
VBA Expressions Reference Manual

Wilfredo García*

April 2024

Version 1.0

Summary

This document serves as a reference and user guide for VBA Ex-

pressions. The library speci�cations, common and advanced usage
are duly addressed1. All the required information are included to
helping users of the VBA Expressions library to quickly familiarize
themselves with the tool. This manual can be read sequentially,
recommended for users with little or no VBA®experience, or by
topic of interest. For users who are new to VBA®programming,
know the basic concepts, and want to start using VBA Expres-

sions, they can read sections from 2 to 3. In these they will �nd
the information they need to use the library, evaluate basic and
intermediate complexity expressions. This sections will cover oper-
ators, syntax rules, variables, internal library behavior, some basic
con�gurations, methodology used by the library to evaluate given
expressions and some use cases. All kind of users can read this
manual starting on section 3, in page 12, over this code examples
are shown to quickly library usage introduction. The section 7
covers use of variables in a broad fashion, dealing with advanced
techniques to create, assign and reuse variables to change the way
expressions are handled. Limitations are covered in section 12.

More experienced users can read the full documentation to under-
stand how VBA Expressions works and discover advanced method-
ologies for doing more complex stu�s. The library structure, avail-
able methods and properties for class instantiated objects are ad-
dressed is section 4. In deep use cases are detailed in section 6. This
section will include data management, linear algebra, statistics and
data analysis, engineering and physics applications. Matrix syntax,
operations with matrices and overloading such variables are cov-
ered in section 8. A complete reference on creating, declaring and
managing user de�ned functions (UDFs) is presented in section 9.
A whole list of currently available functions; segregated into basics,
mathematical, statistical, �nancial, date-time and string functions
groups; is given at section 10. Unit testing through Rubberduck2 is
detailed in section 11. A fully functional VBA procedure is shown
in the appendix.

This work is licensed under a
Creative Commons �Attribution-
NonCommercial-ShareAlike 4.0
International� license.

* https://github.com/ws-garcia
1 The library version used for this manual was v3.2.7, future releases may include
changes in library structure leading to a slight or extensive deprecation of this
technical guide

2 https://rubberduckvba.com/

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Contents

1 Introduction 5

1.1 Advantages . . . . . . . . . . . . . 5

1.2 Get in ready! . . . . . . . . . . . . 5

2 Key Essentials 6

2.1 Operators and Symbols . . . . . . 6

2.1.1 Operators . . . . . . . . . . 6

2.1.2 Symbols . . . . . . . . . . . 7

2.2 Syntax And Rules . . . . . . . . . 7

2.2.1 Grammar . . . . . . . . . . 8

2.2.2 Variables . . . . . . . . . . 9

2.2.3 Functions . . . . . . . . . . 9

2.2.4 Matrices and Arrays . . . . 9

2.2.5 Lists . . . . . . . . . . . . . 10

2.3 Core Internals . . . . . . . . . . . . 10

2.3.1 Parsing Methodology . . . . 10

2.3.2 Evaluation Tree . . . . . . . 10

3 Quick Start 12

3.1 The Basis . . . . . . . . . . . . . . 12

3.2 Expressions with Variables . . . . . 14

3.3 Evaluating into Loops . . . . . . . 14

3.4 Using Binary Relations . . . . . . . 15

3.5 Working with Strings . . . . . . . . 15

4 Library Brief Structure 16

4.1 VBAexpressions.cls . . . . . . . . . 16

4.1.1 Properties . . . . . . . . . . 16

4.1.2 Methods . . . . . . . . . . . 21

4.1.3 Enumerations . . . . . . . . 23

4.2 VBAexpressionsScope.cls . . . . . 24

4.2.1 Properties . . . . . . . . . . 24

4.2.2 Methods . . . . . . . . . . . 25

5 Notes for LibreO�ce Users 26

5.1 Variables Treatment . . . . . . . . 26

5.2 Recursion . . . . . . . . . . . . . . 27

5.3 Library Loading . . . . . . . . . . 27

6 Main Use Cases 27

6.1 Provide Evaluation Capability to
other Applications . . . . . . . . . 28

6.2 Data Management . . . . . . . . . 28

6.3 Linear Algebra . . . . . . . . . . . 28

6.4 Statistics and Data Analysis . . . . 30

6.5 Engineering and Physics . . . . . . 31

7 Variables De�nition and Assignment 32

7.1 Scope of Variables . . . . . . . . . 32

7.2 Accessing Variables . . . . . . . . . 33

7.3 Special Uses . . . . . . . . . . . . . 34

8 Working with Matrices/Arrays 34

8.1 Some Key Notes . . . . . . . . . . 34

8.2 Matrices Overloading . . . . . . . . 35

9 Managing User De�ned Functions 36

10 Library Built-in Functions 37

10.1 Transcendental Functions . . . . . 37

10.1.1 ABS . . . . . . . . . . . . . 37

10.1.2 ACOS . . . . . . . . . . . . 38

10.1.3 ASIN . . . . . . . . . . . . 38

10.1.4 ATN . . . . . . . . . . . . . 38

10.1.5 AVG . . . . . . . . . . . . . 38

10.1.6 CEIL . . . . . . . . . . . . 39

10.1.7 COS . . . . . . . . . . . . . 39

10.1.8 EXP . . . . . . . . . . . . . 39

10.1.9 FLOOR . . . . . . . . . . . 39

10.1.10LGN . . . . . . . . . . . . . 39

10.1.11LN . . . . . . . . . . . . . . 40

10.1.12LOG . . . . . . . . . . . . . 40

10.1.13MAX . . . . . . . . . . . . 40

10.1.14MIN . . . . . . . . . . . . . 40

10.1.15PERCENT . . . . . . . . . 40

10.1.16POW . . . . . . . . . . . . 41

10.1.17ROUND . . . . . . . . . . . 41

2 v3.2.7



10.1.18SGN . . . . . . . . . . . . . 41

10.1.19SIN . . . . . . . . . . . . . 41

10.1.20SQR, SQRT . . . . . . . . . 41

10.1.21SUM . . . . . . . . . . . . . 42

10.1.22TAN . . . . . . . . . . . . . 42

10.2 Mathematical Functions . . . . . . 42

10.2.1 CHOLESKY . . . . . . . . 42

10.2.2 CHOLINVERSE . . . . . . 42

10.2.3 CHOLSOLVE . . . . . . . . 43

10.2.4 DET . . . . . . . . . . . . . 43

10.2.5 FZERO . . . . . . . . . . . 43

10.2.6 GAMMA . . . . . . . . . . 44

10.2.7 GAMMALN . . . . . . . . 44

10.2.8 INVERSE . . . . . . . . . . 44

10.2.9 LSQRSOLVE . . . . . . . . 44

10.2.10LUDECOMP . . . . . . . . 45

10.2.11LUSOLVE . . . . . . . . . . 45

10.2.12MMULT . . . . . . . . . . . 45

10.2.13MNEG . . . . . . . . . . . 46

10.2.14MROUND . . . . . . . . . . 46

10.2.15MSUM . . . . . . . . . . . 46

10.2.16MTRANSPOSE . . . . . . 46

10.2.17QR . . . . . . . . . . . . . . 47

10.2.18REM . . . . . . . . . . . . . 47

10.2.19SOLVE . . . . . . . . . . . 47

10.3 Statistical Functions . . . . . . . . 48

10.3.1 ACHISQ . . . . . . . . . . . 48

10.3.2 AERF . . . . . . . . . . . . 48

10.3.3 AFISHF . . . . . . . . . . . 48

10.3.4 AGAUSS . . . . . . . . . . 48

10.3.5 ANORM . . . . . . . . . . 49

10.3.6 ASTUDT . . . . . . . . . . 49

10.3.7 BETAINV . . . . . . . . . . 49

10.3.8 CHISQ . . . . . . . . . . . 49

10.3.9 ERF . . . . . . . . . . . . . 50

10.3.10FISHF . . . . . . . . . . . . 50

10.3.11FIT . . . . . . . . . . . . . 50

10.3.12GAUSS . . . . . . . . . . . 51

10.3.13 IBETA . . . . . . . . . . . 51

10.3.14MLR . . . . . . . . . . . . . 51

10.3.15NORM . . . . . . . . . . . 52

10.3.16STUDT . . . . . . . . . . . 52

10.3.17TINV . . . . . . . . . . . . 53

10.3.18TINV_1T . . . . . . . . . . 53

10.3.19TINV_2T . . . . . . . . . . 53

10.4 Financial Functions . . . . . . . . . 53

10.4.1 DDB . . . . . . . . . . . . . 53

10.4.2 FV . . . . . . . . . . . . . . 54

10.4.3 IPMT . . . . . . . . . . . . 54

10.4.4 IRR . . . . . . . . . . . . . 54

10.4.5 MIRR . . . . . . . . . . . . 54

10.4.6 NPER . . . . . . . . . . . . 55

10.4.7 NPV . . . . . . . . . . . . . 55

10.4.8 PMT . . . . . . . . . . . . . 55

10.4.9 PPMT . . . . . . . . . . . . 55

10.4.10PV . . . . . . . . . . . . . . 55

10.4.11RATE . . . . . . . . . . . . 56

10.4.12SLN . . . . . . . . . . . . . 56

10.4.13SYD . . . . . . . . . . . . . 56

10.5 Date, Time and String Functions . 56

10.5.1 ASC . . . . . . . . . . . . . 56

10.5.2 CHR . . . . . . . . . . . . . 57

10.5.3 DATE . . . . . . . . . . . . 57

10.5.4 DATEADD . . . . . . . . . 57

10.5.5 DATEDIFF . . . . . . . . . 57

10.5.6 DATEPART . . . . . . . . 57

10.5.7 DATESERIAL . . . . . . . 58

10.5.8 DATEVALUE . . . . . . . 58

10.5.9 DAY . . . . . . . . . . . . . 58

10.5.10FORMAT . . . . . . . . . . 58

10.5.11HOUR . . . . . . . . . . . . 59

10.5.12LCASE . . . . . . . . . . . 59

10.5.13LEFT . . . . . . . . . . . . 59

10.5.14LEN . . . . . . . . . . . . . 59

VBA Expressions v3.2.7 Reference Manual 3



10.5.15MID . . . . . . . . . . . . . 60

10.5.16MINUTE . . . . . . . . . . 60

10.5.17MONTH . . . . . . . . . . 60

10.5.18MONTHNAME . . . . . . 60

10.5.19NOW . . . . . . . . . . . . 60

10.5.20REPLACE . . . . . . . . . 61

10.5.21RIGHT . . . . . . . . . . . 61

10.5.22TIMESERIAL . . . . . . . 61

10.5.23TIMEVALUE . . . . . . . . 61

10.5.24TRIM . . . . . . . . . . . . 62

10.5.25UCASE . . . . . . . . . . . 62

10.5.26WEEKDAY . . . . . . . . . 62

10.5.27WEEKDAYNAME . . . . . 62

10.5.28YEAR . . . . . . . . . . . . 62

10.6 Programming Functions . . . . . . 63

10.6.1 ARRAY . . . . . . . . . . . 63

10.6.2 CHOOSE . . . . . . . . . . 63

10.6.3 GET . . . . . . . . . . . . . 63

10.6.4 IFF . . . . . . . . . . . . . 63

10.6.5 SWITCH . . . . . . . . . . 64

11 Testing 64

11.1 Rubberduck . . . . . . . . . . . . . 64

11.2 Running Tests . . . . . . . . . . . 64

12 Limitations 65

13 Conclusions 65

14 Credits 65

15 License 66

16 Review History 66

17 Appendix 67

4 v3.2.7



1 Introduction

VBA Expressions is a powerful string expression evaluator library for
VBA®, which puts more than 100 mathematical, statistical, �nancial,
date-time, logic and text manipulation functions at the user's �ngertips.
Library mediates almost all VBA®and custom user de�ned functions
(UDF) exposed through the tool, making it a support for students and
teachers of science, accounting, statistics and engineering. The later is
due to the capability on matrix operations (including factorization/de-
composition), linear and over-determined equations systems solving, non-
linear equations in one variable support, curve �tting, Multivariate Linear
Regressions (MLR), and much more.

1.1 Advantages

� Easy to use and integrate.

� Basic math, logical and binary relations operators.

� More than 100 built-in functions.

� Very �exible and powerful.

� Implied multiplication support for variables, constants and func-
tions

� Evaluation of arrays/matrix expressions.

� Floating point notation input support.

� Free of external VBA or COM dependencies: does not use dll.

1.2 Get in ready!

In order to use VBA Expressions in your Microsoft©O�ce®applications,
or other hosts that support automation using the VBA®language, you
need to import four class modules from the VBA®IDE into the tar-
get project where you intend to code. First, download the contents of
the tool's repository from GitHub3 and extract the contents from the
VBA-Expressions.zip �le into a folder of your choice.

To import the modules required by the library, one must access the codeInstall:
editor, VBA®IDE, from the "Developer" tab. If the editor has never
been accessed, it is necessary to enable the function using the O�ce
con�guration4. Once opened, the modules can be imported one by one
from the ./src folder in the directory where previously compressed �les
were extracted using the File->Import File... option from the IDE.
An alternative is to import using drag and drop functionality from the
folder into the IDE.

The presence of all these �les must be veri�ed in the user's IDE:Library members:

1. VBAexpressions.cls: the library's core class module. From this
class, objects with all the functionality provided by the library are
built.

2. VBAexpressionsScope.cls: template for sharing variables across
VBAexpressions.cls instances. Its main utility is to allow mul-
tiple instances to share an environment of variables, so it is only

3 https://github.com/ws-garcia/VBA-Expressions/releases/latest
4 https://support.microsoft.com/en-us/o�ce/show-the-developer-tab-e1192344-
5e56-4d45-931b-e5fd9bea2d45

VBA Expressions v3.2.7 Reference Manual 5



necessary to de�ne it once and reuse it through di�erent objects as
many times as required.

3. UDFunctions.cls: an example class module used as a container for
UDF functions. The user can de�ne and use another class module
to host its prede�ned functions, provided that it is properly de-! →
clared and its name exposed using the procedures and mechanisms
provided by the library.

4. VBAcallBack.cls: acts as the link between UDF functions and
VBAexpressions.cls instances. This module exposes the names
of all class modules containing user-de�ned functions.

Starting in version 3.2 the library has an extension for LibreO�ce appli-LibreO�ce install:
cations. To install it, users must download the �le VBAExpression.oxt

from the GitHub repository and load the library from the dialog box
opened by the options tools→extensions. From there it is possible to
locate the downloaded �le and proceed with the extension installation.

!
Attention

The extension only works on LibreO�ce versions
7.5 or later.

@

LibreO�ce users can keep the extension up to date
using the Extensions manager. If an error is re-
ceived when updating, the update can be down-
loaded by clicking on the author's name from its
description in the extension manager.

Once the installation process is �nished, the user can proceed to write
lines of code that implement the tool, however, it is necessary to know its
basic operation. For this user are invited to explore sections 2 and 2.2.2.

2 Key Essentials

An expression is a combination of symbols/characters, evaluating it in-
cludes parsing and subdividing them into the smaller parts of which they
are composed. In an expression we can �nd one or more combinations of
operands, operators, functions and arguments.

2.1 Operators and Symbols

2.1.1 Operators

Operator : character or characters relating one or two operands, this nature
subdivides them into unary and binary respectively. Typically, they
return the result of operating on their operands with a speci�c
function.

The classical operators are those used in elementary arithmetic and al-
gebra, encompassed here as arithmetical and logical operators. There is
another set frequently used in mathematics and computing called rela-
tional operators. The VBA Expressions library supported operators are
listed below

Arithmetical : + - * / \ ^ !

6 v3.2.7



Logical : & (AND), | (OR), || (XOR)

Relational : <, <=, <>, >=, =, >, $ (LIKE)

When evaluating expressions, the functions invoked by the various op-Operators Precedence
erators must be called in a certain order to ensure the correctness of cal-
culations. In this environment, operators are said to have a precedence
that determines their evaluation order.

1. () Grouping : evaluates functions arguments as well.

2. ! - + Unary operators: exponentiation is the only operation that
violates this. Ex.: -2 ^ 2 = -4 | (-2) ^ 2 = 4.

3. ^ Exponentiation: Although Excel and Matlab evaluate nested ex-
ponentiations from left to right, Google, Mathematica©and other
several modern programming languages, such as Perl, Python and
Ruby, evaluate this operation from right to left. VBA Expressions
also evaluates in Python way: a^b^c = a^(b^c).

