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1 Overview
This project aims to extend the concatenative synthesis process by incorporating

neural network-based sequence generation. It focuses on analyzing audio data on a
micro scale to model its underlying structures and utilizes this information to interac-
tively resynthesize the input in real-time with novel variations.

This project is motivated by a keen interest in neural audio synthesis and a recog-
nition of the limitations present in existing approaches. Popular projects in this field
often require significant computational resources and expertise, making them inacces-
sible to many individuals. This project aims to address these barriers by developing
a user-friendly and low-power solution that allows users with varying levels of expe-
rience to engage with the possibilities of using neural networks in the audio domain.
Simultaneously inspired by existing computer music tools such as CataRT,1 the goal
is to bridge the gap between the historically established techniques and more recent
advances in Machine in a manner that empowers users to experiment with sonic ex-
ploration.

The designed workflow is designed to be accessible to users with varying levels
of programming expertise, providing an easy entry point, while offering flexibility
for creative exploration and customization. By leveraging music information retrieval
techniques and analysis, the pipeline extracts relevant audio features. Then, ML unsu-
pervised classification methods, such as K-means clustering, are employed to abstract
the inherent structural characteristics of the audio data. In the subsequent stage, a
Keras GRU model is utilized for time series modeling and, later. After fitting, the
model can be used to generate new sequences, which are passed to the audio software
of choice using the Open Sound Control (OSC) protocol. Enabling smooth commu-
nication and control of the synthesis process, this universally accommodates users’
preferences and facilitates integration with their preferred synthesis methods.

To minimize power requirements, the training process can be executed efficiently
on a cloud runtime, while the output is resynthesized directly from the original audio
file. This ensures efficient and low-power processing, making the project accessible
even on modest computer systems.

2 Background research
In the previous section, the project was introduced as an exploration of the inter-

section between granular synthesis and machine learning. In order to provide histor-
ical and technological context and enhance coherence, this section examines relevant
resources that have influenced and shaped the conceptualization of the project.

1Schwarz, n.d.
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2.1 Particle Synthesis
Elaborating on the research background, it is worth first to explain each of the

digital audio techniques which will be referred to throughout this report.

Figure 1: A diagram of synthesis methods by Diemo Schwarz2

2.1.1 Granular Synthesis and Granulation

Granular synthesis is a technique of constructing sound objects out of micro-acoustic
events referred to as grains. Grains consist of a waveform, which can be synthesized, or
sampled, shaped by an amplitude envelope, often called the window function. Splitting
an existing audio sample into separate grains is a process called granulation. Doing
so, allows for scanning through the temporal axis of the sound, which bears some re-
semblance to the often used sliding window method used in data analysis. Microsound
by Curtis Roads is a staple resource on the topic of granular synthesis and other re-
lated methods generally described as particle synthesis.3 It remains to be one of most
comprehensive resources on the topic, even contemporarily, as various new tools and
approaches to composing sound on micro scale are explored. Real-time granular syn-
thesis has been first implemented by Barry Truax. On his website, he puts forward the
basic ideas behind the latter alongside his personal impressions:

The technique I have found the most striking in the way it facilitates mov-
ing inside a sound is real-time granulation of sampled sound. Briefly, the
technique divides the sound into short enveloped grains of 50 ms dura-
tion or less, and reproduces them in high densities ranging from several
hundred to several thousand grains per second.4

3Roads, 2004.
4Truax, n.d.
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2.1.2 Timestretching

Figure 2: First second of Amen Break sped up by a factor of 2x using timestretching.

A technique closely related to granular synthesis is time stretching. It can be said
to build upon the concept of moving inside of a sound mentioned by Truax5. Time
stretching allows for the flexible exploration of the temporal dimension, offering the
freedom to manipulate the rate at which grains move through the original material.
By keeping the samples within the grain identical to those found in the original, time
stretching preserves the pitch while enabling the combination of arbitrary sections
of the material.6 Notably, time stretching algorithms found their way into digital au-
dio samplers such as the Akai S2000, significantly influencing the emergent sounds of
1990s like jungle7.

5Parallels could be drawn to the approach of minimalist composer Tony Conrad:

Our ”Dream Music” was an effort to freeze the sound in action, to listen around inside the
innermost architecture of the sound itself. (…) We were announcing that the composer
could sit within the sound, so to speak, and work with it as a plastic continuum extended
in time(…). (Duguid, 1996)

6Truax, n.d.
7For a great text on jungle and time stretching, see the conversation between Robin Mackay and

Christopher Haworth (Mackay and Haworth, n.d.)
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2.1.3 Concatenative Synthesis

Another technique related to granular synthesis in its approach is concatenative
synthesis. It works based on a similar principle of building objects out of micro-sounds.
The main difference is that, in the case of concatenative synthesis, feature extraction is
applied to each grain within the sound corpus. This way, a new representation of the
audio is created which allows choosing grains informed by their sonic quality rather
than their temporal arrangement in the source material.8 The specific methods of analy-
sis and resynthesis can vary across implementations, but the general principle remains
the same.

Most notable ones are the Adaptive Concatenative Sound Synthesis (ACSS)9 and the
recognized CataRT interactive system for real-time synthesis. CataRT allows users to
navigate and manipulate large sound databases using an extent of Music Information
Retrieval and Machine Learning techniques. One of the strengths of CataRT is its
abstract representation of sound and its intuitive interface, which provides high-level
control. Within the above, the temporal context is completely left to the user and their
skills in exploring the representational space, though there have been inquiries into
introducing more elaborate algorithms for picking the next most suitable grain to play
using distance functions.10

2.2 Data Science
2.2.1 Acoustic lexemes

Music Information Retrieval is a common step in organising soundbanks. Espe-
cially relevant to this project is the method proposed by Michael Casey.11 To system-
atize a large amount of audio recordings of varied character, he would conduct segmen-
tation and analysis, later followed by classification to identify sonic archetypes com-
monly occurring within the data. The causal-temporal relationships between them
would be then modelled using a handful of ML algorithms such as Hidden Markov
Models and the Viterbi algorithm. The capability to generate label sequences was im-
plemented with database look-up in mind rather real-time creative use, but the work-
flow itself lies in close proximity to what was trying to achieve in my project.

