
1

Linked Lists

• list elements are stored, in

memory, in an arbitrary order

• explicit information (called a link)

is used to go from one element

to the next

2

Memory Layout

a b c d e

c a e d b

A linked representation uses an arbitrary layout.

Layout of L = (a,b,c,d,e) using an array

representation.

3

Linked Representation

pointer (or link) in e is NULL

c a e d b

use a variable first to get to the first

element a

first

4

Normal Way To Draw A Linked List

link or pointer field of node

data field of node

a b c d e

NULL

first

5

Node Representation

link

data

6

Constructors Of ChainNode

node = ChainNode()

?

?

?

data

link

data

node = ChainNode(data)

node = ChainNode(data, link)

7

Chain

•A chain is a linked list in which each node

represents one element.

• There is a link or pointer from one element

to the next.

• The last node has a NULL (or 0) pointer.

a b c d e

NULL

first

8

The Class Chain

a b c d e

NULL

first

8

link

data

Use ChainNode

9

The Template Class Chain (P 4.6)

11

The Method IndexOf

12

The Method IndexOf

13

Delete An Element

delete(0)

a b c d e

NULL

first

deleteNode = first

first = first.link

del deleteNode

14

Delete An Element(0)

15

Delete(2)

Find & change pointer in beforeNode

beforeNode.link = beforeNode.link.link

del deleteNode

beforeNode

a b c d e

null

first

16

Delete An Element

17

One-Step Insert(0,’f’)

a b c d e

NULL

first

f

newNode

first = ChainNode(‘f’, first)

18

Insert An Element

19

Two-Step Insert(3,’f’)

beforeNode = first.link.link

beforeNode.link = ChainNode(‘f’, beforeNode.link)

a b c d e

NULL

first

f

newNode

beforeNode

c

20

Inserting An Element

21

Circular List

a b c d e

firstNode

22

Doubly Linked List

a b c d e

NULL

firstNode

NULL

lastNode

23

Doubly Linked Circular List

a b c d e

firstNode

24

Doubly Linked Circular List With Header Node

a b c e

headerNode

d

25

Trees

About Tree

• Definition of Tree

• Tree and Binary Tree

• What it can be used for ? An example

• Postfix, Infix, Prefix

• Full binary Tree and Complete Binary tree

• How to keep the tree data in array or

linked list

26

27

Nature Lover’s View Of A

Tree

root

branches

leaves

28

Computer Scientist’s View

branches

leavesroot

nodes

29

Linear Lists And Trees
• Linear lists are useful for serially ordered

data.

– (e0, e1, e2, …, en-1)

– Days of week.

– Months in a year.

– Students in this class.

• Trees are useful for hierarchically ordered

data.

– Employees of a corporation.

• President, vice presidents, managers, and so on.

30

Hierarchical Data And Trees

• The element at the top of the hierarchy is

the root.

• Elements next in the hierarchy are the

children of the root.

• Elements next in the hierarchy are the

grandchildren of the root, and so on.

• Elements that have no children are leaves.

31great grand child of root

grand children of root

children of root

Example Tree

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

root

32

Definition

• A tree t is a finite nonempty set of

elements.

• One of these elements is called the root.

• The remaining elements, if any, are

partitioned into trees, which are called the

subtrees of t.

33

Subtrees

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

root

34

Leaves

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

35

Parent, Grandparent, Siblings, Ancestors,

Descendants

President

VP1 VP2 VP3

Manager2 Manager Manager

Worker Bee

Manager1

36Level 4

Level 3

Level 2

Levels

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

Level 1

37

height = depth = number of levels

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

38

Node Degree = Number Of Children
President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

3

2 1 1

0 0 1 0

0

39

Tree Degree = Max Node Degree

Degree of tree = 3.

President

VP1 VP2 VP3

Manager1 Manager2 Manager Manager

Worker Bee

3

2 1 1

0 0 1 0

0

40

Binary Tree

• Finite (possibly empty) collection of

elements.

• A nonempty binary tree has a root element.

• The remaining elements (if any) are

partitioned into two binary trees.

• These are called the left and right subtrees

of the binary tree.

41

Differences Between A Tree & A Binary

Tree

• The subtrees of a binary tree are

ordered; those of a tree are not ordered.

a

b

a

b

• Are different when viewed as binary trees.

• Are the same when viewed as trees.

42

Arithmetic Expressions

• (a + b) * (c + d) + e – f/g*h + 3.25

• Expressions comprise three kinds of entities.

– Operators (+, -, /, *).

– Operands (a, b, c, d, e, f, g, h, 3.25, (a + b), (c +

d), etc.).