4. * / \ % Multiplication, division, modulo: from left to right.

5. + - Addition and subtraction: from left to right.

6. < <=(least−or−equal) <>(distint) >=(greatter−or−equal) = > $like Bi-
nary relations

7. ~ Logical negation.

8. & Logical AND.

9. || Logical XOR.

10. | Logical OR.

2.1.2 Symbols

Symbol : special characters that serve a certain purpose in de�ning the syn-
tax of expressions. They are used as control marks by expression
evaluators.

By de�nition, operators are also symbols with the particularity that their
nature is dynamic. Symbols groups, delimits and pass information be-
tween operators in an expression so that functions are performed on their
arguments.

The VBA Expressions library de�nes the following symbols

� Separator : this character acts as identi�er and separates expres-→ Section 2.2

sions elements. The default separator symbol is the semicolon char-
acter (;).

� {} Curly brackets: this symbols identi�es arrays/matrix in the ex-→ Section 8

pressions.

� [] Square brackets: identi�er to tell the parser if a variable overload
is required.

2.2 Syntax And Rules

Before evaluating expressions, all parsers impose a series of rules that
users must follow in order to avoid potential errors. The review of this
syntax is carried out with the implementation of grammars that clearly
de�ne the components accepted by the evaluator.

VBA Expressions v3.2.7 Reference Manual 7



2.2.1 Grammar

The grammar de�ning the expressions supported by the utility is shown
below

Expression : ([{"("}] SubExpr [{Operator [{"("}] SubExpr [{")"}]}] [{")"}]

| {["("] [("{" | "[")] List [{";" List}] [("}" | "]")] [")"]})

SubExpr : Token [{Operator Token}]

Token : [{Unary}] Argument [(Operator | Function)
["("] [{Unary}] [Argument] [")"]]

Argument : (List | Variable | Operand | Literal)

List : ["{"] ["{"] SubExpr [{";"
SubExpr}] ["}"] ["}"]

Unary : "-" | "+" | ~

Literal : (Operand | "'"Alphabet"'")

Operand : ({Digit} [Decimal] [{Digit}] ["E"("-" | "+"){Digit}]
| (True | False))

Variable : Alphabet [{Decimal}] [{(Digit | Alphabet)}]

Alphabet : "A-Z" | "a-z"

Decimal : "." | ","

Digit : "0-9"

Operator : "+" |"-"|"*"|"/"|"\"|"^"|"%"|"!"|"<"|"<="|"<>"|">"

|">="|"="|"$"|"&"| "|" | "||"

Function : "abs" | "sin" | "cos" | "min" |...|[UDF]

Bird Eyes to Grammar The above grammar lays the foundation for
expressions supported by VBA Expressions. From it, one can deduce that
an expression is a set of sub-expressions related by an operator that may
contain parentheses to group sub-expressions together or, alternatively, a
list de�ned as a set of sub-expressions separated by a common character.
From the list grammar derives the syntax for arrays/matrices.

Arrays/matrices syntax:
{List} | {List; List;...} | [List]

In this context, a sub-expression is de�ned as a combination of one or
more operators and tokens. A set of one or two arguments preceded or
not by unary operators a�ected or not by a function de�nes a token,
intermediate level unit of classi�cation. Argument, on their own, can be
a single list, a variable, an operand and quoted string.

By their grammar, the operand may be a combination of digits, which
may include the decimal point and scienti�c notation, whether or not
a�ected by unary operators. Alternatively, it may literally represent
boolean values True or False. Variables are de�ned as a sequence of
alphanumeric symbols which may include the decimal symbol.

Valid expressions by
grammar:

5*avg(2;abs(-3-7*tan(5));9)-12*pi-e+(7/sin(30)-4!)*

min(cos(30);cos(150))

8 v3.2.7



GCD(1280;240;100;30*cos(0);10*

DET({{sin(atn(1)*2);0;0};{0;2;0};{0;0;3}}))

2.2.2 Variables

Variables are commonly used as value carriers between function calls.→ See section 7

Similarly, instead being containers of values, they may contain other sub-
expressions.

According to the established grammar, variable names must meet the
following requirements:

1. Start with a letter

2. End in a letter or digit symbol. x.1, number1, value.a are valid
variable names.

3. The symbol E cannot be used as variable name due it is reserved
for �oating point representation.

Is important to note that a variable named A is distinct from another! →
named a, since names are case-sensitive.

Before evaluating any expressions, the values for variables must be as-
signed. So, if it has been decided to de�ne an expression with multiple
variables in order to simplify its complexity, special care must be taken
in this respect. For example, one of the long functions from 2.2.1 can be
expressed as 5a+b+c*d , where

a=avg(2;abs(-3-7*tan(5));9)

b=-12*pi-e

c=(7/sin(30)-4!)

d=min(cos(30);cos(150))

Special Variables The variables PI and e are special with a self-
de�ned and constant value, so they can be used in expressions without
the need to de�ne their value.

2.5pi+3.5eUsing PI and e:

2.2.3 Functions

Prede�ned, built-in together with the tool, and user-de�ned are the two→ Sections 9, 10

types of functions supported by VBA Expressions. As opposed to vari-
ables, the names given to functions are case-insensitive, so the expressions
Sin(x)+log(4) and SIN(X)+LOG(4) are equivalents.

2.2.4 Matrices and Arrays

As stated earlier in 2.2.1, an expression pointing to an array/matrix must
adhere to the syntax {List} | {List; List;...} | [List]. Roughly
speaking, we can say that an array is de�ned by a speci�c type of list,
these being variables, in the case of arrays/matrices that follow grammar
{List} and {List; List;...}, or sub-expressions, for those lists that
follow grammar part [List]. This last case is the basis for the variable
overloading exposed in section 8.

{{2;1;4};{1;5;-3};{5;-2;3}}Example of matrices/arrays:

VBA Expressions v3.2.7 Reference Manual 9



2.2.5 Lists

Under the grammar proposed in subsection 2.2.1, lists serve multiple
purposes. The �rst of these is a variable that contains a structured set
of values that de�nes the rows of a matrix/array. Lists also acts as sub-
expressions that work together with functions, acting as containers for
arguments.

{sin(30);1;pi} | 0.5;1;3 |Lists examples:

2.3 Core Internals

The traditional way to evaluate mathematical expressions involves the
conversion from in�x (operands separated by an operator) to post-�x.
In this way, the evaluation is performed using stacks, or parsed tree,
which ensure follows operators precedence de�ned in the mathematical
expressions.

VBA Expressions does not translate to post-�x, evaluating directly over
in�x inputs. It is a consensus that the implementation di�culty for in-
�x evaluation techniques is overwhelming, although that, this toll imple-
ments an adequate and relatively e�cient human-like evaluation method-
ology. The utility meets following requirements:

� Receives a text string as input and returns a string result obtained
by executing the operations contained in the expression.

� Variables found in each parsed expression, as well the values relative
to them, are exposed to the user.

� Hard-coded expressions are not required, variable values are as-
signed as text strings.

2.3.1 Parsing Methodology

The technique leverage an parsing process, prior to evaluation, consisting
in creation of an evaluation tree through the following steps:

1. The expression is split into related sub-expressions using operators.

2. Each sub-expression is split into tokens, each of which is de�ned by
1 or 2 arguments related or not by an operator.

3. A token is created and stored for each sub-expression.

4. Each token is segregated into arguments, the lowest level of logic
used, represented by a list, a variable or an operand.

5. Once all tokens are parsed, the evaluation tree is complete.

2.3.2 Evaluation Tree

As an example, �gure 1 shows the sub-expressions into which the expres-
sion (1+(2-5)*3+8/(5+3)^2)/sqrt(4^2+3^2) has been segregated. In
the exempli�ed case, the expression is divided into an evaluation tree of
�ve sub-expressions, entry point for subsequent parsing routines.

Evaluation tree : hierarchical tree structure whose elements are de�ned by the token
trees derived from the parsed expression.

Token tree : hierarchical tree structure whose elements represent the decompo-
sition into arguments of each sub-expression. This structure can be
seen as branch of the evaluation trees.

10 v3.2.7



Figure 1: Segregation of expression into sub-expressions

Figure 2: Tokens evaluation trees

VBA Expressions v3.2.7 Reference Manual 11



Target expression: (1+(2-5)*3+8/(5+3)^2)/sqrt(4^2+3^2)

Eval parentheses: A<-- 4^2+3^2 =25

Eval parentheses: B<-- 5+3 =8

Eval parentheses: C<-- 2-5 =-3

Replacing into: (1+C*3+8/B^2)/sqrt(A)

Precedence eval: D<-- B^2 =64

Precedence eval: E<-- C*3 =-9 |

Replacing into: (1+E+8/D)/sqrt(A)

Precedence eval: F<-- 8/D =0.125

Replacing into: (1+E+F)/sqrt(A)

Precedence eval: G<-- 1+E =-8

Replacing into: (G+F)/sqrt(A)

Precedence eval: H<-- G+F =-7.875

Replacing into: H/sqrt(A)

Eval result: I<-- -7.875/sqrt(25)= -1.575

Figure 3: Human like evaluation example

Figure 2 shows an example of created tokens for some sub-expressions.
Each tree stores information about the number of tokens contained in
the tree. Arguments that reuse previous computations are represented
with the syntax {#}, where the # symbol represents relative position of
the token within a tokens tree or the main evaluation tree.

Evaluating expressions involves tree traversal and arguments operation.
An example of a calculation describing the evaluation methodology used
by VBA Expressions is presented in �gure 3. Because of the systematic
way in which expressions are evaluated with the like-human method, one
would think that evaluation and token trees are not necessary. Indeed,
the method was conceived as a linear process applied sequentially on a
text string. However, the need to evaluate an expression multiple times
makes this idea an ine�cient concept. Trees come, then, to �ll the gap
and provide the ability to de�ne once and execute multiple times.

Another advantage of using trees is that they allow tokens to be classi�ed
into constants and variables. In this way, tokens are traversed only if they
are not constants, saving computation time in subsequent evaluations.

3 Quick Start

In this section, examples are illustrated with lines of code oriented to
con�gure the objects created by instantiate the VBAexpressions.cls

class module. From this point on, the reader must support the reading
with coding and execution of the instructions described in the rest of this
manual.

3.1 The Basis

A code structure as show in the linting 1 will be gradually �lled as the
reader progresses through sections of the manual, any changes to this
code structure will be explicit indicated. In short, the code is explained
as:

1. The line Private Sub VBAexpressionsDemo() tells compiler there
is a procedure (Sub) named VBAexpressionsDemo that only runs in
the desired module or object from host application.

12 v3.2.7



2. Line Dim expr As VBAexpressions instructs compiler to re-Early binding:
serve memory for allocation of a variable named expr of type
VBAexpressions.

3. Set expr = New VBAexpressions will allocates memory and
create an object of type VBAexpressions by instantiate the
VBAexpressions.cls class module. This step is always required! →
when working with VBA Expressions.

4. The With...End With block will expose all methods and properties
from the expr variable by entering a dot . inside it. All code from
this manual will be placed here unless strictly stated otherwise. The
text in line 6, for the linting 1 need to be replaced with given code,
so this line will mark the start of code inserting and the entering
will be placed all below the line 5 and above the line 7.

5. The method Eval will be evaluate de�ned expression, will be dis-
cussed in more details in section 4.

6. The command Debug.Print from line 8 will print to console
the speci�ed elements from this line. In the case shown, the
expression, result, CurrentVarValues properties from the
expr variable, along with speci�ed strings, will be output to con-
sole. These printed results will be persistently cited in subsequent! →
sections of this manual.

7. The line Set expr = Nothing will delete the expr by erasing allo-
cated memory. This lines is of utmost importance for keeping the
system �ne tuning.

8. End Sub indicates procedure ends.

1 Private Sub VBAexpressionsDemo ()

2 Dim expr As VBAexpressions

3

4 Set expr = New VBAexpressions

5 With expr

6 '%YOUR CODE GOES HERE , PLEASE DELETE THIS LINE%

7 .Eval

8 Debug.Print .expression & " = "; _

9 .result; " for "; .CurrentVarValues

10 End With

11 Set expr = Nothing

12 End Sub

Listing 1: Demo testing procedure structure

The best way to become familiar with programming languages and their
syntax is through the classic "Hello World" program, which in our case
will greet us by computing the trigonometric function cos(π)+ sen(π/2).
To achieve this, replace the line 6 from the demo program in linting 1
whit .Create "cos(pi)+sin(pi/2)" , then run the procedure by pressing the
F5 key. This will output

cos(pi)+sin(pi/2) = 0 for pi = 3.14159265358979

The library is evaluating the expression in radians, for evaluation in de-
grees replace line 6 with these two lines shown below. The result will
remain the same after evaluation, except for the printed message which
now indicates that there are no variables or constants used at evaluation
stage.

VBA Expressions v3.2.7 Reference Manual 13



1 .Degrees = True

2 .Create "cos (180)+sin (90)"

In worked examples, the Create method is parsing the given string ex-
pression and constructing the evaluation tree, more in deep in section
4.

3.2 Expressions with Variables

On most occasions where an expression evaluator is required, the use of
variables is necessary to avoid repetitive creation and parsing processes.
Replace line 6 from linting 1 with

1 .Create "Sqrt(x-Ln(2))"

2 .Eval "x=0.8"

Now an expression with a variable named x is de�ned and its value is
passed with the .Eval "x=0.8" instruction. A�ter hit F5 the output is

Sqrt(x-Ln(2)) = 0.326883495209004 for x = 0.8

You can create multi-variable expressions. An example is the formulation
to compute the displacement of a projectile, at time t, �red at initial speed
v0. The formulation is as follows

s = v0 · t+
1

2
a · t2

Using VBA Expressions you can solve this problem with the follow lines
of code

1 .Create "v0*t + a*t^2/2"

2 .Eval "v0=5; a= -9.81; t=3"

Note that all variables assignment is separated with semicolons.! →
The given code will compute projectile displacement when elapsed 3 sec-
onds.

v0*t + a*t^2/2 = -29.145 for v0 = 5; t = 3; a = -9.81

3.3 Evaluating into Loops

Let us now study the case where a snapshot of the projectile's displace-
ment needs to be calculated from time 0 (when it was �red) until 3 seconds
have elapsed, with a di�erence between readings of 0.5 seconds. This can
be modeled by restructuring the With...End With block from linting 1.
The complete code for this example is shown in listing 2.

1 Private Sub ProjectileDisplacement ()

2 Dim expr As VBAexpressions

3 Dim i As Double

4

5 Set expr = New VBAexpressions

6 With expr

7 .Create "v0*t + a*t^2/2"

8 For i = 0 To 3 Step 0.5

9 .Eval "v0=5; a= -9.81; t=" & CStr(i)

14 v3.2.7



10 Debug.Print .expression & " = "; _

11 Round(CDbl(. result), 3); _

12 " for "; .CurrentVarValues

13 Next i

14 End With

15 Set expr = Nothing

16 End Sub

Listing 2: Projectile procedure listing

As can be seen, new code elements have been added. The For...Next
block increments the variable i by 0.5 units at each iteration, while the
Round(CDbl(.result), 3) command rounds our calculations to 3 deci-
mal places. Here is the output by executing the code from listing 2

v0*t + a*t^2/2 = 0 for v0 = 5; t = 0; a = -9.81

v0*t + a*t^2/2 = 1.274 for v0 = 5; t = 0.5; a = -9.81

v0*t + a*t^2/2 = 0.095 for v0 = 5; t = 1; a = -9.81

v0*t + a*t^2/2 = -3.536 for v0 = 5; t = 1.5; a = -9.81

v0*t + a*t^2/2 = -9.62 for v0 = 5; t = 2; a = -9.81

v0*t + a*t^2/2 = -18.156 for v0 = 5; t = 2.5; a = -9.81

v0*t + a*t^2/2 = -29.145 for v0 = 5; t = 3; a = -9.81

3.4 Using Binary Relations

A clever way to use expressions is through binary relationships between
elements. For example, we can de�ne piecewise functions to be evaluated
in a single instruction, by inserting lines of code, starting from line 6 of
linting 1, like the ones shown below

1 .Create "(x<=0)* x^2 + (x>0 & x<=1)* Ln(x+1) + (x>1)* Sqrt(x-

Ln(2))"

2 .Eval "x=6"

(x<=0)* x^2 + (x>0 & x<=1)* Ln(x+1) + (x>1)*

Sqrt(x-Ln(2)) = 2.30366074313039 for x = 6

3.5 Working with Strings

So far we have exempli�ed the computation of numerical values using
VBA Expressions. We can also evaluate expressions having literal string
variables, as we will see in this section.

