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1. Long-Run Restrictions
Blanchard and Quah (1989) consider a bivariate model of the U.S. economy, where urt denotes the
U.S. unemployment rate and gdpt the log of U.S. real GDP. There is some evidence that urt is
covariance stationary, whereas gdpt exhibits a unit root; that is, GDP growth, ∆gdpt = gdpt − gdpt−1,
is covariance-stationary. Blanchard and Quah (1989) set up a SVAR model for yt = (∆gdpt, urt)′ and
analyze the effects of two structural shocks, an aggregate supply shock εAS

t and an aggregate demand
shock εAD

t .

1. Why are short-run restrictions sometimes (or even often) problematic? What about long-run
restrictions?

2. Assume for simplicity a VAR(1) model for yt. Derive the effect of the structural shocks on the
behavior of urt+h, ∆gdpt+h and gdpt+h for h = 0, 1, 2 · · ·. What happens in the long-run, i.e. for
h → ∞?

3. Discuss the implications on the structural impulse responses of requiring gdpt to return to its
initial level in the long-run in response to an aggregate demand shock.

4. Given knowledge of the reduced-form VAR model parameters, show how to recover the short-run
impact matrix B−1

0 from the long-run structural impulse response matrix

Θ(1) = (I − A1 − · · · − Ap)−1B−1
0 = A(1)−1B−1

0

where A(1) denotes the lag polynomial evaluated at L = 1.

5. Consider the data given in BlanchardQuah1989.csv. Estimate a SVAR(8) model with a constant
term. The structural shocks are identified by imposing that εAD

t has no long-run effect on the
level of real GDP. Estimate the impact matrix B−1

0 using

a) the Cholesky decomposition on Â(1)−1Σ̂uÂ(1)−1′
= Θ(1)Θ(1)′

b) a nonlinear equation solver that minimizes

F (B−1
0 ) =

[
vech(B−1

0 B−1′

0 − Σ̂u)
restrictions on Θ(1)

]

where Θ(1) = (I − A1 − · · · − Ap)−1B−1
0 = A(1)−1B−1

0 . Assume that E(εtε
′
t) = I2 and the

diagonal elements of B−1
0 are positive.

6. Plot the structural impulse response functions using irfPlots.m for the level of GDP and the
unemployment rate. Interpret your results in economic terms.

Readings

• Kilian and Lütkepohl (2017, Ch. 10.1, 10.3, 11.1, 11.2)
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2. Combining Short-Run And Long-Run Restrictions
Consider a stylized VAR(4) model of U.S. monetary policy with only three quarterly variables. Let
yt = (∆gnpt, it, ∆pt)′ be stationary variables, where gnpt denotes the log of U.S. real GNP, pt the
corresponding GNP deflator in logs, and it the federal funds rate, averaged by quarter. The estimation
period is restricted to 1954q4-2007q4 in order to exclude the period of unconventional monetary policy
measures. Defining εt = (εpolicy

t , εAD
t , εAS

t )′, the identifying restrictions can be summarized as

B−1
0 =

0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 and Θ(1) = A(1)−1B−1
0 =

0 0 ∗
∗ ∗ ∗
∗ ∗ ∗


The long-run restrictions are imposed on the cumulated impulse responses.

1. Provide intuition given the above identifying restrictions.

2. Consider the data given in RWZ2010.csv. Estimate a VAR(4) model with a constant term.

3. Estimate the structural impact matrix using a nonlinear equation solver, i.e. the objective is to
find the unknown elements of B−1

0 such that vech(B−1
0 B−1′

0 − Σ̂u)
short-run restrictions on B−1

0
long-run restrictions on Θ(1)


is minimized where the normalization Σε = I3 is imposed. Furthermore, use the following insight
to normalize the signs of the columns of B−1

0 :
• a monetary policy shock (first column) raises the interest rate (second row) (monetary

tightening)
• a positive aggregate demand shock (second column) does not lower real GNP (first row)

and inflation (third row)
• a positive aggregate supply shock (3rd column) does not lower real GNP (first row) and

does not raise inflation (third row)

4. Use the implied estimate of the structural impact matrix to plot the structural impulse response
functions for the level of real GNP, the Federal Funds rate and the Deflator Inflation with
response to a tightening in monetary policy. Interpret your results economically.