8Magnusson, n.d.
9Sturm, 2006.

10Schwarz et al., 2008.
11Casey, 2005.
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2.2.2 Fluid Corpus Manipulation Toolkit

The FluCoMa project12 is a general-purpose toolkit for creative data mining of au-
dio using Machine Learning. It provides a large number of refined functionionalities
for data segmentation, analysis and processing. Due to the modular design, these can
be combined to suit one’s particular needs in either of environments: Max MSP, Pure
Data, SuperCollider or even command line. An issue with FluCoMa is that it seems to
presume a certain level of expertise from its user and contains very few ready-made
examples, which can prevent less experienced artists or programmers from experimen-
tation.

2.2.3 Neural Networks

Significant developments in the field of Neural Networks and Deep Learning over
the past decade have resulted in various new methods of sound synthesis. From the
point of view of an individual user, research projects developed by major AI companies
often have limitations due to the manner in which they curate and condition the train-
ing data, as well as design and optimize their model architectures.13 However, more
recently, open-source architectures of a more accessible scale have emerged.

Within these, a popular approach is auto-encoding, a method that involves train-
ing neural networks to learn compressed representations of audio data. In this pro-
cess, the network learns to extract essential features from the data and subsequently
decode the representation back into audio. This parallels the analysis-synthesis princi-
ple discussed throughout this chapter. Auto-encoding has been employed in different
projects, such as neural granular synthesis14 and currently notorious real-time audio
generation,15 both developed at IRCAM, also responsible for aforementioned CataRT
tool.

One notable project is Musika. It demonstrates a generative architecture capable
of training and running on consumer-grade hardware while maintaining good audio
quality.16 Out of the mentioned projects, it is also the only one which considers model-
ing longer structures. Notably, all three projects require a certain level of programming
expertise to engage with and experiment effectively.

There are also simplified, user-friendly web-based interfaces for sound synthesis
based on neural networks. For example, a toy webpage that wraps RAVE models17 and
Holly Herndon’s Holly+18 provide accessible means for timbre transfer and other sound

12Tremblay et al., 2021.
13Dhariwal et al., 2020.
14Bitton et al., 2021.
15Caillon and Esling, 2021.
16Pasini and Schlüter, 2022.
17Caillon, n.d.
18“Holly+”, n.d.
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synthesis techniques.

2.3 Influences
2.3.1 Carl Stone

While conducting research for this project, I happened to often come back to the
work of Carl Stone, a pioneering computer musician whose contributions I deeply
admire. In an enlightening interview featured in Tone Glow,19 Stone delves into his ex-
periments with a sampler and the modulation of micro-scale playback parameters, ul-
timately resulting in the creation of his groundbreaking 1986 piece, Shing Kee.20 Stone’s
hands-on approach, reminiscent of the famous Phuture 303 anecdote21, aligns closely
with my own artistic framework, making him a significant source of inspiration for
this project.

2.3.2 EVOL

EVOL is a duo of Roc Jiménez de Cisneros and Stephen Sharp, who algorithmically
exploit the sound palettes of rave music. After the performance by Roc22 in October
2022, I had the opportunity to engage in a conversation with him about the captivating
rave acapella drone that initiated his set. Our discussion explored the techniques em-
ployed, including various implementations of timestretching algorithms and the use of
hardware samplers like the Akai S2000.23 He also recommended exploring the works of
Theo Burt, which led me to an intriguing discovery: Burt is actually one half of The Au-
tomatics Group, whose contributions have significantly influenced my initial inquiries
into Music Information Retrieval. A notable release by EVOL that caught my attention
is Speed Snake,24 showcasing their expertise in timestretching techniques. Addition-
ally, their Hardcore Vol. 425 release, featuring several hours of material generated using
a Recurrent Neural Network (RNN) by Jules Laplace, highlights the convergence of
machine learning and experimental sound synthesis so crucial to my endeavour. The
accompanying documented conversation between Laplace and Jiménez de Cisneros26

covers a wide range of topics, including creative applications of ML and critical theory
19Minsoo Kim, 2020.
20“Shing Kee”, 1986.
21See: Mark Fell on the birth of acid house and Martin Heidegger (Fell, n.d.)
22“Club Mutante with Evol, Covco, Kinlaw & Franco Franco, Gribs, Div Pro and Iele at Ormside

Projects, London (2022) / RA”, n.d.
23Jiménez de Cisneros, n.d.
24“Evol - Speed Snake”, 2021.
25“Evol - Hardcore Vol. 4”, 2020.
26Jiménez de Cisneros, 2020.
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related to Artificial Intelligence, making it a highly relevant reference for this project
and its direction.

2.3.3 HEXORCISMOS

Moisés Horta Valenzuela is a self-taught programmer and sound artist from Ti-
juana, México. His work encompasses various aspects of computer music, Artificial
Intelligence, and the history and politics of emerging digital technologies. Among
his output, two works were highly influential on my approach to creative use of new
technology: generated versions of YouTube DJ podcast HOR Berlin27 and the genial re-
interpretation of Antonio Zepeda’s Templo Mayor28 made using Generative Adversarial
Networks (GANs).

2.4 Conclusion
This chapter has provided an overview of key historical and cutting-edge tech-

niques and practices in particle synthesis, ranging from granular synthesis and time
stretching to concatenative synthesis and the use of neural networks. These approaches,
combined with the influence of pioneering artists and advancements in machine learn-
ing, offer exciting possibilities for the creation and manipulation of sound in the digital
realm, thus informing and motivating this project.