The grammar stated in section 2.2.1 de�nes a Literal component. From
this, a literal string is a sequence of alphabet symbols enclosed by single
quotes. Recapitulating the structure of linting 1, by replacing line 6 with
.Create "MID('Demo String';6)" will output

MID('Demo String';6) = 'String' for

User must explore combine this with other capabilities exposed into sev-→ More useful functions on
section 10 eral creative ways. For example, checking equality of strings with binary

relations, section 3.4.

1 .Create "IFF(x='VBA ';'VBA Langage ';'Not Listed ')"

2 .Eval "x='C'"

VBA Expressions v3.2.7 Reference Manual 15



IFF(x='VBA';'VBA Langage';'Not Listed') =

'Not Listed' for x = 'C'

4 Library Brief Structure

In this section the VBAexpressions.cls and VBAexpressionsScope.cls

modules, being the most relevant components of the library, will be dis-
cussed. In all members exposed in this section, the expression variable
is an object created by instantiate the corresponding class.

4.1 VBAexpressions.cls

4.1.1 Properties

Constants : Gets the constants collection. By default this is pre-populated with
PI and e.
Property Type: Object:Collection.

Accesor Syntax
Get expression.Constants

CurrentVariables : Gets a string with all parsed and de�ned variables.
Property Type: String.

Accesor Syntax
Get expression.CurrentVariables

CurrentVarValues : Gets a string with the variables values to be used in evaluations.
Property Type: String.

Accesor Syntax
Get expression.CurrentVarValues

DecimalSymbol : Gets or sets the decimal symbol.
Property Type: String.

Accesor Syntax
Get expression.DecimalSymbol

Let expression.DecimalSymbol = value

Remarks: The allowed options are the dot or comma, if another
character is speci�ed dot will be used which is the default setting.
Speci�ed decimal symbol must match the "Region Number For-! →
mat"5. This is because, internally, the evaluator use VBA®functions
to convert strings into they numeric representation. Thus, if the
con�gurations doesn't match, users will get unexpected results
after evaluate expressions.

5 https://support.microsoft.com/en-au/o�ce/change-the-windows-regional-settings-
to-modify-the-appearance-of-some-data-types-in-access-databases-edf41006-f6e2-
4360-bc1b-30e9e8a54989

16 v3.2.7



Degrees : Gets or sets the behavior for trigonometric functions computations.
If True, the program will calculate angles in degrees.
Property Type: Boolean.

Accesor Syntax
Get expression.Degrees

Let expression.Degrees = value

ErrorDesc : Returns the last error message generated.
Property Type: String.

Accesor Syntax
Get expression.ErrorDesc

ErrorType : Returns the type of last generated error message.
Property Type: Enum:ExpressionErrors. See page 23.

Accesor Syntax
Get expression.ErrorType

EvalScope : Sets/gets the scope for current expression.
Property Type: Object:VBAexpressionsScope.

Accesor Syntax
Get expression.EvalScope

Let Set expression.EvalScope = value

Remarks: users can de�ne an scope and share it across multiple
objects. This is illustrated in the example, for more information
about the VBAexpressionsScope class, refer to section 4.2.

1 Private Sub ScopeExample ()

2 Dim expr As VBAexpressions

3 Dim vScope As VBAexpressionsScope

4

5 Set expr = New VBAexpressions

6 Set vScope = New VBAexpressionsScope

7 With expr

8 vScope.VarValue("x") = "-7"

9 Debug.Print "Current variables: "; vScope.

CurrentVarValues

10

11 .Create "POW(x;3)"

12 Set .EvalScope = .EvalScope.CopyScope(vScope)

13 Debug.Print "x^3 = "; .Eval

14 End With

15 End Sub

Current variables: x = -7

x^3 = -343

expression : Returns the expression to be evaluated.
Property Type: String.

VBA Expressions v3.2.7 Reference Manual 17



Accesor Syntax
Get expression.expression

EnforceBoolean : De�nes the behavior of evaluator when facing an error.
Property Type: Boolean.

Accesor Syntax
Get expression.EnforceBoolean

Let expression.EnforceBoolean = value

Remarks: When this property is set to True a False value is re-
turned instead of strings �ags on evaluation errors. This can be
useful when evaluating piece-wise functions.

1 Private Sub EvalBehavior ()

2 Dim expr As VBAexpressions

3

4 Set expr = New VBAexpressions

5 With expr

6 .Create "SQRT(x)"

7 Debug.Print "Eval result: "; .Eval("x=-7")

8 .EnforceBoolean = True

9 Debug.Print "Eval result , enforced: "; .Eval

10 End With

11 End Sub

Eval result: #VALUE!

Eval result, enforced: False

FormatResult : Indicates if the result output will be converted to standard VBA®string.
Property Type: Boolean.

Accesor Syntax
Get expression.FormatResult

Let expression.FormatResult = value

Remarks: When this property is set to Falsedefault, the result
of string operations will be enclosed in single quotes. Change this
con�guration if comparisons with a regular VBA®formatted string
is required after computations.

1 Private Sub FormatingOutput ()

2 Dim expr As VBAexpressions

3

4 Set expr = New VBAexpressions

5 With expr

6 .Create "MID(x;8)"

7 Debug.Print "Eval result: "; .Eval("x='Asia &

Oceania '")

8 .FormatResult = True

9 Debug.Print "Formatted result: "; .Eval

10 End With

11 End Sub

Eval result: 'Oceania'

Formatted result: Oceania

18 v3.2.7



GallopingMode : Turns on or o� the evaluation in galloping mode.
Property Type: Boolean.

Accesor Syntax
Get expression.GallopingMode

Let expression.GallopingMode = value

Remarks: When set to True, the evaluator will discriminate,gallop
over constant tokens, from variable tokens. This can reduce com-
putation time when evaluating expression multiple times.
This is an experimental utility, a pre-populated can be a better! →
approach to improve this on.

ImplicitVarValue : Sets the value for a variable in terms of previously de�ned variables.
Property Type: None.

Accesor Syntax
Let expression.ImplicitVarValue(aVarName) = value

Argument Type
aVarName String

Remarks: tif aVarName is numeric, the argument is treated as an
index. The value can be an expression to be evaluated prior value
assignment. Is required that all variables not present in the main
expression but contained in the value string to be assigned.

1 Private Sub ImplicitVariables ()

2 Dim expr As VBAexpressions

3

4 Set expr = New VBAexpressions

5 With expr

6 .Create "ABS(c)"

7 .VarValue("a") = -3

8 .VarValue("b") = 9

9 .ImplicitVarValue("c") = "a*b"

10 Debug.Print .expression; " = "; .Eval; " for "; .

CurrentVarValues

11 End With

12 End Sub

ABS(c) = 27 for c = -27; a = -3; b = 9

ReadyToEval : Gets the parsed status of the actual expression.
Property Type: Boolean.

Accesor Syntax
Get expression.ReadyToEval

Remarks: a False value indicates syntax error at parsing stage.

result : Gets the result for latest evaluated expression.
Property Type: String.

VBA Expressions v3.2.7 Reference Manual 19



Accesor Syntax
Get expression.result

Remarks: a returned vbNullString value indicates error at evalu-
ation stage, the sane applies if the returned value keeps the same
after consecutive evaluations where values of the variables involved
in the calculations have been changed beforehand.

SeparatorChar : Gets or sets the character used as separator for functions arguments
and array elements.
Property Type: String.

Accesor Syntax
Get expression.SeparatorChar

Let expression.SeparatorChar = value

Remarks: by default the char used is the semicolon ";".
This parameter cannot be set to a reserved operator, nor can it! →
be an alphanumeric character or any other special symbol used
internally by the evaluator to de�ne functions or variables. It is
not recommended to change this parameter.

VarValue : Gets or sets the current value from/to the given variable.
Property Type: String.

Accesor Syntax
Get expression.VarValue(aVarName)

Let expression.VarValue(aVarName) = value

Argument Type
aVarName String

Remarks: if aVarName is numeric, the argument is treated as an in-
dex. The value for a variable not present in the main expression can
also be de�ned. For code details, refer to the ImplicitVarValue

code example in page 19.

VarValue2 : Gets or sets the current value for the given variable.
Property Type: String.

Accesor Syntax
Get expression.VarValue2(aVarKey, treatAsArray)

Let expression.VarValue2(aVarKey, treatAsArray) = value

Argument Type
aVarKey Variant

treatAsArray Boolean

Remarks: if aVarKey is numeric, the argument is treated as an
index. This property use Variant data type to handle arrays. The
string array representation is retrieved as usual if the parameter

20 v3.2.7



treatAsArray is set to False, an array is returned otherwise.
This property is intended to achieve variable overloading, its use is! →
recommended only for most experienced users.

1 Private Sub VarValue2 ()

2 Dim expr As VBAexpressions

3 Dim arr As Variant

4

5 Set expr = New VBAexpressions

6 With expr

7 .VarValue2("a", True) = "{{2;5};{ -4;3};{8;1}}"

8 arr = .VarValue2("a", True)

9 Debug.Print "Rows in returned array: "; _

10 UBound(arr) - LBound(arr) + 1

11 Debug.Print "Columns in returned array: "; _

12 UBound(arr , 2) - LBound(arr , 2) + 1

13 Debug.Print .VarValue2("a", False)

14 End With

15 End Sub

Rows in returned array: 3

Columns in returned array: 2

{{2;5};{-4;3};{8;1}}

4.1.2 Methods

AddConstant : Appends a constant to the current constants list.
Method Type: Sub

Returns Type: None.

Argument Type
aValue String

aKey String

Remarks: this method is used to assign the value to variables that
remain unchanged between successive evaluations.

ArrayFromString : Turns a like Java array string ({{*};{*}}) into a 1D or 2D
VBA®array with n rows and m columns.
Method Type: Function

Returns Type: Array:String.

Argument Type
strArray String

Remarks: the method will only check for balanced curly-brackets,
users must be in charge of providing syntax error free inputs.

ArrayFromString2 : Turns a like Java array string ({{*};{*}}) into VBA®jagged array
with n rows.
Method Type: Function

Returns Type: Array:Variant.

Argument Type
strArray String

VBA Expressions v3.2.7 Reference Manual 21



Remarks: this method behave like the ArrayFromString one, being
only di�erent in they outputs.

ArrayToString : Turns a m x n array into a like Java array string ({{*};{*}}).
Method Type: Function

Returns Type: String.

Argument Type
InputArray Variant

Remarks: this method acts as the reverse of ArrayFromString and
ArrayFromString2 methods. The InputArray argument can be a
1D, 2D or jagged array.

Create : Parses an expression and stores its evaluation tree.
Method Type: Function

Returns Type: Object:VBAexpressions.

Argument Type
aExpression String

[resetScope] Boolean

Remarks: the resetScope option determines if the expression will
be evaluated with a new evaluation/variable scope or the existing
one. See section 4.2 for more details about evaluation scope. The
aExpression parameter must follows the guidelines exposed in sec-
tion 2.

DeclareUDF : Declares new user de�ned function.
Method Type: Sub

Returns Type: None.

Argument Type
UDFname Variant

[UDFlib] String

Remarks: if required, an array of strings with the list of names
can be passed in the UDFname argument to declare most than
one UDF. The default value for the UDFlib optional parameter
is "UserDefFunctions", indicating the name of the class module
containing the functions to be declared.
Users can register custom modules to expose and use their func-
tions through the VBAcallBack.cls module. All UDFs must have
a single Variant argument that will receive an one-dimensional
array of strings (one element for each function argument). Here
is the code that shows how the library is declaring its two default
UDFs: GDC and Concat.

1 Sub AddingNewFunctions ()

2 Dim Evaluator As VBAexpressions

3 Dim UDFnames () As Variant

4

5 Set Evaluator = New VBAexpressions

6 UDFnames () = Array("GCD", "Concat")

7 With Evaluator

8 .DeclareUDF UDFnames , "UserDefFunctions"

22 v3.2.7



9 End With

10 End Sub

Additionally, after declaring UDFs, user must append a line of code
to VBAcallBack.cls class module in order to expose new declared
UDFs.

1 Public UserDefFunctions As New UDFunctions

Eval : Evaluates the current expression by evaluation tree processing.
Method Type: Function

Returns Type: String.

Argument Type
ValuesToEvalWith Variant

Remarks: the ValuesToEvalWith argument is used to assign vari-
ables values not de�ned through the VarValue property, see 20.

IsConstant : Determines if a variable is a constant.
Method Type: Function

Returns Type: Boolean.

Argument Type
aVarName String

Remarks: a variable is constant if de�ned using the AddConstant

method, see page 21.

ToDblArray : Changes data type of elements from the given array to Double data
type.
Method Type: Function

Returns Type: Array:Double.

Argument Type
aArray Variant

Remarks: jagged arrays aren't admitted by the method.

4.1.3 Enumerations

DecimalSymbol : Options for symbol used as a decimal character in parsing and eval-
uation stages. Also see DecimalSymbol property at section 4.1.1,
page 16, for details on how to use it.

Name Value
dsDot 0

dsComma 1

ExpressionErrors : List of errors types returned by the library. Also see ErrorType

property at section 4.1.1, page 17, for more details.

OperatorToken : The table 1 holds a list of library supported operators. Also see
section 2.1, page 6, for more details.

VBA Expressions v3.2.7 Reference Manual 23



Name Value
errNone 0

errUnbalancedBrackets 1

errSyntaxError 2

errEvalError 3

errVariableNotAssigned 4

errMissingArgsOrTooManyArgs 5

Name Value
otNull 0

otSum 1

otDiff 2

otMultiplication 3

otDivision 4

otIntDiv 5

otPower 6

otMod 7

otEqual 101

otNotEqual 102

otGreaterThan 103

otLessThan 104

otGreaterThanOrEqual 105

otLessThanOrEqual 106

otLike 107

otLogicalAND 201

otLogicalOR 202

otLogicalXOR 203

Table 1 Supported operators

4.2 VBAexpressionsScope.cls

4.2.1 Properties

In this section only the properties not covered in later sections will be dis-
cussed, on the understanding that the properties related to the treatment
and assignment of values to variables, covered in section 4.1.1, are merely
calls to properties of the VBAexpressionsScope.cls class module. Refer
to pages 16 and 20 for further information.

AssignedArray : Returns True if the given variable has an array assigned.
Property Type: Boolean.

Accesor Syntax
Get expression.AssignedArray

Remarks: use this property to determine whether the value of a
given variable has been assigned with the VarValue2 property, see
section 4.1.1 on page 20.

De�nedScope : Returns True if all stored variables have an assigned value or when
there are no stored variables, False when the value of any variable
is missing.
Property Type: Boolean.

24 v3.2.7



Accesor Syntax
Get expression.DefinedScope

VariablesCount : Returns the count of stored variables.
Property Type: Long.

Accesor Syntax
Get expression.VariablesCount

4.2.2 Methods

As stated in section 4.2.1, only not covered methods will be discussed.

AddConstant : Adds a variable with constant value to the current evaluation scope.
Method Type: Sub

Returns Type: None.

Argument Type
aValue String

aKey String

Remarks: de�ning constant is useful when a expression has vari-
ables that remains unchanged between executions. A call to the
FillPredefinedVars method can be required.

ConstantsInit : Erases constants de�ned in the current scope.
Method Type: Sub

Returns Type: None.

Argument Type
None None

Remarks: after initialization, only the values of pi and e are re-
tained as constants.

CopyScope : Returns a copy of the given scope.
Method Type: Function

Returns Type: Object:VBAexpressionsScope.

Argument Type
sourceScope Object:VBAexpressionsScope

FillPrede�nedVars : Assigns values to the variables contained in the parsed expression
that have been previously de�ned as constants.
Method Type: Sub

Returns Type: None.

Argument Type
None None

VBA Expressions v3.2.7 Reference Manual 25



IsConstant : Determines whether a given variable was de�ned as a constant.
Method Type: Function

Returns Type: Boolean.

Argument Type
aVarName String

VariablesInit : Erases all variables de�ned in the current scope.
Method Type: Sub

Returns Type: None.