Readings

• Kilian and Lütkepohl (2017, Ch. 10.4, 10.5, 11.3)
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3. Inference In SVARs Identified By Exclusion Restrictions
Consider an exactly-identified structural VAR model subject to short- and/or long-run restrictions,
where the structural impulse response of variable j to structural shock k at horizon h is denoted as
θjk,h, which we simply denote as θ. We are interested in the distribution of θ, in particular deriving
(1 − γ)% point-wise confidence intervals given a consistent estimate θ̂ of θ.

1. Consider the asymptotic confidence intervals which are derived using the delta method:

θ̂ ± zγ/2ŝtd(θ̂)

where zγ/2 denotes the γ/2 percentile of the standard normal distribution and ŝtd(θ̂) a consis-
tent estimate of the standard deviation of θ. Name the assumptions and shortcomings of this
approach.

2. Outline the idea and algorithm of the Standard Residual-Based Recursive-Design Bootstrap
approach.

3. Name the central idea underlying the Residual-Based Wild Bootstrap.

4. Discuss the choice of significance level γ.

5. Discuss how to draw initial conditions for a resampling method.

6. Given a bootstrap approximation to the distribution of the structural impulse-response function,
discuss how to construct bootstrap confidence intervals from this distribution. Particularly,
explain

a) intervals based on bootstrap standard errors
b) Efron’s percentile interval
c) equal-tailed percentile-t intervals

Readings

• Kilian and Lütkepohl (2017, Ch. 12.1-12.5, 12.9)
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A. Solutions
1 Solution to Long-Run Restrictions

1. Short-run restrictions are often quite restrictive as we require knowledge of how certain variables
react instantaneously to certain shocks. Economic theory does not really give us much guidance
in the short-run, so we usually argue that certain variables are sluggish or information of variables
is only available with a time lag. If we can agree on such behavior, we can be pretty confident
about these restrictions. But most of the times, economists do not agree about the behavior of
the variables in the short-run or have competing models about it. On the other hand, there is
much more agreement what happens in the long-run. For instance, there is a vast literature on
the effect of monetary policy shocks on output and inflation in the short-run with disagreeing
results. On the other hand, most economists would agree that the effect of demand shocks
such as monetary policy shocks have no effects on output and a positive effect on the price
level. This suggests an alternative approach, i.e use theoretically-inspired long-run restrictions
to identify shocks and impulse responses not only for the long-run behavior but also for the
short-run behavior of all variables.

2. We have already shown that in a VAR(1) model we get the following structural impulse response
function for horizons h = 0, 1, 2, · · ·

∂yt

∂ε′
t

= B−1
0 ,

∂yt+1
∂ε′

t

= A1B−1
0 ,

∂yt+2
∂ε′

t

= A2
1B−1

0 ,
∂yt+h

∂ε′
t

= Ah
1B−1

0

The effects of ∆gdpt are given by the first row and the second row contains the effects on urt.
So the effect of the structural shocks on the covariance stationary variables urt and ∆gdpt is
given by

• B−1
0 on impact

• A1B−1
0 after one period

• A2
1B−1

0 after two periods
• Ah

1B−1
0 after h periods

Now, because urt and ∆gdpt are covariance stationary, the Eigenvalues of A1 are inside the unit
circle. So, in the long-run, h → ∞, we have that Ah → 0. That is, the effect of the structural
shocks on the covariance-stationary variables urt and ∆gdpt vanishes over time and they return
to their expected mean value. On the other hand, given the IRFs of ∂∆gdpt+h

∂ε′
t

we can derive the
IRF of gdpt+h by the cumulative sum

∂gdpt+h

∂ε′
t

= ∂∆gdpt

∂ε′
t

+ ∂∆gdpt+1
∂ε′

t

+ · · · + ∂∆gdpt+h

∂ε′
t

That is, the effect on the level of GDP to an increase in the structural shocks is equal to the
first row in

• (I)B−1
0 on impact

• (I + A1)B−1
0 after one period

• (I + A1 + A2
1)B−1

0 after two periods
• (I + A1 + A2

1 + A3
1)B−1

0 after three periods
• (I + A1 + A2

1 + · · · + Ah
1)B−1

0 after h periods
In the long-run, h → ∞, the effect of the structural shocks on the level of gdpt is given by the
first row of