3 Context
The project is situated within the context of digital audio synthesis. It addresses

the need for experimental approaches to sound design and musicking, particularly for
individuals who may have limited access to high-performance hardware and profi-
ciency in the fields of data science, sound design, or music composition. By focusing
on low-power solutions, the project aims to offer an alternative to resource-intensive
methods, making it accessible to a wide range of users.

3.1 User Base
The project is primarily aimed at individuals who are interested in exploring novel

methods of synthesizing and composing audio. This includes amateur and professional
musicians, sound designers, composers, or simply enthusiasts who are looking for ac-
cessible and efficient tools to experiment with sound synthesis. The target audience

27“EPOCH.000: HÖR Berlin Pt.1 - 22 March 2021 - YouTube”, n.d.
28“Transfiguración, by HEXORCISMOS”, n.d.
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also encompasses those who may have limited technical expertise or access to power-
ful computational resources. By catering to users with diverse backgrounds and skill
levels, the project aims to provide a platform for creative exploration and expression.

3.2 Types of Uses
The project offers an open workflow that can be easily adapted to different re-

quirements. It allows for both real-time and non-real-time usage, providing flexibility
in the creative process. Users can interact with the system in real time, manipulat-
ing and exploring the generated grain sequences as part of their live performances or
improvisations. Additionally, users can generate and refine grain sequences in a non-
real-time manner for later use in compositions or sound design projects. The project’s
focus, alongside low-power usage and efficiency, lies as well on modularity, making it
easy to break, adapt and extend by more advanced users.

3.3 Testable Goals
To evaluate the effectiveness of the project in meeting its intended goals, several

testable objectives can be considered. Firstly, it is important to assess the system’s per-
formance in generating coherent and musically interesting grain sequences. This eval-
uation should involve analyzing the quality of the generated sequences and whether
they translate into sound that is engaging and musical (with a dose of reserve towards
this last term).

Secondly, gathering feedback from users on the project’s practical usability and
adaptability is crucial. This should include user tests and interviews to understand
the intuitiveness of the interface, clarity of the documentation, and overall workflow.
User feedback will provide valuable insights for enhancing the user experience and
addressing any potential challenges.

Furthermore, the project’s efficiency in terms of low-power usage and resource
optimization should be assessed. This includes measuring the project’s computational
requirements and comparing it to existing solutions to demonstrate its effectiveness in
utilizing resources efficiently.

By defining and conducting tests based on these goals, it will be possible to assess
the project’s effectiveness in meeting the needs and expectations of its target audience.

These sections provide a comprehensive overview of the project’s context, target
audience, types of usage, and testable goals. They set the foundation for understanding
the project’s purpose and its potential impact on users and the field of sound synthesis
and composition.

10



4 Implementation
In the overview, the workflow this project implements consists of several steps,

making use of multiple ML-based MIR techniques, sequence modeling and concate-
native synthesis. It is mostly implemented in Python using libraries such as librosa,
numpy, scikit-learn and Keras while the synthesizer employed at the final stage has
been created using Max MSP, though it can potentially be replaced by an equivalent
in any other audio programming environment. Firstly, data is initially segmented into
parts, after which feature extraction is applied to each segment. The averaged values
of each of these features serve as the basis for classification using clustering. Secondly,
each segment of the audio data is replaced accordingly with a class label, creating a
simplified representation of the time series. Such a sequence can then be split into
sub-sequences to construct the training dataset. Thirdly, the model is fitted to the data,
after which it can be used to generate new labels based on provided input. Finally,
given the generated labels, corresponding audio frames can be retrieved and concate-
nated to synthesize the audio output. Each part of this process will be explained in
more detail in this section of the report.

Figure 3: Preprocessing and diagram
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4.1 Segmentation
Theory

For performance reasons, analysis of audio signal is commonly applied to uni-
form length, overlapping frames, with hop proportionately smaller than the frame size.
The former tends to be between 10-100ms, which is the estimated optimum between
resolution and preserving information when averaging. Smaller hop size increases the
resolution, at the cost of increasing the complexity of computation.

Another manner in which segmentation can be executed is onset detection, which
attempts to track the beginning of rapid increases in energy - transients. Among many
existing approaches, some are simple such as thresholding the signal, while the more
involved commonly use features such as spectral flux,29 which is calculated as the Eu-
clidean distance between the magnitudes across all bins in two different spectra.30

Implementation Loading and segmentation of provided audio file are handled as a
single process in the Streamer class, which itself is a wrapper of the librosa block pro-
cessing function stream.31 Hyperparameters such as frame and hop size can be spec-
ified in samples, or more rudimentarily, in seconds, or metered measures at a tempo
estimated by librosa beat track,32 itself based on a beat tracking routine by Daniel
P.W. Ellis.33 Notably, further audio analysis is applied entirely to single frames returned
by the Stream object, apart from the optional beat detection.

4.2 Analysis
Theory Features that are extracted from each frame can be divided into two main
groups. The first is specific spectral descriptors such as the spectral centroid, band-
width, flatness and roll-off. Intuitively they respectively correspond to the ”balance
point” of the spectrum given the magnitudes of its bins, the deviation from it, the
tonality measure and the frequency below which a specified portion of the total spec-
tral energy lies.34 The second is Mel Frequency Cepstral Coefficients (MFCCs), which
concisely describe the shape of the spectral envelope of the frame. Its calculation
amounts to mapping the spectrum magnitudes to the Mel scale in an attempt to approx-
imate human perception, finally using the Discrete Cosine Transform(DST) to derive a

29“MIREX 2012: Audio Onset Detection - MIREX05 Dataset - Introduction”, n.d., MIREX 2012.
30Dixon, 2006.
31“Librosa.Stream — Librosa 0.10.0 Documentation”, n.d.
32“Librosa.Beat.Beat track — Librosa 0.10.0 Documentation”, n.d.
33Ellis, 2007, Ellis.
34Tjoa, n.d.-a.
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spectrum-of-the-spectrum, commonly referred to as a cepstrum.35 Normally, between
10-20 coefficients provide sufficient information. Importantly, if the features are ex-
tracted from a single frame using their default parameters, the results take the shape
of a N × T matrix where N is the number of features extracted and T is the number
of sub-frames the feature function internally split the analyzed signal into.