Argument Type
None None

5 Notes for LibreO�ce Users

LibreO�ce (LO BASIC) has some important limitations in the use and
implementation of class modules. This particularity required the adap-
tation of several elements to make them properly working.

@

Note

The library is brought to users with 57 test methods
(434 LoC) to ensure that most of the functions are
not broken, but there is no guarantee that it is free
of bugs or crashes when run in LO BASIC. Visit the
extension release available at o�cial websitea.

a https://extensions.libreo�ce.org/
en/extensions/show/70059

5.1 Variables Treatment

One of the changes made was the replacement by methods and functions
of those properties with more than one parameters, because the second
parameter was simply ignored by the language. This change particu-
larly a�ects the way in which variable values are accessed and assigned.
For illustration, the ImplicitVariables procedure, refer to page 19, is
written in listing 3 for LibreO�ce use.

1 Private Sub ImplicitVariables_LOBasic ()

2 Dim expr As Object

3

4 Set expr = New VBAexpressions

5 With expr

6 .Create "GET('c'; a*b)"

7 .LetVarValue("a" ,-3)

8 .LetVarValue("b", 9): .Eval

9 .Create "ABS(c)", False 'Keep scope

10 MsgBox .expression &" = " & .Eval &" for " &.

CurrentVarValues

11 End With

12 End Sub

Listing 3: Working with variables in LO Basic

26 v3.2.7



In listing 3, the �rst di�erence is that you start by de�ning the implicit
variable and assigning values to the variables on which it depends using
the LetVarValue method. Once all the variables are de�ned, you create
an expression that uses them without reinitialize their scope by calling
the Create method with the resetScope option set to False, refer to
section 4.1.2 on page 22 for more details.

@

Note

The ImplicitVarValue property is not available in
LO Basic due to unwanted objects reset issue. The
work around here is using the GET function instead
for indirect variable assignments.

5.2 Recursion

Other peculiarity, no less important, is the fact that recursive procedure
calls tend to cause problems in LO Basic when invoked from class mod-
ules. This led to the implementation of non recursive algorithm for the
GCD UDF function. Here the root of problems is the exception triggered
when trying to increment a static variable.

!

Warning

The extension's behavior has not been tested in oth-
ers recursive UDFs. The use of this kind of proce-
dures is at the user's discretion.

5.3 Library Loading

Another draw back is the requirement for library loading before the �rst
use. Users must invoke a load procedure on an event6, for �les saved on
trusted locations7, or in a main procedure before triggering evaluation
methods. The function described in listing 4 has been provided for these
purposes.

1 Sub LoadVBAexpressions

2 GlobalScope.BasicLibraries.loadLibrary("VBAExpressionsLib

")

3 End Sub

Listing 4: Loading VBA Expressions library in LO Basic

6 Main Use Cases

The basic behavior of string expression evaluators allows them to be used
in a variety of ways. The main function of these is to act as back-end
programs that receive an input, either from an interface or through direct
interaction with the host application, and return a result communicated
to the procedure from which they are invoked. This is illustrated in �gure
4.

TheVBA Expressions evaluator receives and returns text strings (String I/O),
so it is sometimes necessary to implement specialized interfaces.

6 https://help.libreo�ce.org/latest/ro/text/sbasic/shared/01040000.html
7 https://help.libreo�ce.org/latest/en-GB/text/shared/optionen
/macrosecurity_ts.html?&DbPAR=IMPRESS&System=UNIX

VBA Expressions v3.2.7 Reference Manual 27



Figure 4: Expressions evaluator �ow chart

6.1 Provide Evaluation Capability to other Applications

Excel has an Evaluate() function, which allows arbitrary strings of text
to be evaluated. Calc, on the other hand, lacks this functionality. In the
same vein, the writing applications Word or Writer are not well known
for their computational capabilities. These are areas where an expression
evaluator can enrich the user experience.

A typical example of this case is when an user input is requested through
an input-box, a label or some other element and the numerical value
of the input is calculated and the result is returned to a predetermined
object.

6.2 Data Management

Segregating records, determining those that do or don't meet certain con-
ditions speci�ed for the �elds that compose them, is another possible use
of an expression evaluator. A good example of this particular case is
the �ltering function implemented by CSV Interface8. This implemen-
tation uses an interface to interpret user input, which is responsible for
generating a string input compatible with VBA Expressions syntax. The
interface then calls the evaluator and receives a string with the evaluation
result.

This technique results in a very powerful �ltering engine, capable of sup-
porting virtually any �lter parameters that can include functions and a
wide variety of operators.

6.3 Linear Algebra

Since VBA Expressions supports a variety of input types, there are mul-
tiple �elds within algebra in which it can be used.

Graphing a function is nothing more than determining the values of theFunctions Plotting:
ordinate when a given value is assigned to the abscissa. This can be
modeled within a loop as illustrated in listing 5.

1 '..... Code here

2 For j = m To n

3 dataPair (0) = j 'Abscissa

4 dataPair (1) = CDbl(.Eval("x=" & j)) 'Ordinate

5 Next j

6 '..... Code here

Listing 5: Function plotting pseudocode

8 https://ws-garcia.github.io/VBA-CSV-interface/api/methods/�lter.html

28 v3.2.7



Solving a system of linear equations is a basic task in algebra studies.Systems of Linear
Equations: Listing 6 shows the code to solve the following system


x +4z = 2

x+ y + 6z = 3

−3x −10z = 4

1 Private Sub LinearSystemSolve ()

2 Dim Evaluator As VBAexpressions

3

4 Set Evaluator = New VBAexpressions

5 With Evaluator

6 .Create "LUSOLVE(ARRAY(a;b;c);{{'x';'y';'z

'}};{{2;3;4}}; True)"

7 Debug.Print .Eval("a={1;0;4};b={1;1;6};c={ -3;0; -10}")

8 End With

9 End Sub

Listing 6: Solving linear system

Executing gives

x = -18; y = -9; z = 5

@

Note

For array output, replace the True parameter with
False in .Create "LUSOLVE(...;True)". The
output then is {{-18; -9; 5}}. There are other
functions that allow users to solve systems of linear
equations in VBA Expressions, see section 10, on
page 37, for more information.

!
Warning

LibreO�ce users should be aware that Debug.Print
functionality is not available in LO Basic.

Solving systems of over-determined equations involves �nding the com-Overdeterminated Systems:
bination of variables that minimize the residuals. This is achieved by
means of QR decomposition. Listing 7 shows how to solve the system

 2 4
−5 1
3 −8

 10
−9.5
12

 =

[
x1

x2

]
(1)

1 Private Sub LSQRsolve ()

2 Dim Evaluator As VBAexpressions

3

4 Set Evaluator = New VBAexpressions

5 With Evaluator

6 .Create "MROUND(LSQRSOLVE(A;b);4)"

7 Debug.Print .Eval("A={{2;4};{ -5;1};{3; -8}};b

={{10; -9.5;12}}")

8 End With

VBA Expressions v3.2.7 Reference Manual 29



9 End Sub

Listing 7: Solving over-determined system

Executing gives

{{2.6576};{-0.1196}}

The library can be used to perform operations involving matrices: addi-Matrices:
tion, di�erence, multiplication (matrix by matrix, matrix by vector, ma-
trix by scalar). This makes it ideal for coding solutions for high school
students. Details of the use of these types of functions are described in
section 8, page 34.

6.4 Statistics and Data Analysis

Although the library has a moderate amount of relevant statistical func-
tions, the most outstanding functionality is the analysis of regressions
over a set of observations.

Regressions are used in data analysis for explain variables relationship.Regressions:
This is a basic tool is statistic. In VBA Expressions users can perform lin-
ear, polynomial, exponential, logarithmic, power and multi-variate linear
regressions. The program can compute the best �tting curve to explain
the observations through given predictors. The listing 8 shows how to
compute multi-variate linear regression over a set of observations includ-
ing predictors interactions.

1 Private Sub MultiVariateReg ()

2 Dim Evaluator As VBAexpressions

3

4 Set Evaluator = New VBAexpressions

5 With Evaluator

6 .Create "MLR(X;Y;True;'Height:Width ';'Height;Width ')"

7 Debug.Print .Eval("X

={{1;1};{2;2};{3;3};{4;4};{5;1};{6;2};{7;3};{8;4}};Y

={{2;4.1;5.8;7.8;5.5;5.2;8.2;11.1}}")

8 End With

9 End Sub

Listing 8: Multiple linear regression

{{0.8542 + 0.4458*Height + 0.945*Width +

0.0792*Height*Width};{0.947;0.9072}}

This is a function with fairly �exible arguments that allow computa-
tions to be performed in a variety of ways. For example, to obtain only
one array with the coe�cients of independent variables/predictors only
requires changing the value speci�ed in True to False. The parameter
'Height;Width' de�nes predictors and 'Height:Width' its interactions.
For non named predictors, nominal I/O syntax, like 'X1:X2' is required
to de�ne predictors interactions.

@

Note

VBA Expressions v3.2.7 doesn't performs ANOVA
analysis, this is a feature that is currently under re-
view for implementation. More details on this func-
tion usage are available on section 10.

30 v3.2.7



The trend line is a functionality provided by spreadsheet programs suchTrend Lines:
as Excel or Calc. This feature is not integrated in other applications
within their respective o�ce packages. The listing 9 shows how to com-
pute a 4th degree polynomial trend line

1 Private Sub TrendLine ()

2 Dim Evaluator As VBAexpressions

3

4 Set Evaluator = New VBAexpressions

5 With Evaluator

6 .Create "FIT(A;1;4)"

7 Debug.Print .Eval("A

={{ -2;40};{ -1;50};{0;62};{1;58};{2;60}}")

8 End With

9 End Sub

Listing 9: Computing polynomial trend line

The output after executing is an array with the form \{{POLYNOMIAL};{R-squared

VALUE}} as shown

{{62 + 3.6667*x -9.6667*x^2 + 0.3333*x^3 +

1.6667*x^4};{1}}

6.5 Engineering and Physics

In the �eld of engineering and physics, it is often necessary to zeroingZeroing Functions:
functions in order to calculate their critical points. For example, recall
the projectile's displacement problem in listing 2, page 14. The output
tell us that in some point, in range 0 ≤ t ≤ 1.5, the projectile is at the
same height at which it was �red. For determine this precise instant, a
program like listing 10 can be used.

1 Private Sub ProjectileDisplacement2 ()

2 Dim expr As VBAexpressions

3

4 Set expr = New VBAexpressions

5 With expr

6 .Create "FZERO('5*t -9.81*t^2/2 ';0;1.5)"

7 Debug.Print .Eval

8 End With

9 Set expr = Nothing

10 End Sub

Listing 10: Zeroing projectile displacement function

The result printed is 't = 1.01936799184199'.

@

Note

Use FZERO('5*t -9.81*t^2/2';0;1.5;False) to
get this non text formatted numerical result:
1.01936799184199.

!
Warning

Zeroing a function with more than one variable will
result in an evaluation error.

VBA Expressions v3.2.7 Reference Manual 31



7 Variables De�nition and Assignment

As discussed in section 3.2, an expression may contain variables. These,
themselves, may or may not be related to each other, belong or not to
the same object. The scope of variables is derived from this conjecture.

7.1 Scope of Variables

In VBA Expressions, the scope of a variable is de�ned by the evalua-
tion scope of a given object. This scope is a property de�ned within all→ Section 4.1.1, page 17

VBAexpressions objects. In this context, variables may or not share a
certain scope de�ned through the VBAexpressionsScope.cls module.

This feature makes possible to assign the same set of variables to di�erent
objects for evaluating di�erent expressions. This is illustrated in listing
11.

1 Private Sub ManagingScopes ()

2 Dim scope As VBAexpressionsScope

3 Dim evaluator1 As VBAexpressions

4 Dim evaluator2 As VBAexpressions

5

6 Set scope = New VBAexpressionsScope

7 Set evaluator1 = New VBAexpressions

8 Set evaluator2 = New VBAexpressions

9

10 ' Scope definition

11 With scope

12 .VarValue("x") = 3

13 .VarValue("y") = -2

14 .VarValue("z") = 7

15 End With

16 ' Setting evaluator 1

17 With evaluator1

18 .Create "x^2+y-2z"

19 Set .EvalScope = scope

20 Debug.Print .expression & " = " & .Eval

21 End With

22 ' Setting evaluator 2

23 With evaluator2

24 .Create "x+y+z"

25 Set .EvalScope = scope

26 Debug.Print .expression & " = " & .Eval

27 End With

28 Set evaluator1 = Nothing

29 Set evaluator2 = Nothing

30 End Sub

Listing 11: Managing scopes

Executing the listing 11 results in this output

x^2+y-2z = -7

x+y+z = 8

!

Warning

This procedure does NOT work in LibreO�ce.
Users should handle the scope using the GET func-
tion as shown in listing 12. This is because, for some
reason, LO Basic fails to handle objects passed as
references to VBA Expressions methods.

32 v3.2.7



1 Private Sub ManagingScopes ()

2 Dim evaluator As Object

3

4 Set evaluator = New VBAexpressions

5 With evaluator

6 ' Setting initials values

7 .create "GET('x';3); GET('y';-2); GET('z';7)": .Eval

8

9 ' Create expression without restoring scope

10 .Create "x^2+y-2z",False

11 .Eval 'Evaluate

12 MsgBox .expression & " = " & .Result

13

14 ' Create another expression , same scope

15 .Create "x+y+z",False: .Eval 'Evaluate

16 MsgBox .expression & " = " & .Result

17 End With

18 Set evaluator = Nothing

19 End Sub

Listing 12: Managing scopes in LibreO�ce

7.2 Accessing Variables

As seen in previous examples, it is possible to assign variables values
before and after creating an expression to be evaluated. Early assignment
requires variables to be identi�ed by name, while late assignment allows
variables to be identi�ed by their position number within the expression.

@

Note

Variables are stored as they appear in the expres-
sion, so the �rst variable, from left to right, has the
0 index. This is demonstrated in listing 13.

1 Private Sub AccessingVariables ()

2 Dim evaluator As VBAexpressions

3 Dim arrVarNames () As String

4 Dim i As Integer

5

6 Set evaluator = New VBAexpressions

7 With evaluator

8 .Create "x^2+y-2z"

9 'Accesing by index

10 For i = 0 To .EvalScope.VariablesCount

11 .VarValue(CStr(i)) = i

12 Next i

13 Debug.Print .CurrentVarValues

14 'Accesing by names

15 arrVarNames = Split(. CurrentVariables , "; ")

16 For i = LBound(arrVarNames) To UBound(arrVarNames)

17 .VarValue(arrVarNames(i)) = "'" & i & "'"

18 Next i

19 Debug.Print .CurrentVarValues

20 End With

21 Set evaluator = Nothing

22 End Sub

Listing 13: Accessing to expressions variables

The output by executing listing 13 is as follows

VBA Expressions v3.2.7 Reference Manual 33



x = 0; y = 1; z = 2

x = '0'; y = '1'; z = '2'

7.3 Special Uses

Using the GET function is an example of a special evaluation scope use.
This mechanism implements a bypass of the evaluator to support a prior
evaluation of expressions whose implicit variables are de�ned as the ex-
pression is evaluated. In other words, the evaluator does NOT know the
number of variables within the expression and invokes routines that allow
it to declare and access them at run time.

@
This GET function is used in listing 12 to recreate a
multi-use scoping behavior and can be useful when
evaluating unusual expressions.

8 Working with Matrices/Arrays

Matrices are another fundamental part of algebra, manipulating them is,
therefore, a basic task of any system that tries to provide assistance in
the �eld of mathematics.

8.1 Some Key Notes

As discussed in section 2.2.4, an array is de�ned as a list of lists. VBA→ See page 9

Expressions does not support the Array data type, but o�ers specialized
functions to convert them to a compatible input type (refer to pages 21
and 22). This makes assigning values to array variables or dump calcu-
lations to them extremely simple.

@

The syntax {List[;List]} de�nes an array. In
this case the List parameter is a vector and must
have the syntax {SubExpr[;SubExpr]}. Refer to
section 2.2.1 in page 8.

The listing 14 shows how to calculate the internal rate of return presented
in Microsoft©website9 with out providing any guess. The result is nearly
the same ('-44.35%'), with only rounding di�erence.