(I + A1 + A2
1 + A3

1 + · · · )B−1
0 = (I − A)−1B−1

0
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Again, we make use of the fact that urt and ∆gdpt are covariance-stationary, which implies that
the Eigenvalues of A1 are inside the unit circle and we can make use of the formula for the
geometric sum.
More generally, for VAR(p) models with variables in first-differences, we get the long-run effect
matrix for the corresponding level variables

Θ(1) = A(1)−1B−1
0

where A(1) = (I − A1 − · · · − Ap) is the lag polynomial evaluated at L = 1.

3. Re-consider the long-run multiplier matrix:

Θ(1) = A(1)−1B−1
0 ≡

(
a c
b d

)

where a and c are the long-run effects of εAS
t and εAD

t on the level of gdpt. Economic theory
tells us that in the long-run gdpt is not affected by an aggregate demand shock and it returns
to its initial value. In other words, economic theory requires that c = 0:

Θ(1) = A(1)−1B−1
0 ≡

(
a 0
b d

)

Note that we don’t have anything to say about a (the effect of an AS shock on the level of GDP)
and leave it unrestricted. Similarly, as urt is covariance-stationary and does not enter yt as first
difference, we can’t really identify or economically interpret b and d and leave it unrestricted as
well.

4. There are two ways to infer B−1
0 from the restricted Θ(1) = A(1)−1B−1

0 ≡
(

a 0
b d

)
matrix:

1. Method: Cholesky decomposition
Note that Θ(1) is lower triangular and looks like a Cholesky factor. Indeed:

Θ(1)Θ(1)′ = A(1)−1B−1
0 B−1′

0 A(1)−1′
= A(1)−1ΣuA(1)−1′

This right-hand side can be readily computed as both A(1) as well as Σu are given by the reduced-
form estimation. That is computing the lower triangular Cholesky factor of A(1)−1ΣuA(1)−1′

provides Θ(1). From Θ(1) we can compute B−1
0 :

B−1
0 = A(1)Θ(1)

Once we have B−1
0 we can proceed as usual and compute the impulse response function.

2. Method: Numerical optimization
Use a numerical optimizer to find a B−1

0 matrix that fulfills the following restrictions:
• covariance restrictions: vech(B−1

0 B−1′

0 ) = vech(Σu)
• long-run restriction: Θ(1)1,2 = 0

where Θ(1) = A(1)−1B−1
0 . Note that both Σu as well as A(1)−1 are fixed parameters and given

by the reduced-form estimation.

5. The code might look like this:

progs/matlab/BlanchardQuahLR.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Replicates the Blanchard and Quah (1989) model using long−run restrictions

3 % to identify the structural shocks either via a Cholesky decomposition or
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4 % using a numerical solver for expository purposes

5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % Willi Mutschler, December 14, 2022

7 % willi@mutschler.eu

8 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 clearvars; clc;close all;

11
12 %% settings and options

13 nlag = 8; % number of lags

14 nsteps = 40; % horizon of IRFs

15 IRFcumsum = [1 0]; % cumulate (1) or not (0) IRFs for

each variable

16 varnames = ["GDP level", "Unemployment"]; % variable names in IRF plots

17 epsnames = ["Supply Shock", "Demand Shock"]; % shock names in IRF plots

18
19 % file where identification restrictions are set up

20 f = str2func('BlanchardQuahLR_f');

21 StartValueMethod = 1; % 0: Use identity matrix, 1: use square root, 2: use

cholesky as starting value

22 % options for fsolve

23 TolX = 1e−4; % termination tolerance on the current point

24 TolFun = 1e−9; % termination tolerance on the function value

25 MaxFunEvals = 50000; % maximum number of function evaluations allowed

26 MaxIter = 1000; % maximum numberof iterations allowed

27 OptimAlgorithm = 'trust−region−dogleg'; % algorithm used in fsolve

28 options=optimset('TolX',TolX,'TolFun',TolFun,'MaxFunEvals',MaxFunEvals,'MaxIter',

MaxIter,'Algorithm',OptimAlgorithm);