Implementation For each audio frame returned by the Streamer object, all of the
features are calculated using their respective librosa implementations. MFCC extrac-
tion, as well as n fft and hop length parameters passed onto the feature extraction
functions are optional hyperparameters.

Figure 4: 2D representation of a sound corpus

4.3 Classification
Theory One of the ways to approach unsupervised classification is to do so by using
a clustering algorithm such as KMeans, which assigns data points toK classes based on

35Tjoa, n.d.-b.
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their spatial interpretation..36 To reduce the complexity of such computation that comes
with high dimensionality, the median of each extracted feature is calculated, effectively
reducing it to an N -dimensional vector where N is the number of features extracted.
Dependent on whether the MFCCs were included N = 4 or N = 17. Subsequently,
each frame can be assigned a corresponding label, which effectively provides a new
representation of the data in the form of an integer label sequence.

Implementation After calculating the median across each feature, the values are
then normalized to the range (−1, 1) using the MinMaxScaler from scikit-learn li-
brary. Concurringly, data points are clustered with KMeans, also using the scikit-learn.
Critically, the value of K is a hyperparameter to be set by the user. As the last step,
a dictionary of labeled frames is created and exported into a file for later use, where
each label acts as a key for an interleaved array of start-end indices for each frame.

Figure 5: 2D representation of a classified sound corpus

4.4 Dataset construction
Theory Given a sequence of length L, it can be split into sub-sequences of length N
using a sliding window similar to the method used in audio processing. Considering

36Tjoa, n.d.-c.
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such a sub-sequence (also called an N-gram).37 as an array of features and the element
following it as the target allows for a model that given a part of a sequence can predict
its continuation. As all of the targets and the features are integer values, they can be
encoded into one-hot vectors where for label value l the corresponding representation
is a N − dimensional vector which contains zeros on all positions apart from l, and
where N is the number of classes considered. This allows the network to predict soft
probabilities instead of single labels, the significance of which will be discussed in the
next subsection.

Implementation The dataset of sub-sequences and their target labels is extracted
from the original data sequence with audio frames replaced by their labels by using
a simple for loop and list comprehensions. Integer labels are encoded into one-hot
vectors using the Keras to categorical function.

4.5 Model
Theory Gated Recurrent Unit (GRU), is a simplified version of the more complex
Long Short-Term Memory (LSTM) cell commonly used for sequence modeling in re-
current neural networks. It is designed to capture and utilize long-term dependencies
in sequences by selectively updating and resetting its hidden state.38 By doing so, the
GRU can effectively capture relevant information from the past and combine it with
new input to make predictions about the next element in the sequence. This makes it
particularly suitable for tasks involving sequential data, such as generating new labels
based on provided input. Followed by a fully connected layer with softmax activation
function, which returns probabilities for each fo the classes. Categorical crossentropy
loss is then used to compare the predicted distribution with the true labels, measuring
the dissimilarity between them and providing a gradient signal for training the model.

Implementation For modeling the label sequence, a simple but efficient at this level
of complexity model architecture is employed. Adapted from char generation tutorial
by Lukas Biewald.39 It can be described as shallow, as it consists of three layers only:
an input layer of shape (N,C), where N is the size of the previously constructed N-
grams and C is the number of classes; a Gated Recurrent Unit (GRU) layer, in which the
number of units is a tweakable hyperparameter; and the fully connected output layer
with C number of neurons with softmax activation. Adam is the optimizer of choice,
while the loss function is categorical crossentropy. T

37Chollet, 2021.
38Cho et al., 2014.
39Biewald, 2015, September 1/2019.
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Figure 6: Model architecture diagram

4.6 Generation
Theory After fitting the model, provided with a sequence of length N it is possible
to generate a distribution of the next possible labels to follow. Parametrised sampling
can be applied to such a distribution, in this case, temperature sampling, where the tem-
perature parameter controls the diversity of the output. It is especially applicable in
the generative context of this workflow. In temperature sampling, a parameter called
temperature is applied to the softmax output probabilities. A higher temperature value
T > 1 makes the distribution more uniform, leading to increased randomness in the
generated output. Conversely, a lower temperature value T < 1 sharpens the distribu-
tion, making the generated output more focused and deterministic. The sampled label
can be added to the sequence used as the prompt to generate the next one, allowing the
process to be repeated ad infinitum to generate a sequence of any length, even though
its undestanding of it is limited to a local context of the N-gram length.

Implementation Generation takes place in a separate Python script online.py,
which runs the generation on loop in its own thread, by default prompted with the
first N-gram from the original sequence. After each generation, it removes the first
element of the N-gram, replacing it with the generated token. When a sequence of
specificed length is generated, it is sent as an Open Sound Control (OSC) message to
the target environment.40 Prompt, temperature and length of sequence to generate are
parameters, all controllable through OSC. A separate thread runs an OSC server which

40“OSC Index”, 2021.
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Figure 7: OSC communication between generation script and synthesizer

listens for messages and passes any changed parameters to the generation thread. To
make the temperature changes effective instantenously, all tokens generated so far are
cleared and generation re-starts from scratch (with default or specified prompt).