1 Private Sub IRRFunctTest ()

2 Dim expr As VBAexpressions

3

4 Set expr = New VBAexpressions

5 With expr

6 .Create "FORMAT(IRR ({{ -70000;12000;15000}}; true);'

Percent ')"

7 Debug.Print .Eval

8 End With

9 Set expr = Nothing

10 End Sub

Listing 14: Calculating internal rate of return

9 https://support.microsoft.com/en-gb/o�ce/irr-function-64925eaa-9988-495b-b290-
3ad0c163c1bc

34 v3.2.7



Array support does not end with just supporting this type of input or
output. The library includes powerful functions to perform calculations
on arrays. Listing 15 contains an example demonstrating that multiplying
a matrix by its inverse results in the identity matrix.

1 Public Sub MatrixMult ()

2 Dim expr As Object

3

4 Set expr = New VBAexpressions

5 With expr

6 'Create a matrix

7 .Create "GET('f ';{{1;0;4};{1;1;6};{ -3;0; -10}})": .

Eval

8 'Compute inverse

9 .Create "GET('g'; INVERSE(f))", False: .Eval

10 'Compute multiplication

11 .Create "MMULT(f;g)", False

12 Debug.Print .Eval

13 End With

14 Set expr = Nothing

15 End Sub

Listing 15: Operations with matrices

8.2 Matrices Overloading

VBA Expressions allows referencing elements of those arrays stored
through the VarValue2 property or by using the GET function. The li-
brary use the variables overloading broad concept to explain this behavior
for dealing with variable, which in this particular case are arrays.

To access the elements of an array, row and column indices must be
provided as required. Listing 16 shows code that accesses the diagonal
elements of the returned matrix/array after executing a series of evalua-
tions.

1 Private Sub MatricesAccess ()

2 Dim expr As Object

3

4 Set expr = New VBAexpressions

5 With expr

6 .Create "GET('A ';{{2;1;3};{3; -2; -1}}); " _

7 & "GET('B ';{{2;3};{1; -5};{ -2;4}})": .Eval

8 .Create "GET('C'; MMULT(A;B))", False: .Eval

9 .Create "ROUND(SUM(SIN(C[0;0]);SIN(C[1;1]));4)",

False: .Eval

10 MsgBox .expression & " | " & _

11 "Sum of sines for diagonal elements on matrix C: " _

12 & .Result & " | " & " for: " & .CurrentVarValues

13 End With

14 Set expr = Nothing

15 End Sub

Listing 16: Accessing to elements in a matrix/array

→ Refer to section 2.2.4 in
page 9

@

The syntax for accessing elements in a matrix/array
requires the use of square-brackets: Arr[row;col].
Trying to access elements with wrong numbers of
indices will result in an error.

VBA Expressions v3.2.7 Reference Manual 35



9 Managing User De�ned Functions

One of the most exciting features o�ered by the library is its ability to
trigger procedures from user-supplied class modules. This is very useful
when having modules with functions that you want to make available for
use in expressions. This set of functions is known as UDF.

!

VBA Expression passes an array of type String as
a single argument when calling a UDF. All UDFs
are subject to this condition, so functions must be
modi�ed to handle their arguments in a single ar-
gument of type Variant.

As mentioned above, UDFs need to be declared and registered. The→ See also section 4.1.2 in
page 22 DeclareUDF method is used to handle user-de�ned functions. The regis-

tration of UDFs must be done manually in the VBAcallBack.cls module.
For illustrative purposes the declaration of the functions contained in a
simple module called clsSimpleMath will be exempli�ed:

1. Create a new class module named clsSimpleMath.cls. For Libre-
O�ce users, add a standard module10 named clsSimpleMath add
put in it the lines shown in listing 17.

2. In clsSimpleMath module add the code shown in listing 18.

3. Go to the VBAcallBack module and register the newly created
clsSimpleMath module by adding to it the line of code shown in
listing 19.

4. Once you have completed these steps, in the module of your choice,
add the code shown in listing 20. It declares and uses the registered
UDF.

!

Instancing of clsSimpleMath class module must be
of type PublicNotCreatablea.

a https://learn.microsoft.com/en-us/previous-
versions/o�ce/troubleshoot/o�ce-developer/set-up-
vb-project-using-class

1 Option Explicit

2 Option Compatible

3 Option VBASupport 1

4 Option ClassModule

Listing 17: Heading for clsSimpleMath class module

1 Option Explicit

2 Public Function SimpleProduct(ByRef aValues As Variant) As

Double

3 Dim firstNumber As Double

4 Dim secondNumber As Double

5

6 firstNumber = CDbl(aValues(LBound(aValues)))

7 secondNumber = CDbl(aValues(UBound(aValues)))

8 SimpleProduct = firstNumber * secondNumber

9 End Function

Listing 18: Simple product listing

10 https://help.libreo�ce.org/latest/en-US/text/sbasic/shared/01030400.html

36 v3.2.7



1 Public SimpleMath As New clsSimpleMath

Listing 19: Registering clsSimpleMath module

1 Private Sub DeclareAndUseUDFs ()

2 Dim expr As Object

3

4 Set expr = New VBAexpressions

5 With expr

6 .DeclareUDF "SimpleProduct", "SimpleMath"

7 .Create "SimpleProduct (3;5)": .Eval

8 MsgBox .Eval

9 End With

10 Set expr = Nothing

11 End Sub

Listing 20: Declaring and use UDFs

!

Given the limitations with LO Basic's class han-
dling, user-de�ned function in listing 18 should
be appended to the provided UDFunctions mod-
ule rather than creating a new one to contain it.
The declaration, in the listing 20, would look like
this .DeclareUDF "SimpleProduct" and no fur-
ther modi�cations are required in the VBAcallBack
module.

10 Library Built-in Functions

This section will list all the functions supported by the library. For func-
tions incorporated natively in VBA®or Excel, their syntax will be noted
along with a reference to their o�cial documentation archive hosted at
https://web.archive.org. All other functions will have their corre-
sponding keynotes and usage examples when the concept is not covered
in earlier sections.

The functions will be grouped into �ve categories, namely: Transcenden-
tal ; Mathematical ; Statistical ; Financial ; Date, Time and String ; Pro-
gramming.

@

Although functions will be described using their def-
inition in capital letters, it should be noted that
function calls are not case sensitive. For example,
COS(x) = Cos(x) = cos(x).

10.1 Transcendental Functions

10.1.1 ABS

Description : Returns the absolute value of a number.

VBA Expressions v3.2.7 Reference Manual 37

https://web.archive.org


Syntax : ABS(number)

Keynotes : Refer to ABS function Microsoft©documentation for more details.

10.1.2 ACOS

Description : Returns, in radians, the arc-cosine of a number.

Syntax : ACOS(number)

Keynotes : Refer to ACOS function Microsoft©documentation for more de-
tails.

10.1.3 ASIN

Description : Returns, in radians, the arc-sine of a number.

Syntax : ASIN(number)

Keynotes : Refer to ASIN function Microsoft©documentation for more details.

10.1.4 ATN

Description : Returns, in radians, the arc-tangent of a number.

Syntax : ATN(number)

Keynotes : Refer to ATAN function Microsoft©documentation for more de-
tails.

10.1.5 AVG

Description : Returns the average of given numbers.

Syntax : AVG(list).

Keynotes : The list argument must be composed entirely by numeric data,
otherwise an error is returned. Refer to section 2.2.5 in page 10 for
more details on list syntax.

38 v3.2.7

https://web.archive.org/web/20230925142049/https://support.microsoft.com/en-us/office/abs-function-3420200f-5628-4e8c-99da-c99d7c87713c
https://web.archive.org/web/20230927051208/https://support.microsoft.com/en-us/office/acos-function-cb73173f-d089-4582-afa1-76e5524b5d5b
https://web.archive.org/web/20230925142519/https://support.microsoft.com/en-us/office/asin-function-81fb95e5-6d6f-48c4-bc45-58f955c6d347
https://web.archive.org/web/20231201031827/https://support.microsoft.com/en-us/office/atan-function-50746fa8-630a-406b-81d0-4a2aed395543


10.1.6 CEIL

Description : Returns the smallest integer greater than or equal to the given
number.

Syntax : CEIL(number).

Keynotes : This function di�ers from the Excel implementation. The concept
used is purely mathematical, so literal integers are returned with
no multiplies or signi�cance. See this publication to known more
about the behavior.

10.1.7 COS

Description : Returns the cosine for a given radian angle.

Syntax : COS(angle)

Keynotes : Refer to COS function Microsoft©documentation for more details.

10.1.8 EXP

Description : Returns e raised to the power of a given number.

Syntax : EXP(number)

Keynotes : Refer to EXP function Microsoft©documentation for more details.

10.1.9 FLOOR

Description : Returns the largest integer less than or equal to the given number.

Syntax : FLOOR(number)

Keynotes : This function di�ers from the Excel implementation. The concept
used is purely mathematical, so literal integers are returned with
no multiplies or signi�cance. See this publication to known more
about the behavior.

10.1.10 LGN

Description : Returns the logarithm of a number to a speci�ed base.

Syntax : LGN(number;base)

Keynotes : Refer to LOG function Microsoft©documentation for more details.

VBA Expressions v3.2.7 Reference Manual 39

https://web.archive.org/web/20211205222437/https://www.allmathwords.org/en/c/ceilingfunction.html
https://web.archive.org/web/20230930174921/https://support.microsoft.com/en-us/office/cos-function-0fb808a5-95d6-4553-8148-22aebdce5f05
https://web.archive.org/web/20240114222400/https://support.microsoft.com/en-us/office/exp-function-c578f034-2c45-4c37-bc8c-329660a63abe
https://web.archive.org/web/20170908104307/http://www.allmathwords.org/en/f/floorfunction.html
https://web.archive.org/web/20230925152907/https://support.microsoft.com/en-us/office/log-function-4e82f196-1ca9-4747-8fb0-6c4a3abb3280


10.1.11 LN

Description : Returns the natural logarithm of a number.

Syntax : LN(number)

Keynotes : Refer to LN function Microsoft©documentation for more details.

10.1.12 LOG

Description : Returns the base-10 logarithm of a number.

Syntax : LOG(number)

Keynotes : Refer to LOG10 function Microsoft©documentation for more de-
tails.

10.1.13 MAX

Description : Returns the maximum value in a list of numbers.

Syntax : MAX(list).

Keynotes : The list argument must be composed entirely by numeric data,
otherwise an error is returned. Refer to section 2.2.5 in page 10 for
more details on list syntax.

10.1.14 MIN

Description : Returns the minimum value in a list of numbers.

Syntax : MIN(list).

Keynotes : The list argument must be composed entirely by numeric data,
otherwise an error is returned. Refer to section 2.2.5 in page 10 for
more details on list syntax.

10.1.15 PERCENT

Description : Returns the result of dividing the number by 100.

Syntax : PERCENT(number).

Keynotes : No format is applied to the output.

40 v3.2.7

https://web.archive.org/web/20230925152917/https://support.microsoft.com/en-us/office/ln-function-81fe1ed7-dac9-4acd-ba1d-07a142c6118f
https://web.archive.org/web/20240114222400/https://support.microsoft.com/en-us/office/log10-function-c75b881b-49dd-44fb-b6f4-37e3486a0211


10.1.16 POW

Description : Returns the result of a number raised to a power.

Syntax : POW(number;power).

Keynotes : Refer to POWER function Microsoft©documentation for more de-
tails.

10.1.17 ROUND

Description : Rounds a number to a speci�ed number of digits.

Syntax : ROUND(number;digits).

Keynotes : Refer to ROUND function Microsoft©documentation for more de-
tails.

10.1.18 SGN

Description : Returns the sign of a number.

Syntax : SGN(number).

Keynotes : Refer to SIGN function Microsoft©documentation for more details.

10.1.19 SIN

Description : Returns the sine for a given radian angle.

Syntax : SIN(angle).

Keynotes : Refer to SIN function Microsoft©documentation for more details.

10.1.20 SQR, SQRT

Description : Returns the positive square root of a number.

Syntax : SQR(number) or SQRT(number).

Keynotes : Refer to SQRT function Microsoft©documentation for more details.

VBA Expressions v3.2.7 Reference Manual 41

https://web.archive.org/web/20231210021528/https://support.microsoft.com/en-us/office/power-function-d3f2908b-56f4-4c3f-895a-07fb519c362a
https://web.archive.org/web/20240320142402/https://support.microsoft.com/en-us/office/round-function-c018c5d8-40fb-4053-90b1-b3e7f61a213c
https://web.archive.org/web/20230925160316/https://support.microsoft.com/en-us/office/sign-function-109c932d-fcdc-4023-91f1-2dd0e916a1d8
https://web.archive.org/web/20240114222400/https://support.microsoft.com/en-us/office/sin-function-cf0e3432-8b9e-483c-bc55-a76651c95602
https://web.archive.org/web/20240114222400/https://support.microsoft.com/en-us/office/sqrt-function-654975c2-05c4-4831-9a24-2c65e4040fdf


10.1.21 SUM

Description : Adds a lists of numbers.

Syntax : SUM(list).

Keynotes : The list argument must be composed entirely by numeric data,
otherwise an error is returned. Refer to section 2.2.5 in page 10 for
more details on list syntax.

10.1.22 TAN

Description : Returns the tangent for a given radian angle.

Syntax : TAN(angle).

Keynotes : Refer to TAN function Microsoft©documentation for more details.

10.2 Mathematical Functions

10.2.1 CHOLESKY

Description : Returns the Cholesky decomposition for a matrix.

Syntax : CHOLESKY(matrix).

Keynotes : Requires positive-de�nite symmetric square matrix A[0..n−1][0..n−
1] as input. The Cholesky decomposition veri�es A = L · LT . The
result is the lower triangular matrix L. Failure of the decomposition
indicates that the matrix A is not positive-de�nite. Refer to list

and matrix arguments in pages 10 and 34, for syntax details.

10.2.2 CHOLINVERSE

Description : Returns the inverse of a matrix computed by Cholesky decomposi-
tion.

Syntax : CHOLINVERSE(matrix).

Keynotes : Limitations related to the typology of the input matrix, from the
CHOLESKY function, are also valid. Refer to list and matrix argu-
ments in pages 10 and 34, for syntax details.

42 v3.2.7

https://web.archive.org/web/20240114222400/https://support.microsoft.com/en-us/office/tan-function-08851a40-179f-4052-b789-d7f699447401


10.2.3 CHOLSOLVE

Description : Solves the linear system A ·X = B using Cholesky decomposition.

Syntax : CHOLSOLVE(A;X;B;[IncludeNames=False]).

Keynotes : The argument A is a matrix that satis�es conditions required by the
CHOLESKY function; X is an one dimensional array containing the
name for each of the n variables in the system; B is a one row by n
columns matrix containing the right-hand side of the system. Use
theIncludeNames parameter to indicate if the resulting calculations
will be returned as a matrix or as formatted string by including the
names of variables. Refer to Literal argument in section 2.2.1,
also to list and matrix arguments in pages 10 and 34, for syntax
details.

e. g.,

1 REM Variables: a={6;15;55};b={15;55;225};c={55;225;979}

2 MROUND(CHOLSOLVE(ARRAY(a;b;c);{{'x';'y';'z

'}};{{76;295;1259}}; False);4)

outputs the array {{1;1;1}}.

1 CHOLSOLVE(ARRAY(a;b;c);{{'x';'y';'z '}};{{76;295;1259}};

False)

outputs

1 x = 0.999999999999988; y = 1.00000000000002; z =

0.999999999999997

using the same variables values.

10.2.4 DET

Description : Returns the determinant of a matrix computed using its LU de-
composition.

Syntax : DET(matrix).

Keynotes : The matrix must be square. Although the subroutine allows the
determinant of a submatrix to be computed, it is not advisable to
pass a non-square matrix as an argument. Refer to the LUDECOMP

function in section 10.2.10 for more details. Refer to list and
matrix arguments in pages 10 and 34, for syntax details.

10.2.5 FZERO

Description : Finds a zero of an uni-variate function using the modi�ed bisection
method.

Syntax : FZERO(aFunction;a;b;[IncludeVarName=False];[epsilon=1E-8]).

VBA Expressions v3.2.7 Reference Manual 43



Keynotes : An error will be returned if the aFunction contains more than
one variable. The parameter a indicates the lower limit, towards
left, while the parameter b represents the upper limit, towards
right, of the numerical interval in which the function's zero will
be searched. The parameter IncludeVarName is used to control
the output format. Tolerance for the iterative searching is de�ned
with the epsilon parameter. Refer to the listing 10, in page 31 for
an usage example.