29
30 %% data handling

31 BlanchardQuah1989 = importdata('../../data/BlanchardQuah1989.csv'); % load data

32 ENDO = BlanchardQuah1989.data;

33 [obs_nbr,var_nbr] = size(ENDO);

34
35 %% reduced−form estimation

36 opt.const = 1; % 0: no constant, 1: constant, 2: constant and linear trend

37 VAR = VARReducedForm(ENDO,nlag,opt); % Estimate reduced form

38 A1inv_big = inv(eye(size(VAR.Acomp,1))−VAR.Acomp); % Long−run matrix using

companion form

39 J = [eye(var_nbr),zeros(var_nbr,var_nbr*(nlag−1))];
40 LRMat = J*A1inv_big*J'; % total impact matrix inv(eye(nvars)−A1hat−A2hat−...−

Aphat)

41
42 %% structural Estimation

43 % identification using Cholesky

44 THETA_cholesky = chol(LRMat*VAR.SigmaOLS*LRMat','lower');

45 B0inv_cholesky = inv(LRMat)*THETA_cholesky;

46
47 % identification using numerical optimization

48 if StartValueMethod == 0

49 B0inv_opt = eye(var_nbr); % use identity matrix as starting value

50 elseif StartValueMethod == 1
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51 B0inv_opt = VAR.SigmaOLS^.5; % use square root of vcov of reduced form as

starting value

52 elseif StartValueMethod == 2

53 B0inv_opt = chol(VAR.SigmaOLS,'lower'); % use Cholesky decomposition of vcov

of reduced form

54 end

55 f(B0inv_opt,VAR.SigmaOLS,LRMat)' % test whether function works at initial value (

should give you no error)

56
57 % Call optimization routine fsolve to minimize f

58 [B0inv_opt,fval,exitflag,output] = fsolve(f,B0inv_opt,options,VAR.SigmaOLS,LRMat)

;

59
60 % normalization rule on impact matrix: diagonal elements of B0inv are supposed to

be positive (only needed for optimized values, cholesky is always positive on

diagonal)

61 if any(diag(B0inv_opt)<0)

62 x = diag(B0inv_opt)<0;

63 B0inv_opt(:,find(x==1)) = −1*B0inv_opt(:,find(x==1));
64 end

65
66 % compare

67 table(B0inv_cholesky, B0inv_opt)

68 impact = B0inv_opt;

69
70 % check that B0inv solution is correct (result should be (close to a) K x K zero

matrix)

71 impact*impact'−VAR.SigmaOLS
72 % check that structural innovations are orthogonal to one another (result should

be identity matrix for correlations)

73 E=inv(impact)*VAR.residuals;

74 corrcoef(E(2,:),E(1,:))

75
76 %% compute and plot structural impulse response function

77 IRFpoint = irfPlots(VAR.Acomp,impact,nsteps,IRFcumsum,varnames,epsnames);

Here is the helper function to impose the restrictions:

progs/matlab/BlanchardQuahLR_f.m
1 function f = BlanchardQuahLR_f(B0inv,SIGMAUHAT,LRMat)

2 % f = BlanchardQuahLR_f(B0inv,SIGMAUHAT,LRMat)

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Evaluates the system of nonlinear equations

5 % vech(SIGMAUHAT) = vech(B0inv*B0inv')

6 % subject to the long−run restrictions

7 % [* 0;

8 % * *];

9 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 % INPUTS

11 % − B0inv : candidate for short−run impact matrix. [var_nbr x var_nbr]

12 % − SIGMAUHAT : covariance matrix of reduced−form residuals. [var_nbr x var_nbr

]

13 % − LRMat : total long−run impact matrix. [var_nbr x var_nbr]
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14 % − for VAR model A(1) = inv(eye(nvars)−A1hat−A2hat−...−Aphat)
15 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 % OUTPUTS

17 % − f : function value of system of nonlinear equations

18 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 % Willi Mutschler, November 2017

20 % willi@mutschler.eu

21 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22
23 THETA = LRMat*B0inv; % cumulated (long−run) impulse response function

24 f=[vech(B0inv*B0inv'−SIGMAUHAT);
25 THETA(1,2) − 0;

26 ];