4.7 Synthesis
Theory While the more standard overlap-add method is still widely used in various
software, programs such as Max MSP and SuperCollider contemporarily provide the
tools to work with multiple channels. This opens up possibilities for elaborate spa-
tialization techniques and simplifies the implementation of techniques like granular
synthesis. For each start/end index pair, a grain instance should be created on one
of the channel and traverse through the appropriate part of the original audio file. A
window function or a linear ramp should be applied at the start and end of the grain to
avoid artifacts such as clicks.41 Notably, the number of channels is flexibly chosen and
can be much higher than the number of target channels to mix down to. The selection
of grains informed by the generation script makes this synthesizer an expansion on the
method of concatenative synthesis, as described in the background research section.

Implementation An example synthesizer has been implemented using Max MSP,
though this is rather straightforward to achieve in any sound programming environ-
ment which is compatible with the OSC standard and has the capability of reading dic-
tionaries in JSON format. As the label sequences received from the generation script
via OSC and are pushed to the end of a FIFO queue, particular elements are retrieved
from the queue at a synchronous rate controlled by the metro object. To further
enhance the creative control over the audio output, it is possible to lock the last gen-
eration sequence, playing it on a loop and ignoring the queue. This allows additional
periodicity which is highly useful in some contexts. The synthesizer provides multiple

41Roads, 2004.
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methods to decode the label into an audio frame, including fixed indexing, sequen-
tial traversal, probabilistic traversal, and random selection. These methods allow for
flexibility in generating different sonic outcomes.

5 Process

5.1 Introduction
The project followed an iterative design approach, consisting of cycles of ideation,

implementation, testing, and refactoring. These cycles allowed for improvements in
my understanding of crucial machine learning (ML) concepts. The project was tracked
using a GitHub repository, which facilitated version control, code documentation, and
organization. I also used a Wiki as a personal blog to record dilemmas and insights.
Meetings and discussions with colleagues and mentors provided valuable feedback and
guidance, stimulating critical thinking and shaping the project’s direction.

5.2 Point of Departure
The project began with some superficial ML intuition gained from previous courses

and experience in Music Information Retrieval. Building upon my previous projects,
”Sound and Signal 2” and ”Artificial Intelligence,” I used the latter as a starting point
for my Final Project. Although aware of my limited understanding of the problems I
aimed to solve, my previous use of neural networks for synthesis in Max MSP gave me
hope that my intuitions would translate to the lower-level workflow of the project. En-
couraged by my AI lecturer, Jérémie Wenger, I embraced the challenge and embarked
on confronting my concept with reality.

5.3 Gaining Orientation
Early meetings related to the project highlighted the challenges of explaining the

scope to others unfamiliar with my previous work. Following advice from my super-
visor, Dave, I took a step back to evaluate what I already had in place. This process
helped me clarify the project’s direction. To create something more than simple edits,
I aimed to make the project work in real-time.

5.4 Initial Refactor
Before considering additional features, I addressed the instability of the existing

code in the segmentation/analysis/modeling/generation/synthesis pipeline. Applying
data processing best practices, I balanced optimization and functionality. Optimization
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was prioritized enough to prevent code crashes while allowing for efficient handling
of Git issues. The overall pipeline design was refined to ensure coherence and correct
functioning.

5.5 Novelty Factor
After addressing previous mistakes, I replaced the unwieldy Python synthesis script

with a quick and dirty solution in Max. This design choice necessitated the use of two
separate applications due to the complexity of running a Keras model from within
Max. However, this brought me closer to the goal of integrating the project to univer-
sal compatibility with various audio engines for synthesis.

5.6 First Tests
Despite the processing and synthesizer not being user-friendly, I conducted user

testing to gauge progress. My classmate, Shang Ren, volunteered to try the prototype.
During testing, we encountered challenges with setting path variables for training a
new model. However, the generated audio showcased interesting collaging of sounds,
and real-time attempts revealed the importance of parameter range restrictions for
stability.

5.7 Clean-ups
During this phase, I focused on code and patch clean-up. I also attempted to

write an alternative synthesis algorithm using the gen language in Max, although
this proved to be counter-intuitive due to its unconventional syntax and limited docu-
mentation. Discussions with members of the RAVE Discord server provided ideas for
future work, particularly in the area of artificial augmentation of datasets. Addition-
ally, I used the patch and a trained breakbeat model during a live improvisation gig,
which highlighted timing issues.

5.8 Catching Up
To benchmark the project’s progress, I conducted thorough testing. However, even

with a simple toy dataset, the generated results remained chaotic. Extensive debugging
revealed that the neural net architecture had been generating random values due to er-
rors made six months prior. This discovery led to valuable insights into the challenges
of generative approaches and the need for rigorous testing and debugging42.

42For a concise description made on the spot after fixing these issues, see blog post from 2023/05/08:
https://github.com/wwerkk/MC-FP/wiki/2023-05-08
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Figure 8: dupnac with Michelle Olczak (left) and Lorelai b. Woch (right), 25.04.2023 at
Mlodsza Siostra, Warsaw, Poland

5.9 Explaining Over Again
Presenting my project at the graduation show provided valuable feedback and op-

portunities to refine the project’s narrative. Conversations with experts, such as my
C++ lecturer Lance Putnam, informed my understanding of handling random distribu-
tions in a creative context and searching for the middle ground between what human
perception is capable of appreciating and procedurally generated chaos. Inspired by
that, I eventually ended up adding a looping functionality to my patch, to account for
the high variance of generated data, but likely this was just a small manifestation of
the thought process which started in my head at that point. Inspired by that is the
addition of a locking receieved prompts in a repeating loop, to account for the high
variance of generated data. Performing on a multi-channel sound system highlighted
the engagement potential of the project, as I have heard a handful of positive impres-
sions about the textures emerging from the synthesis process which I did not consider
capable of standing for itself in the context of a solo piece.
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Figure 9: Project presentation at Music Computing graduation show on 11.05.2023

5.10 Failing Again
During further benchmarking, issues with clustering accuracy emerged, revealing

another bug in the system that had grown in complexity.