!
Setting epsilon to an inadequate value can
produces unexpected iterative function fails.

10.2.6 GAMMA

Description : Returns the Gamma function, Γ(x), value.

Syntax : GAMMA(number).

Keynotes : Refer to GAMMA function Microsoft©documentation for more de-
tails.

10.2.7 GAMMALN

Description : Returns the natural logarithm of the gamma function, Γ(x).

Syntax : GAMMALN(number).

Keynotes : An error is returned when the given number is a negative integer
or zero.

10.2.8 INVERSE

Description : Computes the inverse of a matrix using the LU decomposition.

Syntax : INVERSE(matrix).

Keynotes : Refer to the LUDECOMP function in section 10.2.10 for more details.
Refer to list and matrix arguments in pages 10 and 34, for syntax
details.

10.2.9 LSQRSOLVE

Description : Returns the least squares solution for a given over-determined equa-
tions system.

44 v3.2.7

https://web.archive.org/web/20230925151214/https://support.microsoft.com/en-us/office/gamma-function-ce1702b1-cf55-471d-8307-f83be0fc5297


Syntax : LSQRSOLVE(A;b).

Keynotes : Given a system A ·X = b, the function returns X that minimizes
the two norm of Q · R · X − b. A is a matrix of coe�cients of the
system variables, b is the right side vector. The procedure will
return an error when matrix A is rank de�cient. Row and columns
dimensions must agree. Also see QR function in section 10.2.17 for
more details. For usage example see listing 7 in page 29. Refer
to Literal argument in section 2.2.1, also to list and matrix

arguments in pages 10 and 34, for syntax details.

10.2.10 LUDECOMP

Description : Returns the LU decomposition for the given matrix.

Syntax : LUDECOMP(matrix).

Keynotes : The matrix must be square. The decomposition is achieved per-
forming row-wise permutations over the give matrix. Refer to list
and matrix arguments in pages 10 and 34, for syntax details.

10.2.11 LUSOLVE

Description : Solves the linear system A ·X = B using LU decomposition.

Syntax : LUSOLVE(A;X;b;[includeNames=False]).

Keynotes : A must be a square matrix. The argument X is an one dimen-
tional array containing the name of each variable; the �rst name
will be applied to the �rst column of coe�cients, the second name
to the second column and so on, b is the right side vector. Use
theIncludeNames parameter to indicate if the resulting calculations
will be returned as a matrix or as formatted string by including the
names of variables. Refer to Literal argument in section 2.2.1,
also to list and matrix arguments in pages 10 and 34, for syntax
details.

10.2.12 MMULT

Description : Returns the matrix product.

Syntax : MMULT(A;B).

Keynotes : The function requiresA to be a matrix. Argument B can be a matrix,
a column vector or an scalar number. Refer to list and matrix

arguments in pages 10 and 34, for syntax details.

VBA Expressions v3.2.7 Reference Manual 45



10.2.13 MNEG

Description : Returns negation of a matrix.

Syntax : MNEG(matrix).

Keynotes : This operation is equivalent to multiply the matrix by -1 scalar.
Requires all values to be of numeric type. Refer to list and matrix

arguments in pages 10 and 34, for syntax details.

10.2.14 MROUND

Description : Rounds all elements of a matrix to the speci�ed signi�cant digits.

Syntax : MROUND(matrix;Digits).

Keynotes : For usage examples see pages 29 and 43. Refer to Literal argument
in section 2.2.1, also to list and matrix arguments in pages 10
and 34, for syntax details. See also ROUND function, section 10.1.17
in page 41.

10.2.15 MSUM

Description : Returns the matrix sum.

Syntax : MSUM(A;B;[Difference=False]).

Keynotes : Requires A and B to be matrices with equal number of rows and
columns, otherwise error is returned. Setting the Difference pa-
rameter to True will adds the negation of matrix B to A by comput-
ing A + (−B). Refer to list and matrix arguments in pages 10
and 34, for syntax details.

10.2.16 MTRANSPOSE

Description : Returns the transpose of a matrix.

Syntax : MTRANSPOSE(matrix).

Keynotes : The function rotates rows and columns by swapping them. Refer to
list and matrix arguments in pages 10 and 34, for syntax details.

46 v3.2.7



10.2.17 QR

Description : Returns QR decomposition of a matrix using Householder re�ec-
tions.

Syntax : QR(matrix;[PositiveDiag=False]).

Keynotes : For an m-by-n matrix A with m ≥ n, the QR decomposition is
an m-by-n orthogonal matrix Q and an n-by-n upper triangular
matrix R so that A = Q · R. When the PositiveDiag is True

the function enforce signs of the diagonal elements to be positive.
This function is adapted from JAMA library. Refer to Literal

argument in section 2.2.1, also to list and matrix arguments in
pages 10 and 34, for syntax details.

10.2.18 REM

Description : Returns the remainder after integer division n by d.

Syntax : REM(n;d).

Keynotes : Refer to MOD function Microsoft©documentation for more details.

10.2.19 SOLVE

Description : Solves the linear system A ·X = B using Over Relaxation (SOR)
iteration.

Syntax : SOLVE(A;X;B;[IncludeNames=False]).

Keynotes : A must be a square matrix containing the coe�cients of all equa-
tions; X is an one dimensional array containing the name for each
of the n variables in the system; B is a one row by n columns matrix
containing the right-hand side of the system. Use theIncludeNames
parameter to indicate if the resulting calculations will be returned
as a matrix or as formatted string by including the names of vari-
ables. Refer to Literal argument in section 2.2.1, also to list and
matrix arguments in pages 10 and 34, for syntax details.

!

This is an iterative function. It will iterate un-
til it obtains 9 digits of precision or completes
500 cycles, whichever occurs �rst. The use of
CHOLSOLVE or LUSOLVE, see pages 43 and 45,
is recommended for more reliable solutions.

VBA Expressions v3.2.7 Reference Manual 47

https://github.com/fiji/Jama/blob/master/src/main/java/Jama/QRDecomposition.java
https://web.archive.org/web/20240108103147/https://support.microsoft.com/en-us/office/mod-function-9b6cd169-b6ee-406a-a97b-edf2a9dc24f3


10.3 Statistical Functions

10.3.1 ACHISQ

Description : Returns the inverse of the one-tailed probability of the chi-squared
distribution.

Syntax : ACHISQ(probability;deg_freedom).

Keynotes : This implementation does not return errors when the proba-
bility is p ≥ 1 like Excel does. Refer to CHIINV function
Microsoft©documentation for more details. See the CHISQ function
in section 10.3.8, page 49 for more details.

10.3.2 AERF

Description : Returns the inverse of Gauss error function (ERF).

Syntax : AERF(probability).

Keynotes : Excel doesn't have an implementation for this function. e. g.,AERF
(0.95) will output 1.38590382434968, the value of the ERF function
for the given probability. See the ERF function in section 10.3.9,
page 50 for more details.

10.3.3 AFISHF

Description : Returns the inverse of FISHF function.

Syntax : AFISHF(probability;deg_freedom1;deg_freedom2).

Keynotes : Refer to FINV function Microsoft©documentation for more details.
See the FISHF function in section 10.3.10, page 50 for more details.

10.3.4 AGAUSS

Description : Returns the inverse of GAUSS function.

Syntax : AGAUSS(probability).

Keynotes : Excel doesn't have an implementation for this function. e. g.,AGAUSS
(0.95) will output 1.64485362695148, the value of the GAUSS function
for the given probability. See the GAUSS function in section 10.3.12,
page 51 for more details.

48 v3.2.7

https://web.archive.org/web/20240108074544/https://support.microsoft.com/en-us/office/chiinv-function-cfbea3f6-6e4f-40c9-a87f-20472e0512af
https://web.archive.org/web/20240109073424/https://support.microsoft.com/en-us/office/finv-function-4d46c97c-c368-4852-bc15-41e8e31140b1


10.3.5 ANORM

Description : Returns the inverse of NORM function.

Syntax : ANORM(probability).

Keynotes : The function works with 2-tail p-values. For computations like the
NORM.S.INV Excel function, users can do ANORM(2*(1-0.908789)).
See the NORM function in section 10.3.15, page 52 for more details.

10.3.6 ASTUDT

Description : Returns the inverse of STUDT function.

Syntax : ASTUDT(probability;deg_freedom).

Keynotes : The function works 2-tail p-values. This is equivalent to the Excel
T.INV.2T. For computations like T.INV Excel function, users can
do ASTUDT(2*(1-0.75);2). See the STUDT function in section 10.3.16,
page 52 for more details.

10.3.7 BETAINV

Description : Returns the inverse cumulative beta inverse probability distribution
function.

Syntax : BETAINV(probability;alpha;beta).

Keynotes : The returned value is as if probability = BETADIST(x, ...),
BETAINV(probability,...) = x. The cumulative beta distribu-
tion can be used in project planning to determine likely completion
times given a variability and an expected completion time.

10.3.8 CHISQ

Description : Returns the one-tailed (right-tail) probability value for a chi-square
(χ2) test.

Syntax : CHISQ(x;deg_freedom).

Keynotes : The returned value represent the area under the χ2 distribu-
tion from the χ2 value to positive in�nity, given the chi-square
value and the degrees of freedom. This is equivalent to the Excel
CHISQ.DIST.RT function.

VBA Expressions v3.2.7 Reference Manual 49

https://web.archive.org/web/20230925154632/https://support.microsoft.com/en-us/office/norm-s-inv-function-d6d556b4-ab7f-49cd-b526-5a20918452b1
https://web.archive.org/web/20230925161632/https://support.microsoft.com/en-us/office/t-inv-2t-function-ce72ea19-ec6c-4be7-bed2-b9baf2264f17
https://web.archive.org/web/20230925154632/https://support.microsoft.com/en-us/office/norm-s-inv-function-d6d556b4-ab7f-49cd-b526-5a20918452b1
https://web.archive.org/web/20230925143600/https://support.microsoft.com/en-us/office/chisq-dist-rt-function-dc4832e8-ed2b-49ae-8d7c-b28d5804c0f2


10.3.9 ERF

Description : Returns the value of the Gauss error function.

Syntax : ERF(x).

Keynotes : The returned value represent the area under the error function from
0 to x, given the limit of integration x. For compute values between
lower and upper limits, like the Excel ERF function, users can do
ERF(Upper_limit)-ERF(Lower_limit).

10.3.10 FISHF

Description : Returns the probability value of an F-test given the F-value, nu-
merator degrees of freedom, and denominator degrees of freedom.

Syntax : FISHF(Fvalue;deg_freedom1;deg_freedom2).

Keynotes : You can use this function to determine whether two data sets have
di�erent degrees of diversity. The function doesn't returns error for
negative Fvalue. Also see the Excel F.DIST.RT function.

10.3.11 FIT

Description : Returns a least squares regression curve �tting.

Syntax : FIT(data;fitType;[polDegree]).

Keynotes : The data parameter is an array holding data pairs (x, y). Users can
choose from di�erent �tting curves by selecting between fitType

options:

� fitType=1: Polynomial → y = a+ b · x+ c · x2 + ...+m · xn

� fitType=2: Exponential → y = a · eb·x

� fitType=3: Exponential → y = a · bx

� fitType=4: Power → y = a · xb

� fitType=5: Logarithmic → y = a · ln(x) + b

@

The polDegree parameter is only required
when the fitType is set to 1. A straight line
can be �tted calling the function with two or
three arguments: FIT(A;1); FIT(A;1;1). For
usage example refer to listing 9 in page 31.

50 v3.2.7

https://web.archive.org/web/20230925151003/https://support.microsoft.com/en-us/office/erf-function-c53c7e7b-5482-4b6c-883e-56df3c9af349
https://web.archive.org/web/20230925150326/https://support.microsoft.com/en-us/office/f-dist-rt-function-d74cbb00-6017-4ac9-b7d7-6049badc0520


10.3.12 GAUSS

Description : Returns the probability that a member of a standard normal pop-
ulation will fall between the mean and z standard deviations from
the mean.

Syntax : GAUSS(z).

Keynotes : The result is 0.5 o� from the cumulative distribution function
(CDF), given the upper limit of integration z, so CDF (mean :=
0; sd := 1; z) = GAUSS(z) + 0.5. Refer to FINV function
Microsoft©documentation for more details.

10.3.13 IBETA

Description : Returns the cumulative distribution function (CDF) for the beta
distribution.

Syntax : IBETA(x;alpha;beta).

Keynotes : The result represents the area under beta distribution from 0 to x,
given values for the shape parameters β and α and the point at
which to evaluate the function.

@

This implementation uses the incomplete beta
function, so x must satisfy 0 ≤ x ≤ 1 or an
error will be returned. Full compatibility with
Excel's BETA.DIST function is on the horizon
for future updates.
i. e.,with =BETA.DIST(x,alpha,beta,True,A,B)

for x=2,alpha=8,beta=10,A=1,B=3 Excel gives
0.6854706, to achieve the same output VBA
Expressions users can do IBETA((x-A)/(B-A);

alpha;beta).

10.3.14 MLR

Description : Performs a multiple linear regression over a model with more than
two regressors/predictors.

Syntax : MLR(X;Y;formatOutput;[PredInteractions];[PredNames]).

Keynotes : Parameter X represents the model, being a N by K array with K
regressors variables for all the N observations. The Y is a N rows
vector with a total N observations for the model. The output can
be formatted as polynomial by setting the formatOutput parameter
to True, an array is returned otherwise.

The function allows regress models with interactions between pre-
dictors. The parameter PredInteractions can be used altogether

VBA Expressions v3.2.7 Reference Manual 51

https://web.archive.org/web/20240109073424/https://support.microsoft.com/en-us/office/finv-function-4d46c97c-c368-4852-bc15-41e8e31140b1
https://web.archive.org/web/20230925143023/https://support.microsoft.com/en-us/office/beta-dist-function-11188c9c-780a-42c7-ba43-9ecb5a878d31


with PredNames, not mandatory parameter, to de�ne predictors
interactions properly, both being literal strings. The following con-
ditions must be ful�lled by the PredInteractions and PredNames

parameters:

1. The syntax 'X#:X#;...;X#:X#'must be used to de�ne predic-
tors interactions with nominal names. The # symbol indicates
the position for predictor X# in the model array.

2. The alternative syntax '$#:$#;...;$#:$#' must be used to
de�ne interactions with named predictors. Here the symbol $
refers to a predictor name from the PredNames list. If named
predictors are used, the list of names must be supplied.

3. PredNames must follows the syntax '$;$;$'. It is mandatory
to provide a list of names for all the K named predictors in
the model.

!
For a predictors relation X{i}:X{j} the
method will try to ensure i ≥ j.

See listing 8, page 30 for usage example. Refer to Literal argument
in section 2.2.1, also to list and matrix arguments in pages 10
and 34, for syntax details.

10.3.15 NORM

Description : Returns the two-tailed probability value for standard normal curve,
given a z-score.

Syntax : NORM(z).

Keynotes : The result is the two-tailed probability from ±z to ∞ on both
tails of the distribution. For computations like the NORM.S.DIST
Excel function, users can do 1-NORM(1.333333)/2. See also the ANORM
function in section 10.3.5, page 49.

10.3.16 STUDT

Description : Returns the two-tailed probability values of a t-test, given the t-
value and the degrees of freedom.

Syntax : STUDT(t;deg_freedom).

Keynotes : For one-tailed probabilities computations, like the T.DIST Excel
function, users can do 1-STUDT(60;1)/2. See also the ASTUDT function
in section 10.3.6, page 49.

52 v3.2.7

https://web.archive.org/web/20231204210228/https://support.microsoft.com/en-us/office/norm-s-dist-function-1e787282-3832-4520-a9ae-bd2a8d99ba88
https://web.archive.org/web/20231204210228/https://support.microsoft.com/en-us/office/norm-s-dist-function-1e787282-3832-4520-a9ae-bd2a8d99ba88


10.3.17 TINV

Description : Returns the one-tailed or two-tailed t-value (Student t-value).

Syntax : TINV(confidence;deg_freedom;tOption).

Keynotes : Setting the tOption parameter to 1 will compute one-tailed t-value,
setting it to 2 computes two-tailed t-value. This function behave
exactly like the Excel T.INV function for one-tailed computations,
but the results provided are rounded to 8 precision digits.

10.3.18 TINV_1T

Description : Returns the one-tailed t-value (Student t-value).

Syntax : TINV(confidence;deg_freedom).