27
28 end

The supply shock has on impact a positive effect on the log-level of GDP, it then drops for one
quarter, but increases again afterwards. The long-run effect of a supply shock on the log-level
of GDP is positive. On the other hand, the demand shock obviously has no long-run effect on
the log-level of GDP (due to our identifying restriction), whereas in the short-run the effect is
negative. The effects on the unemployment rate are basically flipped with the exception that in
the long-run the effects vanish as urt is covariance-stationary.
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2 Solution to Combining Short-Run And Long-Run Restrictions

1. The Federal Reserve Board is assumed to control the interest rate by setting the policy innovation
after observing the forecast errors for deflator inflation and real GNP growth. The model is fully
identified and includes an aggregate demand shock and an aggregate supply shock in addition to
the monetary policy shock. The monetary policy shock does not affect real GNP either within
the current quarter or in the long run. The only shock to affect the log-level of real GNP in the
long run is the aggregate supply shock.

2/3/4 The code might look like this:

progs/matlab/RWZSRLR.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Replicates the Rubio−Ramirez, Waggoner, Zha (2010)'s model using both

3 % short−run and long−run restrictions to identify the structural shocks

4 % using a numerical solver (instead of the more efficient algorithm

5 % proposed by the authors)

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % Willi Mutschler, December 14, 2022

8 % willi@mutschler.eu

9 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10
11 clearvars; clc; close all;

12
13 % data handling

14 RWZ2010 = importdata('../../data/RWZ2010.csv');

15 ENDO = RWZ2010.data;

16
17 % settings and options

18 varnames = ["GDP level", "Federal Funds Rate", "Deflator Inflation"];

19 epsnames = ["Policy", "Aggregate Demand", "Aggregate Supply"] + "Shock"; % note

that structural shocks are not ordered in the same row as the corresponding

variable!!!

20 IRFcumsum = [1 0 0];

21 nsteps = 40;

22 nlag = 4;

23 [obs_nbr,var_nbr] = size(ENDO);

24
25 % estimate reduced−form
26 opt.const = 1;

27 VAR = VARReducedForm(ENDO,nlag,opt);

28 A1inv_big = inv(eye(size(VAR.Acomp,1))−VAR.Acomp); % from the companion form

29 LRMat = A1inv_big(1:var_nbr,1:var_nbr); % total impact matrix inv(eye(nvars)−
A1hat−A2hat−...−Aphat)

30 % one can also use the J matrix

31 % J = [eye(var_nbr),zeros(var_nbr,var_nbr*(nlag−1))];
32 % LRMat = J*A1inv_big*J';

33
34 % options for fsolve

35 TolX = 1e−4; % termination tolerance on the current point

36 TolFun = 1e−9; % termination tolerance on the function value

37 MaxFunEvals = 50000; % maximum number of function evaluations allowed

38 MaxIter = 1000; % maximum numberof iterations allowed

39 OptimAlgorithm = 'trust−region−dogleg'; % algorithm used in fsolve
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40 optim_options = optimset('TolX',TolX,'TolFun',TolFun,'MaxFunEvals',MaxFunEvals,'

MaxIter',MaxIter,'Algorithm',OptimAlgorithm);

41
42 % initital guess

43 StartValueMethod = 2; % 0: Use identity matrix, 1: use square root, 2: use

cholesky as starting value

44 if StartValueMethod == 0

45 B0inv = eye(var_nbr); % Use identity matrix as starting value

46 elseif StartValueMethod == 1

47 B0inv = VAR.SigmaOLS^.5; % Use square root of vcov of reduced form as

starting value

48 elseif StartValueMethod == 2

49 B0inv = chol(VAR.SigmaOLS,'lower'); % Use Cholesky decomposition of vcov of

reduced form

50 end

51
52 % structural identification

53 f = str2func('RWZSRLR_f'); % identification restrictions are set up in

RWZSRLR_f

54 f(B0inv,VAR.SigmaOLS,LRMat)' % test whether function works at initial value (

should give you no error)

55
56 % call optimization routine fsolve

57 [B0inv,fval,exitflag,output] = fsolve(f,B0inv,optim_options,VAR.SigmaOLS,LRMat);

58 disp(B0inv);