5.11 Final?
As the project reached its final stages, I had to remove several planned features to

prioritize functionality. Time constraints led to the conscious decision to focus on the
well-functioning aspects of the workflow, even if they were once the most problematic
components.
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6 Debugging
Given the large scope of this project, multiple challenges have arisen during its

development. Git issues43 were the chosen method of organising and keeping track of
bugs and other encountered problems related to optimization or new functionalities.
Considered below are the obstacles picked on the grounds of meaningful contribution
to advancing this project and my personal expertise. In perspective, these endeavours
seem to place themselves within one of two areas: 1. handling of data Input/Output
(IO) and computational efficiency specific to this project, 2. audio analysis and Machine
Learning problems.

6.1 Data Processing
6.1.1 Analysis Pipeline Input

Description Processing longer audio files would take a lot of time or result in Out
Of Memory (OOM) errors causing the kernel to crash.

Breakdown The audio file would be loaded into the memory all at once, using ei-
ther of two functions: librosa library load or open audio from audio2numpy Python
package. This heutiristically proved to be a severe performance bottleneck. After seg-
mentation, sample values of each frame would be stored in a multi-dimensional numpy
array, further increasing the computational complexity and memory usage.

Solution After researching the issue, it has been discovered that the preferred ap-
proach is to load the audio block by block, and that librosa stream function44 serves
that exact purpose. It has been wrapped in a custom Streamer class which can be
used to convniently simultaneously segment and analyse the data.

6.1.2 The Inffeciency of Implenting Audio Synthesis Python

Description Synthesizing audio output in Python using the overlap-add45 method
would often take a lot of time to compute or cause OOM errors, also being difficult to
experiment with and debug.

Breakdown As suggested by the previous problem: given the high sample rate used
for calculating audio, numpy is not efficient in doing so on sample-per-sample basis.

43“Issues · Wwerkk/MC-FP”, n.d.
44“Librosa.Stream — Librosa 0.10.0 Documentation”, n.d.
45Roads, 2004, Microsound p.257.
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Solution The pipeline originally implemented in a single Jupyter notebook has been
broken into three separate parts: analysis/training, label sequence generation and an
accompanying audio synthesizer implemented in Max MSP. This improved the perfor-
mance and modularity of the project. The training notebook itself got reduced down
to picking hyperparameters and calling the training script.

6.1.3 Analysis Pipeline Output

Breakdown Given the generation script and synthesizer both require access to some
of the processing results, as well as the original audio file in case of the latter; it had to
be considered what data needs to be passed on from the training/analysis script and
how to execute such communication.

Solution The design choices at this stage had to be deliberate, as they were some-
what critical to reaching the accessibility goals of the project. For every configuration
with a unique name, two .json files would be exported alongside the Keras model. The
first would store hyperparameters such as path to the source audio file, sample rate,
frame and hop size, etc.; while the second would be a dictionary of labelled frames,
where the value for each key (label) would be an array of frame start/end indices. This
information turned out to be sufficient to successfully execute synthesis on toy exam-
ples in a separate Python script (offline.py, later removed from the repo). Achiev-
ing the same result with Max was mainly constrained by problems with reading out
the values from the dictionary. After searching the Cycling’74 Forum (several threads
on using dict in dict) and some experiments, the problem turned out to be simple but
confusing: Max dict object is not capable of reading 2D Python arrays, therefore the
start/end indices had to be saved as an interleaved 1D array.

6.1.4 Real-time Generation and Open Sound Control

Breakdown The script was a single-thread OSC server listening for a generate con-
taining the generation parameters. After receiving it would generate a label sequence
and send it, again using OSC. When the p-th last label in the current sequence was trig-
gered to play in the patch, the patch would prompt the next generation. Combinations
of low sequence length and fast trigger rate would cause large amounts of messages to
be sent from the synth to the script, effectively clogging the OSC queue. Running out
of labels in the FIFO queue, synth would go silent.

Solution During consultation with Dave which followed him testing the patch, he
pointed out the weak points of my buffer-ahead solution: low performance and delay in
generation parameter adjustments affecting the playback output. His suggestion was
to split the script into two threads: one generating ahead in an infinite loop and. At
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the same time, a separate thread would run the OSC server listening for any parameter
changes and pass them to the generation thread. Initially hesitating due to my lack
of proficiency with thread management in Python, I finally decided to attempt this
approach which turned out to be an interesting challenge to solve. Main obstacles
were related to scope issues such as updating variable state across different threads.

6.2 Audio Analysis and Machine Learning
6.2.1 Sequence Generation

Breakdown During generation benchmarks on a toy dataset46 it turned out that
during training, the accuracy metric does not provide any coherent information, while
the validation loss starts oscillating between two values almost immediately and does
not go down as the training progresses. Given the simplicity of the data, the results
were straightforwardly random regardless of the sampling temperature.

Solution Backtracking the issues I decided to compare my adapted code with the
original code in the tutorial I was initially using to build the model. There was one
crucial difference which was the choice of the loss function - the tutorial model was
using categorical cross-entropy, while my model used sparse categorical cross-entropy.
After consulting Stack Overflow47 and, followingly, the Keras documentation,48 it had
turned out my loss function has been incompatible with the way my training data was
formatted. This was already an issue in the former AI project I was basing on, which
explains the excessive effort I had to put into adapting Biewald’s code to process my
data. The reason for it was my initial lack of understanding of the pre-processing in-
volved in his, but most crucially, of specific loss functions and how they affect the
model architecture and effectively its behaviour. After debugging the model architec-
ture validation loss and accuracy metrics finally started to make sense. Yet, even with
accuracy reaching the value of 1.0 in the case of the toy dataset, the results generated
with low or no temperature were often not correspondent with the original data. This
leads onto the next issue.