Keynotes : See TINV function.

10.3.19 TINV_2T

Description : Returns the two-tailed t-value (Student t-value).

Syntax : TINV(confidence;deg_freedom).

Keynotes : This function behave like the online iCalculator, to get results like
the Excel T.INV.2T function users can do TINV_2T(1-0.546449;60).
See also the TINV function.

10.4 Financial Functions

10.4.1 DDB

Description : Returns the depreciation of an asset for a speci�c time period by
using the double-declining balance method or some other method.

Syntax : DDB(cost;salvage;life;period;[factor]).

Keynotes : Refer to DDB function Microsoft©documentation for more details.

VBA Expressions v3.2.7 Reference Manual 53

https://web.archive.org/web/20230925161522/https://support.microsoft.com/en-us/office/t-inv-function-2908272b-4e61-4942-9df9-a25fec9b0e2e
https://math.icalculator.com/t-value-calculator.html
https://web.archive.org/web/20230925161632/https://support.microsoft.com/en-us/office/t-inv-2t-function-ce72ea19-ec6c-4be7-bed2-b9baf2264f17
https://web.archive.org/web/20231128093810/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/ddb-function


10.4.2 FV

Description : Returns the depreciation of an asset for a speci�c time period by
using the double-declining balance method or some other method.

Syntax : FV(rate;nper;pmt;[pv;[type]]).

Keynotes : Refer to FV function Microsoft©documentation for more details.

10.4.3 IPMT

Description : Returns the interest payment for a given period of an annuity based
on periodic, �xed payments and a �xed interest rate.

Syntax : IPMT(rate;per;nper;pv;[fv;[type]]).

Keynotes : Refer to IPMT function Microsoft©documentation for more details.

10.4.4 IRR

Description : Returns the internal rate of return for a series of periodic cash �ows
(payments and receipts).

Syntax : IRR(values;[negativeSearch]).

Keynotes : The values argument must be an array. The optional negativeSearch
boolean argument de�nes when the IRR function will search in
negative range if not positive solution is found. i. e.,FORMAT(IRR
({{-70000;12000;15000}};true);'Percent') returns '-44.35%'.

@
When negativeSearch is set to False and
there is no positive IRR solution, an error is
returned.

Refer to matrix arguments in page 34, for syntax details, and also
to IPMT function Microsoft©documentation for more details.

10.4.5 MIRR

Description : Returns the modi�ed internal rate of return for a series of periodic
cash �ows (payments and receipts).

Syntax : MIRR(values;finance_rate;reinvest_rate).

Keynotes : Usage example: FORMAT(MIRR({{-70000;22000;25000;28000;31000}};0.10;0.12)
;'Percent'), will return '15.51%'. See also IRR function. Refer to
MIRR function Microsoft©documentation for more details.

54 v3.2.7

https://web.archive.org/web/20240412234302/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/fv-function
https://web.archive.org/web/20240324210433/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/ipmt-function
https://web.archive.org/web/20240211172823/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/irr-function
https://web.archive.org/web/20221116052750/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/mirr-function


10.4.6 NPER

Description : Returns the number of periods for an annuity based on periodic,
�xed payments and a �xed interest rate.

Syntax : NPER(rate;pmt;pv;[fv;[type]]).

Keynotes : Refer to NPER function Microsoft©documentation for more de-
tails.

10.4.7 NPV

Description : Returns the number of periods for an annuity based on periodic,
�xed payments and a �xed interest rate.

Syntax : NPV(rate;pmt;pv;[fv;[type]]).

Keynotes : Refer to NPV function Microsoft©documentation for more details.

10.4.8 PMT

Description : Returns the payment for an annuity based on periodic, �xed pay-
ments and a �xed interest rate.

Syntax : PMT(rate;nper;pv;[fv;[type]]).

Keynotes : Refer to PMT function Microsoft©documentation for more details.

10.4.9 PPMT

Description : Returns the principal payment for a given period of an annuity
based on periodic, �xed payments and a �xed interest rate.

Syntax : PPMT(rate;per;nper;pv;[fv;[type]]).

Keynotes : Refer to PPMT function Microsoft©documentation for more de-
tails.

10.4.10 PV

Description : Returns the present value of an annuity based on periodic, �xed
payments to be paid in the future and a �xed interest rate.

Syntax : PV(rate;nper;pmt;[fv;[type]]).

Keynotes : Refer to PV function Microsoft©documentation for more details.

VBA Expressions v3.2.7 Reference Manual 55

https://web.archive.org/web/20230602094527/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/nper-function
https://web.archive.org/web/20230602094527/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/nper-function
https://web.archive.org/web/20231128093817/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/pmt-function
https://web.archive.org/web/20240324210433/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/ppmt-function
https://web.archive.org/web/20240413160222/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/pv-function


10.4.11 RATE

Description : Returns the interest rate per period for an annuity.

Syntax : RATE(nper;pmt;pv;[fv;[type;[guess]]]).

Keynotes : Refer to RATE function Microsoft©documentation for more de-
tails.

10.4.12 SLN

Description : Returns the straight-line depreciation of an asset for a single period.

Syntax : SLN(cost;salvage;life).

Keynotes : Refer to SLN function Microsoft©documentation for more details.

10.4.13 SYD

Description : Returns the straight-line depreciation of an asset for a single period.

Syntax : SYD(cost;salvage;life;period).

Keynotes : Refer to SYD function Microsoft©documentation for more details.

10.5 Date, Time and String Functions

Some of the date-time functions return literal string results, see Literal
tokens in section 2.2.1. The user should pay particular attention when
reusing the latter in subsequent evaluations, in order to avoid functions
receiving unexpected data types.

10.5.1 ASC

Description : Returns the character ASCII code corresponding to the �rst letter
in a string.

Syntax : ASC(string).

Keynotes : The string argument represents a Literal string, see section 2.2.1.
Refer to ASC function Microsoft©documentation for more details.

56 v3.2.7

https://web.archive.org/web/20240324210433/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/rate-function
https://web.archive.org/web/20240324210433/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/sln-function
https://web.archive.org/web/20240324210433/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/syd-function
https://web.archive.org/web/20231128093814/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/asc-function


10.5.2 CHR

Description : Returns a Literal string containing the character associated with
the speci�ed character code.

Syntax : CHR(charcode).

Keynotes : Refer to CHR function Microsoft©documentation for more details.

10.5.3 DATE

Description : Returns a Literal string containing the current system date.

Syntax : DATE().

Keynotes : Refer to DATE function Microsoft©documentation for more de-
tails.

10.5.4 DATEADD

Description : Returns a Literal string containing a date to which a speci�ed
time interval has been added.

Syntax : DATEADD(interval;number;date).

Keynotes : The date argument is a Literal string, see section 2.2.1. Refer to
DATEADD function Microsoft©documentation for more details.

10.5.5 DATEDIFF

Description : Returns the number of time intervals between two speci�ed dates.

Syntax : DATEDIFF(interval;date1;date2;[firstdayofweek;[firstweekofyear]]).

Keynotes : The date1 and date2 arguments are Literal strings, see sec-
tion 2.2.1. Refer to DATEDIFF function Microsoft©documentation
for more details.

10.5.6 DATEPART

Description : Returns the speci�ed part of a given date.

Syntax : DATEPART(interval;date;[firstdayofweek;[firstweekofyear]]).

Keynotes : The date argument is a Literal string, see section 2.2.1.

VBA Expressions v3.2.7 Reference Manual 57

https://web.archive.org/web/20240303190820/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/chr-function
https://web.archive.org/web/20230216235817/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/date-function
https://web.archive.org/web/20240324210433/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/dateadd-function
https://web.archive.org/web/20231128093815/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/datediff-function


!

There is an issue with the use of this function.
The last Monday in some calendar years can
be returned as week 53 when it should be week
1. For more information and a workaround,
see this Microsoft©article.

Refer to DATEPART function Microsoft©documentation for more
details.

10.5.7 DATESERIAL

Description : Returns a Literal string containing the date for a speci�ed year,
month, and day.

Syntax : DATESERIAL(year;month;day).

Keynotes : Refer to DATESERIAL function Microsoft©documentation for
more details.

10.5.8 DATEVALUE

Description : Returns a Literal string containing a date.

Syntax : DATEVALUE(date).

Keynotes : The date argument is a Literal string, see section 2.2.1. Refer to
DATEVALUE function Microsoft©documentation for more details.

10.5.9 DAY

Description : Returns a whole number between 1 and 31, inclusive, representing
the day of the month.

Syntax : DAY(date).

Keynotes : The date argument can be a Literal string, see section 2.2.1. Refer
to DAY function Microsoft©documentation for more details.

10.5.10 FORMAT

Description : Returns a Literal string containing an expression formatted ac-
cording to instructions contained in a format expression.

Syntax : FORMAT(Expression;[Format];[FirstDayOfWeek];[FirstWeekOfYear]).

58 v3.2.7

https://web.archive.org/web/20230326134303/https://learn.microsoft.com/en-us/office/troubleshoot/access/functions-return-wrong-week-number
https://web.archive.org/web/20240324210433/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/datepart-function
https://web.archive.org/web/20231202162228/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/dateserial-function
https://web.archive.org/web/20240324210433/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/datevalue-function
https://web.archive.org/web/20230321154945/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/day-function


Keynotes : The Expression argument can be a Literal string, see sec-
tion 2.2.1. Refer to FORMAT function Microsoft©documentation
for more details.

10.5.11 HOUR

Description : Returns a whole number between 0 and 23, inclusive, representing
the hour of the day.

Syntax : HOUR(time).

Keynotes : The time argument can be a Literal string, see section 2.2.1. Refer
to HOUR function Microsoft©documentation for more details.

10.5.12 LCASE

Description : Returns a Literal string that has been converted to lowercase.

Syntax : LCASE(string).

Keynotes : The string argument is a Literal string, see section 2.2.1. Refer
to LCASE function Microsoft©documentation for more details.

10.5.13 LEFT

Description : Returns a Literal string containing a speci�ed number of charac-
ters from the left side of a string.

Syntax : LEFT(string;length).

Keynotes : The string argument is a Literal string, see section 2.2.1. Refer
to LEFT function Microsoft©documentation for more details.

10.5.14 LEN

Description : Returns the number of characters in a string.

Syntax : LEN(string).

Keynotes : The string argument is a Literal string, see section 2.2.1. Refer
to LEN function Microsoft©documentation for more details.

VBA Expressions v3.2.7 Reference Manual 59

https://web.archive.org/web/20240324210433/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/format-function-visual-basic-for-applications
https://web.archive.org/web/20240324210433/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/hour-function
https://web.archive.org/web/20240324210433/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/lcase-function
https://web.archive.org/web/20230216235817/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/left-function
https://web.archive.org/web/20230124003808/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/len-function


10.5.15 MID

Description : Returns a Literal string containing a speci�ed number of charac-
ters from a string.

Syntax : MID(string;start;[length]).

Keynotes : The string argument is a Literal string, see section 2.2.1. Refer
to MID function Microsoft©documentation for more details.

10.5.16 MINUTE

Description : Returns a whole number between 0 and 59, inclusive, representing
the minute of the hour.

Syntax : MINUTE(time).

Keynotes : The time argument can be a Literal string, see section 2.2.1. Refer
to MINUTE function Microsoft©documentation for more details.

10.5.17 MONTH

Description : Returns a whole number between 1 and 12, inclusive, representing
the month of the year.

Syntax : MONTH(date).

Keynotes : The date argument can be a Literal string, see section 2.2.1. Refer
to MONTH function Microsoft©documentation for more details.

10.5.18 MONTHNAME

Description : Returns a Literal string indicating the speci�ed month.

Syntax : MONTHNAME(month;[abbreviate]).

Keynotes : Refer to MONTHNAME function Microsoft©documentation for
more details.

10.5.19 NOW

Description : Returns a Literal string indicating the current date and time ac-
cording to your computer's system date and time.

Syntax : NOW().

60 v3.2.7

https://web.archive.org/web/20221203135717/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/mid-function
https://web.archive.org/web/20221116052420/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/minute-function
https://web.archive.org/web/20230325134649/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/month-function
https://web.archive.org/web/20230605062341/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/monthname-function


Keynotes : Refer to NOW function Microsoft©documentation for more details.

10.5.20 REPLACE

Description : Returns a Literal string which is a substring of a string expression
beginning at the start position (defaults to 1), in which a speci�ed
substring has been replaced with another substring a speci�ed num-
ber of times.

Syntax : REPLACE(expression;find;replace;[start;[count;[compare]]]).

Keynotes : The expression, find and replace arguments are Literal

strings, see section 2.2.1. Refer to REPLACE function Microsoft©documentation
for more details.

10.5.21 RIGHT

Description : Returns a Literal string containing a speci�ed number of charac-
ters from the right side of a string.

Syntax : RIGHT(string;length).

Keynotes : The string argument is a Literal string, see section 2.2.1. Refer
to RIGHT function Microsoft©documentation for more details.

10.5.22 TIMESERIAL

Description : Returns a Literal string containing the time for a speci�c hour,
minute, and second.

Syntax : TIMESERIAL(hour;minute;second).

Keynotes : Refer to TIMESERIAL function Microsoft©documentation for
more details.

10.5.23 TIMEVALUE

Description : Returns a Literal string containing the time.

Syntax : TIMEVALUE(time).

Keynotes : The time argument can be a Literal string, see section 2.2.1. Re-
fer to TIMEVALUE function Microsoft©documentation for more
details.

VBA Expressions v3.2.7 Reference Manual 61

https://web.archive.org/web/20230216235817/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/now-function
https://web.archive.org/web/20230120141432/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/replace-function
https://web.archive.org/web/20230216235817/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/right-function
https://web.archive.org/web/20230216235817/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/timeserial-function
https://web.archive.org/web/20230307105028/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/timevalue-function


10.5.24 TRIM

Description : Returns a Literal string containing a copy of a speci�ed string
without leading and trailing spaces.

Syntax : TRIM(string).

Keynotes : The string argument is a Literal string, see section 2.2.1. Refer
to TRIM function Microsoft©documentation for more details.

10.5.25 UCASE

Description : Returns a Literal string containing the speci�ed string, converted
to uppercase.

Syntax : UCASE(string).

Keynotes : The string argument is a Literal string, see section 2.2.1. Refer
to UCASE function Microsoft©documentation for more details.

10.5.26 WEEKDAY

Description : Returns a whole number representing the day of the week.

Syntax : WEEKDAY(date;[firstdayofweek]).

Keynotes : The date argument can be a Literal string, see section 2.2.1.
Refer to WEEKDAY function Microsoft©documentation for more
details.

10.5.27 WEEKDAYNAME

Description : Returns a Literal string indicating the speci�ed day of the week.

Syntax : WEEKDAYNAME(weekday;abbreviate;firstdayofweek).

Keynotes : Refer to WEEKDAYNAME function Microsoft©documentation for
more details.

10.5.28 YEAR

Description : Returns a whole number representing the year.

Syntax : YEAR(date).

62 v3.2.7

https://web.archive.org/web/20230605054541/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/ltrim-rtrim-and-trim-functions
https://web.archive.org/web/20230605070101/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/ucase-function
https://web.archive.org/web/20230216235817/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/weekday-function
https://web.archive.org/web/20230207162345/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/weekdayname-function


Keynotes : The date argument can be a Literal string, see section 2.2.1. Refer
to YEAR function Microsoft©documentation for more details.

10.6 Programming Functions

10.6.1 ARRAY

Description : Returns the array created from the given list of lists.

Syntax : ARRAY(list).

Keynotes : The list argument must satisfy the syntax {...};{...};...{...}.
i. e.,ARRAY(a;b;c) will return {{6;15;55};{15;55;225};{55;225;979}} for
the variables a={6;15;55};b={15;55;225};c={55;225;979}.

10.6.2 CHOOSE

Description : Selects and returns a value from a list of arguments.

Syntax : CHOOSE(index;choice-1;[choice-2;...;[choice-n]]).

Keynotes : Refer to CHOOSE function Microsoft©documentation for more de-
tails.

10.6.3 GET

Description : Assigns/returns the value to/from a variable.

Syntax : GET(VarName;[VarValue]).

Keynotes : This function is used for managing expressions variables. The
VarName argument is a Literal string, refer to section 2.2.1 in
page 8. If the VarValue parameter is omitted, the previous stored
variable value is returned. For usage examples see listings 3, 12, 15
and 16 in pages 26, 33 and 35.