59
60 % normalization rules

61 if sign(B0inv(2,1)) == −1
62 B0inv(:,1)=−B0inv(:,1); % normalize sign of first column such that a monetary

policy shock (first column) raises the interest rate (second row) (

monetary tightening)

63 end

64 if sign(B0inv(1,2)) == −1 && sign(B0inv(3,2)) == −1
65 B0inv(:,2)=−B0inv(:,2); % normalize sign of second column such that a

positive aggregate demand shock (2nd column) does not lower real GNP (

first row) and inflation (third row)

66 end

67 if sign(B0inv(1,3)) == −1 && sign(B0inv(3,3)) == 1

68 B0inv(:,3)=−B0inv(:,3); % normalize sign of third column such that a positive

aggregate supply shock (3rd column) does not lower real GNP (first row)

and does not raise inflation (third row)

69 end

70
71 impact = B0inv;

72
73 % check that B0inv solution is correct (result should be (close to a) K x K zero

matrix)

74 impact*impact'−VAR.SigmaOLS
75 % check that structural innovations are orthogonal to one another (result should

be identity matrix for correlations)

76 E = inv(impact)*VAR.residuals;

77 corrcoef(E(1,:),E(2,:))
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78 corrcoef(E(1,:),E(3,:))

79 corrcoef(E(2,:),E(3,:))

80
81 % compute and plot structural impulse response function

82 IRFpoint = irfPlots(VAR.Acomp,impact,nsteps,IRFcumsum,varnames,epsnames);

Here is the helper function to impose the restrictions:

progs/matlab/RWZSRLR_f.m
1 function f = RWZSRLR_f(B0inv,SIGMAUHAT,LRMat)

2 % f = RWZSRLR_f(B0inv,SIGMAUHAT,LRMat)

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Evaluates the system of nonlinear equations vech(SIGMAUHAT) = vech(B0inv*B0inv

')

5 % subject to the short−run and long−run restrictions.

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % INPUTS

8 % − B0inv : candidate for short−run impact matrix. [var_nbr x var_nbr]

9 % − SIGMAUHAT : covariance matrix of reduced−form residuals. [var_nbr x var_nbr

]

10 % − LRMat : total long−run impact matrix. [var_nbr x var_nbr]

11 % − for VAR model A(1) = inv(eye(nvars)−A1hat−A2hat−...−Aphat)
12 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 % OUTPUTS

14 % − f : function value, see below

15 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 % Willi Mutschler, December 14, 2022

17 % willi@mutschler.eu

18 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19
20 THETA = LRMat*B0inv;

21
22 f = [vech(SIGMAUHAT−B0inv*B0inv');
23 B0inv(1,1) − 0;

24 THETA(1,1) − 0;

25 THETA(1,2) − 0;

26 ];

27
28 end

An unexpected monetary policy tightening is associated with a persistent decline in real GNP
and a rather short-lived response in inflation. This is an interesting finding considering the dual
mandate of the Federal Reserve.
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3 Solution to Inference In SVARs Identified By Exclusion Restrictions First, some notation.
The underlying VAR model is given by:

yt = ν + A1yt−1 + · · · + Apyt−p + ut

where the structural shocks are related to the residuals by the impact matrix, ut = B−1
0 εt, such that

Σu = B−1
0 B−1

0
′. Now let’s collect the reduced-form coefficients in a vector α:

α = vec
([

ν A1 · · · Ap

])
and similarly, the unique coefficients of Σu in a vector σ:

σ = vech (Σu)

Key insight: the impulse response function for variable j with respect to shock k at horizon h is a
function of α and σ:

θ ≡ θjkh = g(α, σ)

1. Under some suitable conditions (ut is Gaussian iid or ut is iid with finite 4 moments), one can
use a central limit theorem to derive the asymptotic distribution of α and σ given OLS (or ML)
estimates α̂ and σ̂:

√
T

(
α̂
σ̂

)
d−→ N

((
α
σ

)
,

(
Σα̂ 0
0 Σσ̂

))
where the block diagonal structure of the covariance matrix is without loss of generality to
simplify the exposition and also since it appears under Gaussianity. Particularly, assuming
Gaussian ut consistent estimates can be derived:

Σ̂α̂ =
( 1

T
ZZ ′

)−1
⊗ Σ̂u

Σ̂σ̂ = 2D+
K

(
Σ̂u ⊗ Σ̂u

)
D+

K
′

where DK is a duplication matrix such that DKvech(Σu) = vec(Σu) and D+
K = (D′

KDK)−1D′
K

its Moore-Penrose inverse. In other words, both DK or D+
K are sparse matrices with some entries

being equal to either 1/2, 1 or 2, so it is a fixed matrix.
DELTA METHOD: The delta method is an analytical way to derive the asymptotic distri-
bution of a function of asymptotically normally distributed variables with known (estimated)
mean and variance. More precisely, if asymptotically X ∼ N(µX , ΣX) we are able to derive
the asymptotic distribution of a continuous function θ = g(X) based on a first-order Taylor
expansion of g at x = µX :

θ = g(X) ≈ g(µX) + ∂g(µX)
∂X ′ (X − µX)

Making use of the Gaussian distribution we can easily compute the expectation and variance to
derive the asymptotic distribution of θ:

θ = g(X) ∼ N

(
g(µX), ∂g(µX)

∂X ′ ΣX
∂g(µX)

∂X

)
The delta method requires consistent estimates and is an important tool to derive asymptotic
distributions.1 For us, if ut is a normally distributed white noise process, we know the asymp-
totic distributions of α and σu, and hence, we may rely on asymptotics based on the normal

1For example, the delta method is often used to derive the asymptotic distribution of standard errors when estimated
with Maximum Likelihood methods. That is, a variance σ2

x is a positive number; however, many numerical optimizers
are not designed to work well with a bounded domain of parameters. One often employed approach is to do a param-
eter transformation, i.e. θ = log(σ2

x) to get the ML estimates θ̂ and corresponding variance V̂ (θ̂). As ML estimators
are asymptotically normally distributed, one uses the delta method to report the point estimate for σ̂X = e0.5θ̂ and
corresponding standard error ˆstd(σ̂X) =

√
0.5e0.5θ̂V̂ (θ̂)0.5e0.5θ̂.
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distribution to get the stated confidence interval

θ̂ ± zγ/2ŝtd(θ̂)

However, this works only under very restrictive assumptions. A more general approach is to rely
on simulation-based methods (sampling techniques), i.e. to bootstrap the distribution of θ based
on sample analogues. There are many different bootstrap approaches, we will cover only the
main ones (and not the most recent ones), to understand the intuition and general approach.
One more thing to consider, even when using this asymptotic confidence interval, is that we rely
on a consistent estimate for ŝtd(θ̂), for which we either may use closed-form expressions (valid
under Gaussianity) or, better, which we can alternatively base on a bootstrap approximation.

2. ut is iid white noise with distribution F , ut
iid∼ F . Idea: approximate the unknown stationary

VAR(p) data generating process (DGP) of known order p:

yt = v + A1yt−1 + · · · + Apyt−p + ut

by the bootstrap DGP

y∗
t = ν̂ + Â1y∗

t−1 + · · · + Âpy∗
t−p + u∗

t

where u∗
t

iid∼ F̂T and F̂T is the implied estimate of the error distribution F . ∗ marks values
corresponding to the bootstrap DGP. Usually we use a nonparametric approach, i.e. we draw
u∗

t with replacement from the set of residuals {û}T
t=1 of the consistent reduced-form estimation.

The key insight is that u∗
t has the same distribution as ut.

Side note: it is advisable to use a nonparametric approach instead of a wrong parametric one
(e.g. normal distribution for u∗

t )!
Algorithm:
Given random draws for u∗r

t , t = 1, . . . , T and initial conditions [y∗r
−p+1, . . . , y∗r

0 ] recursively gener-
ate for each bootstrap replication r = 1, . . . , R a sequence of bootstrap realizations {y∗r

t }T
t=−p+1

as

y∗r
1 = v̂ + Â1y∗r

0 + · · · + Âpy∗r
−p+1 + u∗r

1

y∗r
2 = v̂ + Â1y∗r

1 + · · · + Âpy∗r
−p+2 + u∗r

2
...

y∗r
T = v̂ + Â1y∗r

T −1 + · · · + Âpy∗r
−p+T + u∗r

T

Then proceed as usual: estimate reduced-form (if you estimated the lag length you should
estimate lag length again as well), use identification restrictions to compute bootstrapped impulse
response function in each replication r. Given this approach we get a bootstrap approximation
to the distribution of the IRFs, which we can use for inference.

