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Inorder And Preorder

• preorder = a b d g h e i c f j

• b is the next root; gdh are in the left 
subtree; ei are in the right subtree.

a

gdhbei fjc

a

gdh

fjcb

ei
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Inorder And Preorder

• preorder = a b d g h e i c f j

• d is the next root; g is in the left 
subtree; h is in the right subtree.

a

gdh

fjcb

ei

a

g

fjcb

eid

h
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Inorder And Postorder

• Scan postorder from right to left using 

inorder to separate left and right 

subtrees.

• inorder = g d h b e i a f j c

• postorder = g h d i e b j f c a

• Tree root is a; gdhbei are in left subtree; 

fjc are in right subtree.
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Inorder And Level Order

• Scan level order from left to right using 

inorder to separate left and right 

subtrees.

• inorder = g d h b e i a f j c

• level order = a b c d e f g h i j

• Tree root is a; gdhbei are in left subtree; 

fjc are in right subtree.



Agenda
• What is Priority Queue

– Min Priority Queue

– Max Priority Queue

• What can Priority Queue do?

– Sorting

– Machine Schedule

• Heap Tree

• Leftist Tree

– Extended binary tree

• Binary Search Tree

• Selection Tree
106
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Priority Queues

Two kinds of priority queues:

• Min priority queue.

• Max priority queue.
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Min Priority Queue

• Collection of elements.

• Each element has a priority or key.

• Supports following operations:

▪ empty

▪ size

▪ insert an element into the priority queue (push)

▪ get element with min priority (top)

▪ remove element with min priority (pop)
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Max Priority Queue

• Collection of elements.

• Each element has a priority or key.

• Supports following operations:

▪ empty

▪ size

▪ insert an element into the priority queue (push)

▪ get element with max priority (top)

▪ remove element with max priority (pop)
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Complexity Of Operations

Use a heap or a leftist tree (both are 

defined later).

empty, size, and top => O(1) time

insert (push) and remove (pop) => O(log 

n) time where n is the size of the 

priority queue
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Applications

Sorting

• use element key as priority

• insert elements to be sorted into a priority 

queue

• remove/pop elements in priority order

▪ if a min priority queue is used, elements are 

extracted in ascending order of priority (or key)

▪ if a max priority queue is used, elements are 

extracted in descending order of priority (or key)
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Sorting Example

Sort five elements whose keys are 6, 8, 2, 4, 

1 using a max priority queue.

▪ Insert the five elements into a max priority 

queue.

▪ Do five remove max operations placing 

removed elements into the sorted array from 

right to left.
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After Inserting Into Max Priority 

Queue

Sorted Array 

68

2

4

1
Max Priority 

Queue
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After First Remove Max Operation

Sorted Array 

6

2

4

1

8

Max Priority 

Queue
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After Second Remove Max 

Operation

Sorted Array 

2

4

1

86

Max Priority 

Queue
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After Third Remove Max Operation

Sorted Array 

21

864

Max Priority 

Queue
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After Fourth Remove Max Operation

Sorted Array 

1

8642

Max Priority 

Queue
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After Fifth Remove Max Operation

Sorted Array 

86421

Max Priority 

Queue
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Heap Sort

Uses a min(max) priority queue that is 

implemented as a heap.

Initial insert operations are replaced by a 

heap initialization step that takes O(n)

time.
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Min Heap Definition

• complete binary tree

• min tree
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Min Tree Definition

Each tree node has a value.

Value in any node is the minimum value 

in the subtree for which that node is the 

root.

Equivalently, no descendent has a 

smaller value.
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Min Tree Example

2

4 9 3

4 8 7

9 9

Root has minimum element.
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Max Tree Example

9

4 9 8

4 2 7

3 1

Root has maximum element.
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Max Heap With 9 Nodes

Complete binary tree with 9 nodes.
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Max Heap With 9 Nodes

Complete binary tree with 9 nodes 

that is also a max tree.

9

8

6 7 2 6

5 1

7
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Min Heap With 9 Nodes

Complete binary tree with 9 nodes 

that is also a min tree.