– Delimiters ((,)).

43

Operator Degree

• Number of operands that the operator
requires.

• Binary operator requires two operands.

– a + b

– c / d

– e - f

• Unary operator requires one operand.

– + g

– - h

44

Infix Form

• Normal way to write an expression.

• Binary operators come in between their left

and right operands.

– a * b

– a + b * c

– a * b / c

– (a + b) * (c + d) + e – f/g*h + 3.25

45

Operator Priorities

• How do you figure out the operands of an
operator?

– a + b * c

– a * b + c / d

• This is done by assigning operator priorities.

– priority(*) = priority(/) > priority(+) = priority(-)

• When an operand lies between two
operators, the operand associates with the
operator that has higher priority.

46

Tie Breaker

• When an operand lies between two

operators that have the same priority, the

operand associates with the operator on

the left.

– a + b - c

– a * b / c / d

47

Delimiters

• Subexpression within delimiters is treated

as a single operand, independent from the

remainder of the expression.

– (a + b) * (c – d) / (e – f)

48

Infix Expression Is Hard To

Parse

• Need operator priorities, tie breaker,
and delimiters.

• This makes computer evaluation more
difficult than is necessary.

• Postfix and prefix expression forms do
not rely on operator priorities, a tie
breaker, or delimiters.

• So it is easier for a computer to
evaluate expressions that are in these
forms.

49

Postfix Form

• The postfix form of a variable or

constant is the same as its infix form.

– a, b, 3.25

• The relative order of operands is the

same in infix and postfix forms.

• Operators come immediately after the

postfix form of their operands.

– Infix = a + b

– Postfix = ab+

50

Postfix Examples
• Infix = a + b * c

–Postfix = a b c * +

• Infix = a * b + c

▪ Postfix = a b * c +

• Infix = (a + b) * (c – d) / (e + f)

▪ Postfix = a b + c d - * e f + /

51

Unary Operators

• Replace with new symbols.

– + a => a @

– + a + b => a @ b +

– - a => a ?

– - a-b => a ? b -

52

Postfix Evaluation

• Scan postfix expression from left to right
pushing operands on to a stack.

• When an operator is encountered, pop as
many operands as this operator needs;
evaluate the operator; push the result on
to the stack.

• This works because, in postfix, operators
come immediately after their operands.

53

Postfix Evaluation

• (a + b) * (c – d) / (e + f)

• a b + c d - * e f + /

• a b + c d - * e f + /

stack

a

• a b + c d - * e f + /

b
• a b + c d - * e f + /

54

Postfix Evaluation

• (a + b) * (c – d) / (e + f)

• a b + c d - * e f + /

• a b + c d - * e f + /

stack

(a + b)

• a b + c d - * e f + /

• a b + c d - * e f + /

• a b + c d - * e f + /
c

• a b + c d - * e f + /

d

• a b + c d - * e f + /

55

Postfix Evaluation

• (a + b) * (c – d) / (e + f)

• a b + c d - * e f + /

stack

(a + b)

• a b + c d - * e f + /

(c – d)

56

Postfix Evaluation

• (a + b) * (c – d) / (e + f)

• a b + c d - * e f + /

stack

(a + b)*(c – d)

• a b + c d - * e f + /

e

• a b + c d - * e f + /

• a b + c d - * e f + / f

• a b + c d - * e f + /

57

Postfix Evaluation

• (a + b) * (c – d) / (e + f)

• a b + c d - * e f + /

stack

(a + b)*(c – d)

• a b + c d - * e f + /

(e + f)

• a b + c d - * e f + /

• a b + c d - * e f + /

• a b + c d - * e f + /
• a b + c d - * e f + /

58

Prefix Form

• The prefix form of a variable or constant
is the same as its infix form.

– a, b, 3.25

• The relative order of operands is the
same in infix and prefix forms.

• Operators come immediately before the
prefix form of their operands.

– Infix = a + b

– Postfix = ab+

– Prefix = +ab

59

Binary Tree Form

• a + b +

a b

• - a -

a

60

Binary Tree Form

• (a + b) * (c – d) / (e + f)

/

+

a b

-

c d

+

e f

*

/

61

Merits Of Binary Tree Form

• Left and right operands are easy to

visualize.

• Code optimization algorithms work with

the binary tree form of an expression.

• Simple recursive evaluation of expression.

+

a b

-

c d

+

e f

*

/

62

Binary Tree Properties & Representation

63

Minimum Number Of Nodes
• Minimum number of nodes in a binary

tree whose height is h.

