numpy-stl ============================================================================== .. image:: https://github.com/WoLpH/numpy-stl/actions/workflows/main.yml/badge.svg?branch=master :alt: numpy-stl test status :target: https://github.com/WoLpH/numpy-stl/actions/workflows/main.yml .. image:: https://ci.appveyor.com/api/projects/status/cbv7ak2i59wf3lpj?svg=true :alt: numpy-stl test status :target: https://ci.appveyor.com/project/WoLpH/numpy-stl .. image:: https://badge.fury.io/py/numpy-stl.svg :alt: numpy-stl Pypi version :target: https://pypi.python.org/pypi/numpy-stl .. image:: https://coveralls.io/repos/WoLpH/numpy-stl/badge.svg?branch=master :alt: numpy-stl code coverage :target: https://coveralls.io/r/WoLpH/numpy-stl?branch=master .. image:: https://img.shields.io/pypi/pyversions/numpy-stl.svg Simple library to make working with STL files (and 3D objects in general) fast and easy. Due to all operations heavily relying on `numpy` this is one of the fastest STL editing libraries for Python available. Security contact information ------------------------------------------------------------------------------ To report a security vulnerability, please use the `Tidelift security contact `_. Tidelift will coordinate the fix and disclosure. Issues ------ If you encounter any issues, make sure you report them `here `_. Be sure to search for existing issues however. Many issues have been covered before. While this project uses `numpy` as it's main dependency, it is not in any way affiliated to the `numpy` project or the NumFocus organisation. Links ----- - The source: https://github.com/WoLpH/numpy-stl - Project page: https://pypi.python.org/pypi/numpy-stl - Reporting bugs: https://github.com/WoLpH/numpy-stl/issues - Documentation: http://numpy-stl.readthedocs.org/en/latest/ - My blog: https://wol.ph/ Requirements for installing: ------------------------------------------------------------------------------ - `numpy`_ any recent version - `python-utils`_ version 1.6 or greater Installation: ------------------------------------------------------------------------------ `pip install numpy-stl` Initial usage: ------------------------------------------------------------------------------ After installing the package, you should be able to run the following commands similar to how you can run `pip`. .. code-block:: shell $ stl2bin your_ascii_stl_file.stl new_binary_stl_file.stl $ stl2ascii your_binary_stl_file.stl new_ascii_stl_file.stl $ stl your_ascii_stl_file.stl new_binary_stl_file.stl Contributing: ------------------------------------------------------------------------------ Contributions are always welcome. Please view the guidelines to get started: https://github.com/WoLpH/numpy-stl/blob/develop/CONTRIBUTING.rst Quickstart ------------------------------------------------------------------------------ .. code-block:: python import numpy from stl import mesh # Using an existing stl file: your_mesh = mesh.Mesh.from_file('some_file.stl') # Or creating a new mesh (make sure not to overwrite the `mesh` import by # naming it `mesh`): VERTICE_COUNT = 100 data = numpy.zeros(VERTICE_COUNT, dtype=mesh.Mesh.dtype) your_mesh = mesh.Mesh(data, remove_empty_areas=False) # The mesh normals (calculated automatically) your_mesh.normals # The mesh vectors your_mesh.v0, your_mesh.v1, your_mesh.v2 # Accessing individual points (concatenation of v0, v1 and v2 in triplets) assert (your_mesh.points[0][0:3] == your_mesh.v0[0]).all() assert (your_mesh.points[0][3:6] == your_mesh.v1[0]).all() assert (your_mesh.points[0][6:9] == your_mesh.v2[0]).all() assert (your_mesh.points[1][0:3] == your_mesh.v0[1]).all() your_mesh.save('new_stl_file.stl') Plotting using `matplotlib`_ is equally easy: ------------------------------------------------------------------------------ .. code-block:: python from stl import mesh from mpl_toolkits import mplot3d from matplotlib import pyplot # Create a new plot figure = pyplot.figure() axes = figure.add_subplot(projection='3d') # Load the STL files and add the vectors to the plot your_mesh = mesh.Mesh.from_file('tests/stl_binary/HalfDonut.stl') axes.add_collection3d(mplot3d.art3d.Poly3DCollection(your_mesh.vectors)) # Auto scale to the mesh size scale = your_mesh.points.flatten() axes.auto_scale_xyz(scale, scale, scale) # Show the plot to the screen pyplot.show() .. _numpy: http://numpy.org/ .. _matplotlib: http://matplotlib.org/ .. _python-utils: https://github.com/WoLpH/python-utils Experimental support for reading 3MF files ------------------------------------------------------------------------------ .. code-block:: python import pathlib import stl path = pathlib.Path('tests/3mf/Moon.3mf') # Load the 3MF file for m in stl.Mesh.from_3mf_file(path): # Do something with the mesh print('mesh', m) Note that this is still experimental and may not work for all 3MF files. Additionally it only allows reading 3mf files, not writing them. Modifying Mesh objects ------------------------------------------------------------------------------ .. code-block:: python from stl import mesh import math import numpy # Create 3 faces of a cube data = numpy.zeros(6, dtype=mesh.Mesh.dtype) # Top of the cube data['vectors'][0] = numpy.array([[0, 1, 1], [1, 0, 1], [0, 0, 1]]) data['vectors'][1] = numpy.array([[1, 0, 1], [0, 1, 1], [1, 1, 1]]) # Front face data['vectors'][2] = numpy.array([[1, 0, 0], [1, 0, 1], [1, 1, 0]]) data['vectors'][3] = numpy.array([[1, 1, 1], [1, 0, 1], [1, 1, 0]]) # Left face data['vectors'][4] = numpy.array([[0, 0, 0], [1, 0, 0], [1, 0, 1]]) data['vectors'][5] = numpy.array([[0, 0, 0], [0, 0, 1], [1, 0, 1]]) # Since the cube faces are from 0 to 1 we can move it to the middle by # substracting .5 data['vectors'] -= .5 # Generate 4 different meshes so we can rotate them later meshes = [mesh.Mesh(data.copy()) for _ in range(4)] # Rotate 90 degrees over the Y axis meshes[0].rotate([0.0, 0.5, 0.0], math.radians(90)) # Translate 2 points over the X axis meshes[1].x += 2 # Rotate 90 degrees over the X axis meshes[2].rotate([0.5, 0.0, 0.0], math.radians(90)) # Translate 2 points over the X and Y points meshes[2].x += 2 meshes[2].y += 2 # Rotate 90 degrees over the X and Y axis meshes[3].rotate([0.5, 0.0, 0.0], math.radians(90)) meshes[3].rotate([0.0, 0.5, 0.0], math.radians(90)) # Translate 2 points over the Y axis meshes[3].y += 2 # Optionally render the rotated cube faces from matplotlib import pyplot from mpl_toolkits import mplot3d # Create a new plot figure = pyplot.figure() axes = figure.add_subplot(projection='3d') # Render the cube faces for m in meshes: axes.add_collection3d(mplot3d.art3d.Poly3DCollection(m.vectors)) # Auto scale to the mesh size scale = numpy.concatenate([m.points for m in meshes]).flatten() axes.auto_scale_xyz(scale, scale, scale) # Show the plot to the screen pyplot.show() Extending Mesh objects ------------------------------------------------------------------------------ .. code-block:: python from stl import mesh import math import numpy # Create 3 faces of a cube data = numpy.zeros(6, dtype=mesh.Mesh.dtype) # Top of the cube data['vectors'][0] = numpy.array([[0, 1, 1], [1, 0, 1], [0, 0, 1]]) data['vectors'][1] = numpy.array([[1, 0, 1], [0, 1, 1], [1, 1, 1]]) # Front face data['vectors'][2] = numpy.array([[1, 0, 0], [1, 0, 1], [1, 1, 0]]) data['vectors'][3] = numpy.array([[1, 1, 1], [1, 0, 1], [1, 1, 0]]) # Left face data['vectors'][4] = numpy.array([[0, 0, 0], [1, 0, 0], [1, 0, 1]]) data['vectors'][5] = numpy.array([[0, 0, 0], [0, 0, 1], [1, 0, 1]]) # Since the cube faces are from 0 to 1 we can move it to the middle by # substracting .5 data['vectors'] -= .5 cube_back = mesh.Mesh(data.copy()) cube_front = mesh.Mesh(data.copy()) # Rotate 90 degrees over the X axis followed by the Y axis followed by the # X axis cube_back.rotate([0.5, 0.0, 0.0], math.radians(90)) cube_back.rotate([0.0, 0.5, 0.0], math.radians(90)) cube_back.rotate([0.5, 0.0, 0.0], math.radians(90)) cube = mesh.Mesh(numpy.concatenate([ cube_back.data.copy(), cube_front.data.copy(), ])) # Optionally render the rotated cube faces from matplotlib import pyplot from mpl_toolkits import mplot3d # Create a new plot figure = pyplot.figure() axes = figure.add_subplot(projection='3d') # Render