6.2.2 Data Clustering

While benchmarking with the toy dataset, it appeared the label representation of
audio frames introduces a significant amount of error to the output.

46(drumloop) - a repeated one bar 120BPM loop consisting of three samples (kick, hihat, clap) arranged
as KHCH.

47Bitswazsky, 2021.
48Team, n.d.
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Breakdown To explain this issue clearly, let us consider the sequence consisting of
multiple exact repetitions of (K,H,C,H), whereK ,H andC correspond to kick, hihat
and clap samples spaced out evenly across four beats at 120BPM. After segmenting
the data at that exact rate and conducting feature extraction, followed by a clustering
algorithm, the first three sounds appearing in the data have been assigned the labels
(0, 1, 2). Intuitively, (0, 1, 2, 1) would be the correct representation of that sequence,
meaning that using these labels we can go back to the original audio sequence, perhaps
with slight variation. This in practice proved to be impossible with the exception of
retrieval of the first audio frame available for each label (as they have been added to the
dictionary in order of appearance in the data). This effectively prevents any accurate
modeling from taking place, which extends to any pursuits of coherent generation and
synthesis.

Solution Diagrams for KMeans, DBSCAN, UMAP and combinations. As it turned
out, even in the ideal case of a simple toy dataset, where the exact timing and number of
sounds is known, the labels get mixed up. Alternative approaches have been attempted
experimentally, such as using the DBSCAN algorithm instead of KMeans, or preceding
the clustering by dimensionality reduction with UMAP. The dimensionality reduction
did mildly improve the classification, but the described problem persisted and required
further investigation.

6.2.3 Audio Representation

Given the classification issues and intuitive interpretation of visualized feature
space, the extracted features and their properties were unsatisfying.

Breakdown Something, a diagram. Deducted from the lack of improvement over
different classification methods was the possibility of wrong set of features which have
been chosen to represent the data.

Solution Initial approach to feature extraction included a combination of so-called
crude features: zero-crossing rate and mean energy, as well as spectral features and
MFCCs. Multiple experiments have been executed to determine the most robust com-
bination of these to describe the two toy datasets49. The results, as well as reviews of
previous iteration of the pipeline (SNS2 project), proved that the spectral features are
usually the most performant out of all three subsets. At the same time, MFCCs are over-
all rather robust for representing even more percussive data that includes non-pitched

49aforementioned drumloop2 as well as the sweep dataset, both synthesized to simulate different traits
found in real-world audio: first - looped structures of percussive elements, second - structures focused
on modulations of pitch
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sounds if the first coefficient is not discarded, which is against common practice. It has
been decided to stick to the spectral features as default, while the MFCC extraction is an
optional hyperparameter, as they do contribute meaningfully to data representation in
cases of analysing audio with a lot of periodic components. However, the experiments
at this stage have again achieved only mild improvement. What should be considered
is the general problem of meaningfully representing data in a compact manner. To-
wards the end of project development, I have attended virtually the Creative Machine
Learning summer classes taught by Philippe Esling at University of Tokyo. Through
discussion on Discord server related to the class, I have stumbled upon the following
exchange related to building a multi-label classifier for the MuscleFish dataset:

cakste: […] the dataset is very unbalanced, and plotting the mean/std of
the features doesn’t seem to visually be discriminative enough.

Philippe Esling: You are plain right, mean features have a glass ceiling
of discrimination

Philippe Esling: Tips / tricks are all the regularisations we saw (ReLU,
dropout, BatchNorm)

Philippe Esling: But a full CNN based on the STFT would improve over
mean features and MLP !

Though this knowledge was highly relevant for my project, applying it in practice
would unfortunately require more time than I had on my hands and had to be left to
future experimentation.

6.2.4 Audio Segmentation

Even segmenting data in sync with exact metered beat, frame start points would
shift slowly over time, introducing error to further analysis steps.

Figure 10: Unmatching segmentation of a 4-element drum loop at 120BPM

Breakdown Following the accuracy problems at each step of the pipeline has led to
discovering the issues inherent in the very first step of analysis, as the segmentation
even at a known tempo was very obviously wrong. The default way of passing the
frame length to the training script was to give it a metered measure specified in beats.
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The conversion from beats at a specific tempo involved a bit of division/multiplication
and was not implemented transparently and was not ever properly checked after its
implementation.

Solution The efforts have concentrated on potential work-arounds, mainly coming
back to onset detection, as it has been used successfully in the past projects. Doing so,
they involved either librosa or the FluCoMa CLI Python bindings by James Bradbury.50

Neither of these has solved the issue, complicating it more instead. During the writing
of this report, not debugging the numerical measure-sample conversion appeared as
an obvious oversight and after looking into has been fixed without much issue.

6.3 Overview
The groundwork for this project was laid by previously designed pipelines, often

sub-optimal or working only within a highly restricted set of parameters and required
plenty of adaptation work. Most of the bugs specific to this project and its implementa-
tion, especially when it comes to compatibility between particular parts of the work-
flow have been resolved successfully. Certain issues, upon being researched, turned
out to be related to more general ML problems which could surely benefit from being
assessed in their own respect. This is even more so as the problems at given point tend
to cascade into next stages in a manner that makes the actual problem difficult to posi-
tion. The optimistic interpretation would be that that performance of further stages of
analysis could be improved by further fixes of relatively simple, but critical bugs such
as segmentation problem desribed at the end.