• At least one node at each of first h
levels.

minimum number of

nodes is h

64

Maximum Number Of Nodes
• All possible nodes at first h levels are

present.

Maximum number of nodes

= 1 + 2 + 4 + 8 + … + 2h-1

= 2h - 1

65

Number Of Nodes & Height

• Let n be the number of nodes in a binary

tree whose height is h.

• h <= n <= 2h – 1

• log2(n+1) <= h <= n

66

Full Binary Tree

• A full binary tree of a given height h has
2h – 1 nodes.

Height 4 full binary tree.

67

Numbering Nodes In A Full

Binary Tree

• Number the nodes 1 through 2h – 1.

• Number by levels from top to bottom.

• Within a level number from left to right.
1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

68

Node Number Properties

• Parent of node i is node i / 2, unless i = 1.

• Node 1 is the root and has no parent.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

69

Node Number Properties

• Left child of node i is node 2i, unless 2i > n,

where n is the number of nodes.

• If 2i > n, node i has no left child.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

70

Node Number Properties

• Right child of node i is node 2i+1, unless

2i+1 > n, where n is the number of nodes.

• If 2i+1 > n, node i has no right child.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

71

Complete Binary Tree With n Nodes

• Start with a full binary tree that has at least

n nodes.

• Number the nodes as described earlier.

• The binary tree defined by the nodes

numbered 1 through n is the unique n

node complete binary tree.

72

Example

• Complete binary tree with 10 nodes.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

73

Binary Tree Representation

• Array representation.

• Linked representation.

74

Array Representation

• Number the nodes using the numbering
scheme for a full binary tree. The node that
is numbered i is stored in tree[i].

tree[]
0 5 10

a b c d e f g h i j

b

a

c

d e f g

h i j

1

2 3

4 5 6 7

8 9 10

75

Right-Skewed Binary Tree

• An n node binary tree needs an array
whose length is between n+1 and 2n.

a

b

1

3

c
7

d
15

tree[]
0 5 10

a - b - - - c - - - - - - -

15

d

76

Linked Representation

• Each binary tree node is represented
as an object whose data type is
TreeNode.

• The space required by an n node
binary tree is n * (space required by
one node).

77

The Struct binaryTreeNode

78

Linked Representation Example

a

cb

d

f

e

g

h
leftChild
data
rightChild

root

79

Binary Tree Traversal Methods

• Many binary tree operations are done by

performing a traversal of the binary tree.

• In a traversal of a binary tree, each

element of the binary tree is visited exactly

once.

• During the visit of an element, all action

(make a clone, display, evaluate the

operator, etc.) with respect to this element

is taken.

80

Binary Tree Traversal Methods

• Preorder

• Inorder

• Postorder

• Level order

81

Preorder Traversal

82

Preorder Example (Visit = print)

a

b c

a b c

83

Preorder Example (Visit = print)

a

b c

d e
f

g h i j

a b d g h e i c f j

84

Preorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives prefix form of expression!

/ * + a b - c d + e f

85

Inorder Traversal

86

Inorder Example (Visit = print)

a

b c

b a c

87

Inorder Example (Visit = print)

a

b c

d e
f

g h i j

g d h b e i a f j c

88

Inorder By Projection (Squishing)

a

b c

d e
f

g h i j

g d h b e i a f j c

89

Inorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives infix form of expression (sans parentheses)!

ea + b * c d / + f-

90

Postorder Traversal

91

Postorder Example (Visit = print)

a

b c

b c a

92

Postorder Example (Visit = print)

a

b c

d e
f

g h i j

g h d i e b j f c a

93

Postorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives postfix form of expression!

a b + c d - * e f + /

94

Traversal Applications
a

b c

d e
f

g h i j

• Make a clone.

• Determine height.

•Determine number of nodes.

95

Level Order

Let t be the tree root.

while (t is not None)

{

visit t and put its children on a FIFO
queue;

if FIFO queue is empty, set t = None;

otherwise, pop a node from the FIFO
queue and call it t;

}

96

Level-Order Example (Visit =

print)
a

b c

d e
f

g h i j

a b c d e f g h i j

97

Binary Tree Construction

• Suppose that the elements in a binary
tree are distinct.

• Can you construct the binary tree from
which a given traversal sequence came?

• When a traversal sequence has more
than one element, the binary tree is not
uniquely defined.

• Therefore, the tree from which the
sequence was obtained cannot be
reconstructed uniquely.