the cube axes.add_collection3d(mplot3d.art3d.Poly3DCollection(cube.vectors)) # Auto scale to the mesh size scale = cube_back.points.flatten() axes.auto_scale_xyz(scale, scale, scale) # Show the plot to the screen pyplot.show() Creating Mesh objects from a list of vertices and faces ------------------------------------------------------------------------------ .. code-block:: python import numpy as np from stl import mesh # Define the 8 vertices of the cube vertices = np.array([\ [-1, -1, -1], [+1, -1, -1], [+1, +1, -1], [-1, +1, -1], [-1, -1, +1], [+1, -1, +1], [+1, +1, +1], [-1, +1, +1]]) # Define the 12 triangles composing the cube faces = np.array([\ [0,3,1], [1,3,2], [0,4,7], [0,7,3], [4,5,6], [4,6,7], [5,1,2], [5,2,6], [2,3,6], [3,7,6], [0,1,5], [0,5,4]]) # Create the mesh cube = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype)) for i, f in enumerate(faces): for j in range(3): cube.vectors[i][j] = vertices[f[j],:] # Write the mesh to file "cube.stl" cube.save('cube.stl') Evaluating Mesh properties (Volume, Center of gravity, Inertia) ------------------------------------------------------------------------------ .. code-block:: python import numpy as np from stl import mesh # Using an existing closed stl file: your_mesh = mesh.Mesh.from_file('some_file.stl') volume, cog, inertia = your_mesh.get_mass_properties() print("Volume = {0}".format(volume)) print("Position of the center of gravity (COG) = {0}".format(cog)) print("Inertia matrix at expressed at the COG = {0}".format(inertia[0,:])) print(" {0}".format(inertia[1,:])) print(" {0}".format(inertia[2,:])) Combining multiple STL files ------------------------------------------------------------------------------ .. code-block:: python import math import stl from stl import mesh import numpy # find the max dimensions, so we can know the bounding box, getting the height, # width, length (because these are the step size)... def find_mins_maxs(obj): minx = obj.x.min() maxx = obj.x.max() miny = obj.y.min() maxy = obj.y.max() minz = obj.z.min() maxz = obj.z.max() return minx, maxx, miny, maxy, minz, maxz def translate(_solid, step, padding, multiplier, axis): if 'x' == axis: items = 0, 3, 6 elif 'y' == axis: items = 1, 4, 7 elif 'z' == axis: items = 2, 5, 8 else: raise RuntimeError('Unknown axis %r, expected x, y or z' % axis) # _solid.points.shape == [:, ((x, y, z), (x, y, z), (x, y, z))] _solid.points[:, items] += (step * multiplier) + (padding * multiplier) def copy_obj(obj, dims, num_rows, num_cols, num_layers): w, l, h = dims copies = [] for layer in range(num_layers): for row in range(num_rows): for col in range(num_cols): # skip the position where original being copied is if row == 0 and col == 0 and layer == 0: continue _copy = mesh.Mesh(obj.data.copy()) # pad the space between objects by 10% of the dimension being # translated if col != 0: translate(_copy, w, w / 10., col, 'x') if row != 0: translate(_copy, l, l / 10., row, 'y') if layer != 0: translate(_copy, h, h / 10., layer, 'z') copies.append(_copy) return copies # Using an existing stl file: main_body = mesh.Mesh.from_file('ball_and_socket_simplified_-_main_body.stl') # rotate along Y main_body.rotate([0.0, 0.5, 0.0], math.radians(90)) minx, maxx, miny, maxy, minz, maxz = find_mins_maxs(main_body) w1 = maxx - minx l1 = maxy - miny h1 = maxz - minz copies = copy_obj(main_body, (w1, l1, h1), 2, 2, 1) # I wanted to add another related STL to the final STL twist_lock = mesh.Mesh.from_file('ball_and_socket_simplified_-_twist_lock.stl') minx, maxx, miny, maxy, minz, maxz = find_mins_maxs(twist_lock) w2 = maxx - minx l2 = maxy - miny h2 = maxz - minz translate(twist_lock, w1, w1 / 10., 3, 'x') copies2 = copy_obj(twist_lock, (w2, l2, h2), 2, 2, 1) combined = mesh.Mesh(numpy.concatenate([main_body.data, twist_lock.data] + [copy.data for copy in copies] + [copy.data for copy in copies2])) combined.save('combined.stl', mode=stl.Mode.ASCII) # save as ASCII Known limitations ------------------------------------------------------------------------------ - When speedups are enabled the STL name is automatically converted to lowercase.