7 Evaluation
Throughout the project, I aimed to create a real-time audio generation system us-

ing machine learning techniques. In simple terms of constructing a workflow or a
pipeline, I consider the project to be successful. Despite encountering challenges and
setbacks, I managed to develop a piece of software that is functional and that gener-
ates interesting and varied audio outputs. It can be trained, run and, most importantly,
experimented with efficiently assumed only some basic programming knowledge and
using a personal computer.

It was challenging to narrow down my aims more and more, as I gained a deeper
understanding of the project’s complexity. I realized the drastic need to focus on en-
suring each of the existing parts works well, rather than expanding it with additional
features. In retrospect, the project scope was likely too wide and I would have had an
easier time focusing my research on a single method out of many employed here.

50Bradbury, 2020, June 8/2023.
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To test the project, I conducted user testing and benchmarking. These tests were
appropriate as they provided valuable insights into the state of the system, its short-
comings and potential improvements in regards to interfacing with it. Both testing
and benchmarking proved to be often ambiguous in context of generative tools like
this, which opens a lot of room for critical discussion, also from the point of view of
aesthetics.

The use of a GitHub repository and a personal Wiki for documentation and orga-
nization proved effective. However, there is plenty of room for improvement in terms
of my project management and programming habits.

Problem-solving was an integral part of the project, and my approach was generally
successful, even in cases which required deep investment and plenty of time. However,
in hindsight, I could have incorporated more structured testing and debugging from
the start, perhaps using synthesized data to throughouly test the processing at each
stage.

Looking to the future, the project has potential for further development. The sys-
tem could benefit from being split into parts, as it is already quite modular. This
would enable for a wider range of applications, such as experimental data augmen-
tation methods, audio scraping and sample organization. Integration with other envi-
ronments is ensured to be smooth, as the analysis results are saved in a standardized
format and take up a low amount of space, allowing them to be easily shared.

Notably, I have realized the depth of the research, creative and sometimes ethical
problems I encountered. Many projects and resources relevant to this highly specific
field of neural audio operate on a level of complexity that makes them inaccessible
for the average person. From perspective, my endeavour operated at mixed and often
contrasting levels of expertise, as I was simultaneously catching up with basic data
science competence and building intuition with advanced and cutting-edge AI tools.

Trying to take a step back, it had been very meaningful for me to talk about this
project with my lecturer in Improvisation, Iris Garrelf. The conversation we had helped
me take a step back and approach this project critically, including considerations in a
context that is not only technological, but also related to my personal practice. No-
tably, until that point I have only been judging this work on the basis of its technolog-
ical accomplishment or potential foor achieving such, denying it any notion of value
otherwise. What is worth considering, is whether making a musical instrument that is
a polished state of the art technological object a goal worth pursuing? Would it effec-
tively make for a better musician? Alike to the rather fundamentall Machine Learning
problems I have encountered during implementing the presented idea, these are ques-
tions which likely require interrogating in a research project of their own.
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EPOCH.000: HÖR Berlin pt.1 - 22 March 2021 - YouTube. (n.d.). Retrieved May 30, 2023, from https://www.youtube.com/watch?app=desktop&v=UPs5L-1Amo8&t=939s
Transfiguración, by HEXORCISMOS. (n.d.). HEXORCISMOS. Retrieved May 30, 2023, from https://hexorcismos.bandcamp.com/album/-
MIREX 2012: Audio Onset Detection - MIREX05 Dataset - Introduction. (n.d.). Retrieved May 25, 2023, from https://nema.lis.illinois.edu/nema out/mirex2012/results/aod/
Dixon, S. (2006). ONSET DETECTION REVISITED.
Librosa.stream — librosa 0.10.0 documentation. (n.d.). Retrieved May 25, 2023, from https://librosa.org/doc/latest/generated/librosa.stream.html
Librosa.beat.beat track — librosa 0.10.0 documentation. (n.d.). Retrieved May 25, 2023, from https://librosa.org/doc/latest/generated/librosa.beat.beat track.html
Ellis, D. P. W. (2007). Beat Tracking by Dynamic Programming. Journal of New Music Research, 36(1), 51–60. https://doi.org/10.1080/09298210701653344
Tjoa, S. (n.d.-a). Spectral features. Retrieved May 25, 2023, from https://musicinformationretrieval.com/spectral features.html
Tjoa, S. (n.d.-b). Mfcc. Retrieved May 25, 2023, from https://musicinformationretrieval.com/mfcc.html
Tjoa, S. (n.d.-c). Kmeans. Retrieved May 25, 2023, from https://musicinformationretrieval.com/kmeans.html
Chollet, F. (2021). Deep learning with Python (Second edition). Manning Publications.

OCLC: on1289290141.
Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for

Statistical Machine Translation. https://doi.org/10.48550/ARXIV.1406.1078
Biewald, L. (2019, May 24). Text generation. Retrieved May 26, 2023, from https://github.com/lukas/ml-class
OSC index. (2021, August 13). Retrieved May 26, 2023, from https://opensoundcontrol.stanford.edu/index.html
Issues · wwerkk/MC-FP. (n.d.). Retrieved May 30, 2023, from https://github.com/wwerkk/MC-FP/issues
Bitswazsky. (2021, August 2). Answer to ”What is the difference between sparse categorical crossentropy and categorical crossentropy?”. Stack Overflow. Retrieved May 27, 2023,

from https://stackoverflow.com/a/68617676
Team, K. (n.d.). Keras documentation: Probabilistic metrics. Retrieved May 27, 2023, from https://keras.io/api/metrics/probabilistic metrics/
Bradbury, J. (2023, May 21). Python-flucoma. Retrieved May 27, 2023, from https://github.com/jamesb93/python-flucoma

9 Appendix

9.1 Appendix A: Code Repository
https://github.com/wwerkk/MC-FP

29



9.2 Appendix B: Project Blog
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