98

Some Examples

preorde

r = ab

a

b

a

b

inorder

= ab

b

a

a

b

postorder

= ab

b

a

b

a

level order

= ab

a

b

a

b

99

Binary Tree Construction

• Can you construct the binary tree,

given two traversal sequences?

• Depends on which two sequences

are given.

100

Preorder And Postorder

preorder = ab a

b

a

bpostorder = ba

• Preorder and postorder do not uniquely define a

binary tree.

• Nor do preorder and level order (same example).

• Nor do postorder and level order (same example).

101

Inorder And Preorder
• inorder = g d h b e i a f j c

• preorder = a b d g h e i c f j

• Scan the preorder left to right using the
inorder to separate left and right
subtrees.

• a is the root of the tree; gdhbei are in
the left subtree; fjc are in the right
subtree. a

gdhbei fjc

102

Inorder And Preorder

• preorder = a b d g h e i c f j

• b is the next root; gdh are in the left
subtree; ei are in the right subtree.

a

gdhbei fjc

a

gdh

fjcb

ei

103

Inorder And Preorder

• preorder = a b d g h e i c f j

• d is the next root; g is in the left
subtree; h is in the right subtree.

a

gdh

fjcb

ei

a

g

fjcb

eid

h

104

Inorder And Postorder

• Scan postorder from right to left using

inorder to separate left and right

subtrees.

• inorder = g d h b e i a f j c

• postorder = g h d i e b j f c a

• Tree root is a; gdhbei are in left subtree;

fjc are in right subtree.

105

Inorder And Level Order

• Scan level order from left to right using

inorder to separate left and right

subtrees.

• inorder = g d h b e i a f j c

• level order = a b c d e f g h i j

• Tree root is a; gdhbei are in left subtree;

fjc are in right subtree.

Agenda
• What is Priority Queue

– Min Priority Queue

– Max Priority Queue

• What can Priority Queue do?

– Sorting

– Machine Schedule

• Heap Tree

• Leftist Tree

– Extended binary tree

• Binary Search Tree

• Selection Tree
106

107

Priority Queues

Two kinds of priority queues:

• Min priority queue.

• Max priority queue.

108

Min Priority Queue

• Collection of elements.

• Each element has a priority or key.

• Supports following operations:

▪ empty

▪ size

▪ insert an element into the priority queue (push)

▪ get element with min priority (top)

▪ remove element with min priority (pop)

109

Max Priority Queue

• Collection of elements.

• Each element has a priority or key.

• Supports following operations:

▪ empty

▪ size

▪ insert an element into the priority queue (push)

▪ get element with max priority (top)

▪ remove element with max priority (pop)

110

Complexity Of Operations

Use a heap or a leftist tree (both are

defined later).

empty, size, and top => O(1) time

insert (push) and remove (pop) => O(log

n) time where n is the size of the

priority queue

111

Applications

Sorting

• use element key as priority

• insert elements to be sorted into a priority

queue

• remove/pop elements in priority order

▪ if a min priority queue is used, elements are

extracted in ascending order of priority (or key)

▪ if a max priority queue is used, elements are

extracted in descending order of priority (or key)

112

Sorting Example

Sort five elements whose keys are 6, 8, 2, 4,

1 using a max priority queue.

▪ Insert the five elements into a max priority

queue.

▪ Do five remove max operations placing

removed elements into the sorted array from

right to left.

113

After Inserting Into Max Priority

Queue

Sorted Array

68

2

4

1
Max Priority

Queue

114

After First Remove Max Operation

Sorted Array

6

2

4

1

8

Max Priority

Queue

115

After Second Remove Max

Operation

Sorted Array

2

4

1

86

Max Priority

Queue

116

After Third Remove Max Operation

Sorted Array

21

864

Max Priority

Queue

117

After Fourth Remove Max Operation

Sorted Array

1

8642

Max Priority

Queue

118

After Fifth Remove Max Operation

Sorted Array

86421

Max Priority

Queue

119

Heap Sort

Uses a min(max) priority queue that is

implemented as a heap.

Initial insert operations are replaced by a

heap initialization step that takes O(n)

time.

120

Min Heap Definition

• complete binary tree

• min tree

121

Min Tree Definition

Each tree node has a value.

Value in any node is the minimum value

in the subtree for which that node is the

root.

Equivalently, no descendent has a

smaller value.

122

Min Tree Example

2

4 9 3

4 8 7

9 9

Root has minimum element.

123

Max Tree Example

9

4 9 8

4 2 7

3 1

Root has maximum element.

124

Max Heap With 9 Nodes

Complete binary tree with 9 nodes.

125

Max Heap With 9 Nodes

Complete binary tree with 9 nodes

that is also a max tree.