2

4

6 7 9 3

8 6

3
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Heap Height

Since a heap is a complete binary tree, 

the height of an n node heap is upper 

bound of log2 (n+1).
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9 8 7 6 7 2 6 5 1

1 2 3 4 5 6 7 8 9 100

A Heap Is Efficiently Represented As An Array

9

8

6 7 2 6

5 1

7



129

Moving Up And Down A Heap

9

8

6 7 2 6

5 1

7

1

2 3

4 5 6 7

8 9
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Inserting An Element Into A Max Heap

Complete binary tree with 10 

nodes.

9

8

6 7 2 6

5 1

7

7
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Inserting An Element Into A Max Heap

New element is 5.

9

8

6 7 2 6

5 1

7

75
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Inserting An Element Into A Max Heap

New element is 20.

9

8

6

7

2 6

5 1

7

7

7
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Inserting An Element Into A Max Heap

New element is 20.

9

8

6

7

2 6

5 1

7

77
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Inserting An Element Into A Max Heap

New element is 20.

9

86

7

2 6

5 1

7

77
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Inserting An Element Into A Max Heap

New element is 20.

9

86

7

2 6

5 1

7

77

20



136

Inserting An Element Into A Max Heap

Complete binary tree with 11

nodes.

9

86

7

2 6

5 1

7

77

20
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Inserting An Element Into A Max Heap

New element is 15.

9

86

7

2 6

5 1

7

77

20
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Inserting An Element Into A Max Heap

New element is 15.

9

8

6

7

2 6

5 1

7

77

20

8
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Inserting An Element Into A Max Heap

New element is 15.

8

6

7

2 6

5 1

7

77

20

8

9

15
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Complexity Of Insert

Complexity is O(log n), where n is 

heap size.

8

6

7

2 6

5 1

7

77

20

8

9

15
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Removing The Max Element

Max element is in the root.

8

6

7

2 6

5 1

7

77

20

8

9

15
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Removing The Max Element

After max element is removed.

8

6

7

2 6

5 1

7

77 8

9

15
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Removing The Max Element

Heap with 10 nodes.

8

6

7

2 6

5 1

7

77 8

9

15

Reinsert 8 into the heap.
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Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

77

9

15
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Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

77

9

15
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Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

77

9

15

8
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Removing The Max Element

Max element is 15.

6

7

2 6

5 1

7

77

9

15

8
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Removing The Max Element

After max element is removed.

6

7

2 6

5 1

7

77

9

8
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Removing The Max Element

Heap with 9 nodes.

6

7

2 6

5 1

7

77

9

8
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Removing The Max Element

Reinsert 7.

6 2 6

5 1

79

8
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Removing The Max Element

Reinsert 7.

6 2 6

5 1

7

9

8
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Removing The Max Element

Reinsert 7.

6 2 6

5 1

7

9

8

7
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Complexity Of Remove Max 

Element

Complexity is O(log n).

6 2 6

5 1

7

9

8

7
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Initializing A Max Heap

input array = [-, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

8

4

7

6 7

8 9

3

710

1

11

5

2
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Initializing A Max Heap

Start at rightmost array position that has a 

child.

8

4

7

6 7

8 9

3

710

1

11

5

2

Index is n/2.
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Initializing A Max Heap

Move to next lower array position.

8

4

7

6 7

8 9

3

710

1

5

11

2



157

Initializing A Max Heap

8

4

7

6 7

8 9

3

710

1

5

11

2



158

Initializing A Max Heap

8

9

7

6 7

8 4

3

710

1

5

11

2



159

Initializing A Max Heap

8

9

7

6 7

8 4

3

710

1

5

11

2
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Initializing A Max Heap

8

9

7

6 3

8 4

7

710

1

5

11

2



161

Initializing A Max Heap

8

9

7

6 3

8 4

7

710

1

5

11

2



162

Initializing A Max Heap

8

9

7

6 3

8 4

7

710

1

5

11

Find a home for 2.
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Initializing A Max Heap

8

9

7

6 3

8 4

7

75

1

11

Find a home for 2.

10



164

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

1

11

Done, move to next lower array position.

10

5



165

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

1

11

10

5

Find home for 1.
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11

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

10

5

Find home for 1.
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Initializing A Max Heap

8

9

7

6 3

8 4

7

72

11

10

5

Find home for 1.
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Initializing A Max Heap

8

9

7

6 3

8 4

7

72

11

10

5

Find home for 1.



169

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

11

10

5

Done.

1