3. The Standard Residual-Based Bootstrap approach requires iid regression errors, this is a quite
strong and restrictive assumption. An alternative is to use the so-called Wild Bootstrap, i.e.
instead of drawing u∗r

t with replacement, we multiply each element of the residual vector by a
scalar draw ηt from an auxiliary distribution that has mean zero and unit variance:

u∗r
t = ûtηt, ηt

iid∼ (0, 1)

Possible distributions are usually
a) standard normal distribution
b) ηt = 1 with probability 0.5 and ηt = −1 with probability 0.5
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c) ηt = −(
√

5 − 1)/2 with probability p and ηt = (
√

5 + 1)/2 with probability 1 − p, where
p = (

√
5 + 1)/(2

√
5).

Note 1: Usually there is not much difference which distribution is chosen.
Note 2: Any t-statistic based on the wild bootstrap will have to be computed based on heteroskedasticity-
robust standard errors.

4. We are trained to rely on 5%, i.e. use 5% for the p-value or compute 100%−5% = 95% confidence
intervals. However, there is no statistical foundation for this, but it is simply common practice!2
Nevertheless, due to the case that typically in SVARs we have rather short samples, applied
researcher prefer to use ±1 standard error bands, i.e. 68% confidence intervals, instead of 2
standard error bands which correspond to 95% confidence intervals. Moreover, for a bootstrap
approximation, the number of draws to accurately estimate the 2.5th and 97.5th percentiles
tends to be much larger than required for the 16th and 84th percentiles.

5. The usual approach is to draw the initial conditions at random with replacement as a block of p
consecutive vector valued observations. For each bootstrap replication r a new block is selected.
Another approach would be to always use e.g. the mean of yt as initial conditions. Or simulate
a burnin-phase, e.g. of 1000 observations, and discard these.

6. Note that there is much development and ongoing research within this field to overcome the
shortcomings of the following traditional approaches. Nevertheless, these approaches are still
most widely used in applied work, and it is important to know them:

a) Intervals based on bootstrap standard errors: Take the asymptotic CI but estimate the
standard deviation of the bootstrap draws of θ̂∗ numerically, i.e.

θ̂ ± zγ/2ŝtd(θ̂∗)

This allows us to relax the assumption of Gaussian iid innovations underlying the conven-
tional interval computed with the delta method.

b) Efron’s percentile interval: Let θ̂∗
γ/2 and θ̂∗

1−γ/2 be the critical points defined by the γ/2
and 1 − γ/2 quantiles of the distribution of θ̂∗. Then Efron’s percentile interval is:

[θ̂∗
γ/2, θ̂∗

1−γ/2]

However, this approach is based on the assumption of an unbiased estimator of θ; in SVAR
models we typically need to correct for the inherent small-sample bias.

c) equal-tailed percentile-t intervals is based on the idea that instead of using the critical points
based on the standard normal distribution, we create our own table with t-statistics by a
bootstrap approximation. That is, we approximate the distribution of the asymptotically
pivotal (i.e. independent of other parameters) t-statistic

t̂ = θ̂ − θ

ŝtd(θ̂)
by

t̂∗ = θ̂∗ − θ̂

ŝtd(θ̂∗)
,

where θ̂ is treated as a fixed parameter in the bootstrap DGP. Let t̂∗
γ/2 and t̂∗

1−γ/2 be the
critical points defined by the γ/2 and 1 − γ/2 quantiles of the distribution of t̂∗, then the
CI is given by

[θ̂ − t̂∗
1−γ/2ŝtd(θ̂); θ̂ − t̂∗

γ/2ŝtd(θ̂)]
2Actually, in the last 5 years there has been an increased debate in statistics and many social sciences about NOT

relying solely on p-values for assessing statistical significance!
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The bootstrapped t-values allow for possible asymmetry in the distribution and implicitly
correct for bias. Note that again we need an estimate (either analytically or via bootstrap)
for ŝtd(θ̂).
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