9

8

6 7 2 6

5 1

7

126

Min Heap With 9 Nodes

Complete binary tree with 9 nodes

that is also a min tree.

2

4

6 7 9 3

8 6

3

127

Heap Height

Since a heap is a complete binary tree,

the height of an n node heap is upper

bound of log2 (n+1).

128

9 8 7 6 7 2 6 5 1

1 2 3 4 5 6 7 8 9 100

A Heap Is Efficiently Represented As An Array

9

8

6 7 2 6

5 1

7

129

Moving Up And Down A Heap

9

8

6 7 2 6

5 1

7

1

2 3

4 5 6 7

8 9

130

Inserting An Element Into A Max Heap

Complete binary tree with 10

nodes.

9

8

6 7 2 6

5 1

7

7

131

Inserting An Element Into A Max Heap

New element is 5.

9

8

6 7 2 6

5 1

7

75

132

Inserting An Element Into A Max Heap

New element is 20.

9

8

6

7

2 6

5 1

7

7

7

133

Inserting An Element Into A Max Heap

New element is 20.

9

8

6

7

2 6

5 1

7

77

134

Inserting An Element Into A Max Heap

New element is 20.

9

86

7

2 6

5 1

7

77

135

Inserting An Element Into A Max Heap

New element is 20.

9

86

7

2 6

5 1

7

77

20

136

Inserting An Element Into A Max Heap

Complete binary tree with 11

nodes.

9

86

7

2 6

5 1

7

77

20

137

Inserting An Element Into A Max Heap

New element is 15.

9

86

7

2 6

5 1

7

77

20

138

Inserting An Element Into A Max Heap

New element is 15.

9

8

6

7

2 6

5 1

7

77

20

8

139

Inserting An Element Into A Max Heap

New element is 15.

8

6

7

2 6

5 1

7

77

20

8

9

15

140

Complexity Of Insert

Complexity is O(log n), where n is

heap size.

8

6

7

2 6

5 1

7

77

20

8

9

15

141

Removing The Max Element

Max element is in the root.

8

6

7

2 6

5 1

7

77

20

8

9

15

142

Removing The Max Element

After max element is removed.

8

6

7

2 6

5 1

7

77 8

9

15

143

Removing The Max Element

Heap with 10 nodes.

8

6

7

2 6

5 1

7

77 8

9

15

Reinsert 8 into the heap.

144

Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

77

9

15

145

Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

77

9

15

146

Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

77

9

15

8

147

Removing The Max Element

Max element is 15.

6

7

2 6

5 1

7

77

9

15

8

148

Removing The Max Element

After max element is removed.

6

7

2 6

5 1

7

77

9

8

149

Removing The Max Element

Heap with 9 nodes.

6

7

2 6

5 1

7

77

9

8

150

Removing The Max Element

Reinsert 7.

6 2 6

5 1

79

8

151

Removing The Max Element

Reinsert 7.

6 2 6

5 1

7

9

8

152

Removing The Max Element

Reinsert 7.

6 2 6

5 1

7

9

8

7

153

Complexity Of Remove Max

Element

Complexity is O(log n).

6 2 6

5 1

7

9

8

7

154

Initializing A Max Heap

input array = [-, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

8

4

7

6 7

8 9

3

710

1

11

5

2

155

Initializing A Max Heap

Start at rightmost array position that has a

child.

8

4

7

6 7

8 9

3

710

1

11

5

2

Index is n/2.

156

Initializing A Max Heap

Move to next lower array position.

8

4

7

6 7

8 9

3

710

1

5

11

2

157

Initializing A Max Heap

8

4

7

6 7

8 9

3

710

1

5

11

2

158

Initializing A Max Heap

8

9

7

6 7

8 4

3

710

1

5

11

2

159

Initializing A Max Heap

8

9

7

6 7

8 4

3

710

1

5

11

2

160

Initializing A Max Heap

8

9

7

6 3

8 4

7

710

1

5

11

2

161

Initializing A Max Heap

8

9

7

6 3

8 4

7

710

1

5

11

2

162

Initializing A Max Heap

8

9

7

6 3

8 4

7

710

1

5

11

Find a home for 2.

163

Initializing A Max Heap

8

9

7

6 3

8 4

7

75

1

11

Find a home for 2.

10

164

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

1

11

Done, move to next lower array position.

10

5

165

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

1

11

10

5

Find home for 1.

166

11

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

10

5

Find home for 1.

167

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

11

10

5

Find home for 1.

168

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

11

10

5

Find home for 1.

169

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

11

10

5

Done.

1