10.6.4 IFF

Description : Returns one of two parts, depending on the evaluation of an ex-
pression.

Syntax : IFF(expr;truepart;falsepart).

Keynotes : The expr can be any valid expression. This function behave like
the VBA®IIF function.

VBA Expressions v3.2.7 Reference Manual 63

https://web.archive.org/web/20230327112043/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/year-function
https://web.archive.org/web/20221103205723/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/choose-function
https://web.archive.org/web/20221201165605/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/iif-function


10.6.5 SWITCH

Description : Evaluates a list of expressions and returns a Variant value or an
expression associated with the �rst expression in the list that is
True.

Syntax : SWITCH(expr-1;value-1;[expr-2;value-2...;

[expr-n;value-n]]).

Keynotes : The function will return an error if no expression can be evaluated
to True. Also see the VBA®SWITCH function.

11 Testing

In order to o�er quality solutions to all users, Test Driven Development
(TDD) has been adopted. Under this scheme, more than 50 unit tests
have been coded to ensure that, between releases, proper functioning of
VBA Expressions is maintained. For these purposes, Rubberduck11 has
been chosen to run the tests.

11.1 Rubberduck

"The Visual Basic Editor (VBE) has stood still for over 20
years, and there is no chance a �rst-party update to the legacy
IDE ever brings it up to speed with modern-day tooling. Rub-
berduck aims to bring the VBE into this century by doing
exactly that." Mathieu Guindon

Rubberduck makes it easy to code, run and manage unit tests in
VBA®projects. For this reason it has been chosen as the auxiliary
development platform. All releases comes with a TestRunner.bas mod-
ule used for unit testing.

!
Rubberduck must be installed to run unit tests. If
you try to run the unit tests without this require-
ment, you will get a runtime error.

However, it is a reality that the VBA Expressions LibreO�ce release
does not have this tool. LO Basic needed a simple implementation that
allows you to run unit tests in your development environment. This will
be discussed later in this section.

@
In previous versions of VBA Expressions, up to
v1.0.6 for LibreO�ce, the unit testing module was
named TestVBAExpr.

11.2 Running Tests

To run the unit tests in VBA®, go to the Rubberduck tab and select

Unit Test → Test Explorer . From there click the Refresh button

and then select Run → All Tests . Rubberduck will display those tests

11 https://rubberduckvba.com/

64 v3.2.7

https://web.archive.org/web/20221103205723/https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/switch-function


that passed and those that failed. You can also create your own tests
following the guidelines described in the o�cial blog12.

In LibreO�ce, unit tests use the ScriptForge library to show users the
results of unit tests. To run them, the RunAllTests procedure of the
TestRunner module must be executed.

12 Limitations

Currently, performance is one of the main limitations of VBA Expres-
sions. The library is not designed to be the fastest among its alternatives,
it is focused on o�ering functionality not provided by any other utility and
with an elegant syntax that resembles that used by the BASIC language.

Although a great e�ort has been made to keep the code free of bugs, it
is likely that users will encounter unresolved problems while using VBA
Expressions. This is why we encourage users to report any detected
issues.

We hope that the compatibility of LO BASIC with VBA®will increase in
the future, which could solve the problems that prevent VBA Expressions
from behaving exactly the same in LibreO�ce and Microsoft©O�ce®.
So far this is a constraint with which we must wait patiently.

13 Conclusions

VBA Expressions is a support tool for students and teachers of science,
accounting, statistics and engineering; this due to the its full set of com-
putations capabilities. The library can solve systems of equations and
non-linear equations in one variable, resolve over-determinate equations
systems; perform matrices operations and much more. The library also
have a version for LibreO�ce users, thus reaching a diversity of operating
systems and breaking down payment barriers in o�ce suites. Similarly,
the support for numbers in various formats makes their use a fact in in-
ternational contexts. VBA Expressions is well tested, providing its users
with a considerable set of executable unit tests, making releases some-
what homogeneous; although there are still many untested procedures
that could lead to unidenti�ed bugs. In this sense, use, use, use and
more use is the solution!

14 Credits

The development of VBA Expressions would not have been possible with-
out the knowledge provided by the people and organizations listed below:

�
©William H. Press. Book: Numerical recipes in C: the art of sci-
enti�c computing.

�
©Douglas C. Montgomery and George C. Runger. Book: Applied
Statistics and Probability for Engineers.

�
©David M. Lane

�
©Dr. Hossein Arsham

�
©John C. Pezzullo

�
©iCalculatorTM

12 https://rubberduckvba.blog/2017/10/19/how-to-unit-test-vba-code/

VBA Expressions v3.2.7 Reference Manual 65



�
©Microsoft

�
©mozilla.org

15 License

This work is free: you can redistribute it and/or modify it under the
terms of the Creative Commons Attribution-NonCommercial-ShareAlike
International License as published by the Creative Commons Foundation,
either version 4.0 of the License.

This work is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

16 Review History

� April-2024: initial release.

66 v3.2.7

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


17 Appendix

This section shows the code to evaluate a piece-wise function composed
of a series of sub-functions de�ned within their domain ranges.

f(x) =


x2 , x ≤ 0

log(x+ 1) , 0 < x ≤ 1√
x− log(2) , x ≥ 2

In these functions it should be noted that the logarithm of zero does not
exist, nor do square roots of negative numbers. At the time of evaluation,
inevitably, an internal error will occur in VBA Expressions. However, the
EnforceBoolean property allows False to be returned when errors occur
on evaluate certain components of expressions.

1 Public Function evalPieceWiseFunctions(ByRef tRange As Range ,

xmin As Double , xmax As Double , samples As Long ,

ParamArray condValuePairs () As Variant) As Boolean

2 Dim expr As VBAexpressions

3 Dim j As Long , UB As Long

4 Dim tmpFunct As String

5 Dim step As Double

6 Dim tmpResult () As String

7 Dim outRange As Range

8

9 On Error GoTo err_Handler

10 ReDim tmpResult (0 To samples - 1, 0 To 1)

11 step = (xmax - xmin) / (samples - 1)

12 UB = UBound(condValuePairs)

13 For j = LBound(condValuePairs) To UB Step 2

14 tmpFunct = tmpFunct & condValuePairs(j) & ";" & _

15 condValuePairs(j + 1)

16 If j + 2 < UB Then tmpFunct = tmpFunct & ";"

17 Next j

18 Set expr = New VBAexpressions

19 With expr

20 .EnforceBoolean = True: .Create "SWITCH(" & tmpFunct

& ")"

21 For j = 0 To samples - 1

22 .Eval "x = " & CStr(xmin + j * step)

23 tmpResult(j, 0) = .CurrentVarValues

24 tmpResult(j, 1) = "f(x) = " & .Result

25 Next j

26 End With

27 With tRange

28 .Range(Cells(tRange.Row , tRange.Column), _

29 Cells(tRange.Row + samples - 1, tRange.Column + 1)).

value2 = tmpResult

30 End With

31 evalPieceWiseFunctions = True

32 err_Handler:

33 Set expr = Nothing

34 End Function

Listing 21: Evaluating piece-wise fucntions

The above function will evaluate piece-wise functions given by the
users, in our example the line evalPieceWiseFunctions Sheets(1).range("A1

"),-2,2,20,"x<=0", "x^2", "0<x & x<=1", "Log(x+1)", "x>1", "Sqr(x-Log(2))"

carry out the assessment under conditions set out in the previous state-
ment. It can be noted that complex solutions to a variety of problems
can be o�ered by abstracting the end-users from complexity.

VBA Expressions v3.2.7 Reference Manual 67



Index
accessing variables, 33
arguments, 8
arguments, separator, 20

basic functions, abs, 37
basic functions, acos, 38
basic functions, asin, 38
basic functions, atn, 38
basic functions, avg, 38
basic functions, ceil, 39
basic functions, cos, 39
basic functions, exp, 39
basic functions, �oor, 39
basic functions, lgn, 39
basic functions, ln, 40
basic functions, log, 40
basic functions, max, 40
basic functions, min, 40
basic functions, percent, 40
basic functions, pow, 41
basic functions, round, 41
basic functions, sgn, 41
basic functions, sin, 41
basic functions, sqr, sqrt, 41
basic functions, sum, 42
basic functions, tan, 42
built-in functions, 37

data management, 28
date-time-string functions, array, 63
date-time-string functions, asc, 56
date-time-string functions, choose, 63
date-time-string functions, chr, 57
date-time-string functions, date, 57
date-time-string functions, dateadd, 57
date-time-string functions, datedi�, 57
date-time-string functions, datepart, 57
date-time-string functions, dateserial, 58
date-time-string functions, datevalue, 58
date-time-string functions, day, 58
date-time-string functions, format, 58
date-time-string functions, get, 63
date-time-string functions, hour, 59
date-time-string functions, i�, 63
date-time-string functions, lcase, 59
date-time-string functions, left, 59
date-time-string functions, len, 59
date-time-string functions, mid, 60
date-time-string functions, minute, 60
date-time-string functions, month, 60
date-time-string functions, monthname, 60
date-time-string functions, now, 60
date-time-string functions, replace, 61
date-time-string functions, right, 61

date-time-string functions, switch, 64
date-time-string functions, timeserial, 61
date-time-string functions, timevalue, 61
date-time-string functions, trim, 62
date-time-string functions, ucase, 62
date-time-string functions, weekday, 62
date-time-string functions, weekdayname, 62
date-time-string functions, year, 62
demo code structure, 13

engineering, physics, 31
enumeration, decimalsymbol, 23
enumeration, expressionerrors, 23
enumeration, operatortoken, 23
essentials, 6
evaluating expressions, 13
evaluating loops, 14
evaluation tree, 10
expression result, 19
expressions, 8
expressions grammar, 8
expressions syntax, 7

functions syntax, 9

gallop, 19

human evaluation, 12

implicit variables, 19
install, 5

library members, 16
library structure, 16
libray members, 5
libreo�ce install, 6
libreo�ce, load library, 27
libreo�ce, managing scopes, 32
libreo�ce, notes, 26
libreo�ce, recursion, 27
libreo�ce, variables, 26
limitations, 65
linear algebra, 28
linear equations systems, 29
lists, 10

main use cases, 27
math functions, cholesky, 42
math functions, det, 43
math functions, fzero, 43
math functions, gamma, 44
math functions, gammaln, 44
math functions, inverse, 44
math functions, inverse by cholesky, 42
math functions, lsqrsolve, 44

68 v3.2.7



math functions, ludecomp, 45
math functions, lusolve, 45
math functions, mmult, 45
math functions, mneg, 46
math functions, mround, 46
math functions, msum, 46
math functions, mtranspose, 46
math functions, qr, 47
math functions, rem, 47
math functions, solve by cholesky, 43
math functions, solve by solve, 47
matrices syntax, 9
matrices, arrays, 34
matrices, overloading, 35
method, addconstant, 21, 25
method, arrayfromstring, 21
method, arrayfromstring2, 21
method, arraytostring, 22
method, constantsinit, 25
method, copyscope, 25
method, create, 22
method, declareudf, 22
method, eval, 23
method, �llprede�nedvars, 25
method, isconstant, 23, 26
method, todblarray, 23
method, variablesinit, 26
multi-variables expressions, 14

operands, 8
operators, 6
overdeterminated systems, 29

parsing status, 19
precedence, 7
property, assignedarray, 24
property, constants, 16
property, currentvariables, 16
property, currentvarvalues, 16
property, decimalsymbol, 16
property, de�nedScope, 24
property, degrees, 17
property, enforceboolean, 18
property, errordesc, 17
property, errortype, 17
property, evalscope, 17
property, expression, 17
property, formatresult, 18
property, gallopingmode, 19
property, implicitvarvalue, 19
property, readytoeval, 19
property, result, 19
property, separatorchar, 20
property, variablescount, 25
property, varvalue, 20
property, varvalue2, 20

quick start, 12

regional format, 16
regressions, 30
rubberduck, 64

special variables, 9
stat functions, achisq, 48
stat functions, aerf, 48
stat functions, a�shf, 48
stat functions, agauss, 48
stat functions, anorm, 49
stat functions, astudt, 49
stat functions, betainv, 49
stat functions, chisq, 49
stat functions, ddb, 53
stat functions, erf, 50
stat functions, �shf, 50
stat functions, �t, 50
stat functions, fv, 54
stat functions, gauss, 51
stat functions, ibeta, 51
stat functions, ipmt, 54
stat functions, irr, 54
stat functions, mirr, 54
stat functions, mlr, 51
stat functions, norm, 52
stat functions, nper, 55
stat functions, npv, 55
stat functions, pmt, 55
stat functions, ppmt, 55
stat functions, pv, 55
stat functions, rate, 56
stat functions, sln, 56
stat functions, studt, 52
stat functions, syd, 56
stat functions, tinv, 53
stat functions, tinv_1t, 53
stat functions, tinv_2t, 53
statistics, 30
strings, 15
sub-expressions, 8
symbols, 7

testing, 64
token tree, 10
tokens, 8
trend line, 31

udf management, 36
unit testing, 64

variable scope, 32
variables de�nition, 9
variables, special uses, 34
vbaexpressions enumerations, 23
vbaexpressions methods, 21

VBA Expressions v3.2.7 Reference Manual 69



vbaexpressions properties, 16
vbaexpressions.cls, 16
vbaexpressionsScope methods, 25
vbaexpressionsScope properties, 24
vbaexpressionsScope.cls, 24

zeroing functions, 31

70 v3.2.7


	Introduction
	Advantages
	Get in ready!

	Key Essentials
	Operators and Symbols
	Operators
	Symbols

	Syntax And Rules
	Grammar
	Variables
	Functions
	Matrices and Arrays
	Lists

	Core Internals
	Parsing Methodology
	Evaluation Tree


	Quick Start
	The Basis
	Expressions with Variables
	Evaluating into Loops
	Using Binary Relations
	Working with Strings

	Library Brief Structure
	VBAexpressions.cls
	Properties
	Methods
	Enumerations

	VBAexpressionsScope.cls
	Properties
	Methods


	Notes for LibreOffice Users
	Variables Treatment
	Recursion
	Library Loading

	Main Use Cases
	Provide Evaluation Capability to other Applications
	Data Management
	Linear Algebra
	Statistics and Data Analysis
	Engineering and Physics

	Variables Definition and Assignment
	Scope of Variables
	Accessing Variables
	Special Uses

	Working with Matrices/Arrays
	Some Key Notes
	Matrices Overloading

	Managing User Defined Functions
	Library Built-in Functions
	Transcendental Functions
	ABS
	ACOS
	ASIN
	ATN
	AVG
	CEIL
	COS
	EXP
	FLOOR
	LGN
	LN
	LOG
	MAX
	MIN
	PERCENT
	POW
	ROUND
	SGN
	SIN
	SQR, SQRT
	SUM
	TAN

	Mathematical Functions
	CHOLESKY
	CHOLINVERSE
	CHOLSOLVE
	DET
	FZERO
	GAMMA
	GAMMALN
	INVERSE
	LSQRSOLVE
	LUDECOMP
	LUSOLVE
	MMULT
	MNEG
	MROUND
	MSUM
	MTRANSPOSE
	QR
	REM
	SOLVE

	Statistical Functions
	ACHISQ
	AERF
	AFISHF
	AGAUSS
	ANORM
	ASTUDT
	BETAINV
	CHISQ
	ERF
	FISHF
	FIT
	GAUSS
	IBETA
	MLR
	NORM
	STUDT
	TINV
	TINV_1T
	TINV_2T

	Financial Functions
	DDB
	FV
	IPMT
	IRR
	MIRR
	NPER
	NPV
	PMT
	PPMT
	PV
	RATE
	SLN
	SYD

	Date, Time and String Functions
	ASC
	CHR
	DATE
	DATEADD
	DATEDIFF
	DATEPART
	DATESERIAL
	DATEVALUE
	DAY
	FORMAT
	HOUR
	LCASE
	LEFT
	LEN
	MID
	MINUTE
	MONTH
	MONTHNAME
	NOW
	REPLACE
	RIGHT
	TIMESERIAL
	TIMEVALUE
	TRIM
	UCASE
	WEEKDAY
	WEEKDAYNAME
	YEAR

	Programming Functions
	ARRAY
	CHOOSE
	GET
	IFF
	SWITCH


	Testing
	Rubberduck
	Running Tests

	Limitations
	Conclusions
	Credits
	License
	Review History
	Appendix

