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1. Ordinary Least Squares Estimation of VAR(p)
Consider the VAR(p) model with a constant written in the compact form

yt = [c, A1, . . . , Ap]Zt−1 + ut = AZt−1 + ut

where Zt−1 = (1, y′
t−1, . . . , y′

t−p)′ and ut is assumed to be iid white noise with non-singular covariance
matrix Σu. Given a sample of size T , y1, . . . , yT , and p presample vectors, y−p+1, . . . , y0, ordinary
least squares for each equation separately results in efficient estimators. The OLS estimator is

Â =
[
ĉ, Â1, . . . , Âp

]
=
(

T∑
t=1

ytZ
′
t−1

)(
T∑

t=1
Zt−1Z ′

t−1

)−1

= Y Z ′(ZZ ′)−1

where Y = [y1, . . . , yT ] and Z = [Z0, . . . , ZT −1]. More precisely, stacking the columns of A =
[c, A1, . . . , Ap] in the vector α = vec(A),

√
T (α̂ − α) d→ N (0, Σα̂)

where Σα̂ = plim( 1
T ZZ ′)−1 ⊗Σu, if the process is stable. Under fairly general assumptions this estima-

tor has an asymptotic normal distribution. A sufficient condition for the consistency and asymptotic
normality of Â would be that ut is a continuous iid random variable with four finite moments. A
consistent estimator of the innovation covariance matrix Σu is, for example,

Σ̂u = Û Û ′

T − Kp − 1

where Û = Y − ÂZ are the OLS residuals. Thus, in large samples,

vec(Â) a∼ N (vec(A), (ZZ ′)−1 ⊗ Σ̂u)

where a∼ denotes the approximate large-sample distribution. In other words, asymptotically the usual
t-statistics can be used for testing restrictions on individual coefficients and for setting up confidence
intervals.

1. What are the dimensions of yt, Y , ut, U , c, A1, . . . , Ap, A, α, Zt−1, Z, Σu and Σα̂.

2. Modify your ARpOLS function such that it is able to estimate VAR(p) models. Save the modified
function as VARReducedForm.

3. Consider data given in threeVariableVAR.csv for yt = (∆gnpt, it, ∆pt)′, where gnpt denotes
the log of U.S. real GNP, pt the corresponding GNP deflator in logs, and it the federal funds
rate, averaged by quarter. The estimation period is restricted to 1954q4 to 2007q4.

• Load the data and visualize it. Comment whether you think the data looks stationary.
• Estimate a VAR(4) model using the VARReducedForm function. Examine the stability of

the estimated process and the significance of the estimated parameters at a 95% level.

Readings

• Kilian and Lütkepohl (2017, Ch. 2.3)
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2. Maximum Likelihood Estimation of VAR(p)
Consider the VAR(p) model with constant written in the more compact form

yt = [c, A1, . . . , Ap]Zt−1 + ut = AZt−1 + ut

where Zt−1 = (1, y′
t−1, . . . , y′

t−p)′. In VAR analysis, it is common to postulate that the innovations,
ut, are iid N (0, Σu) random variables. This assumption implies that the yt’s are also jointly normal
and, for given initial values y−p+1, . . . , y0,

ft(yt|yt−1, . . . , y−p+1) =
( 1

2π

)K/2
det(Σu)−1/2 exp

{
−1

2u′
tΣ−1

u ut

}
Conditional on the first p observations, the conditional log-likelihood becomes:

log l = −KT

2 log(2π) − T

2 log(det(Σu)) − 1
2

T∑
t=1

u′
tΣ−1

u ut

Maximizing this function with respect to the unknown parameters yields the Gaussian ML estimators
Ã and Σ̃u.

1. Compare the Gaussian ML estimator Ã with the OLS estimator Â from the previous exercise.
Comment on the asymptotic distribution.

2. Provide an expression for the ML estimator Σ̃u of the innovation covariance matrix.

3. Consider data given in threeVariableVAR.csv for yt = (∆gnpt, it, ∆pt)′, where gnpt denotes
the log of U.S. real GNP, pt the corresponding GNP deflator in logs, and it the federal funds
rate, averaged by quarter. The estimation period is restricted to 1954q4 to 2007q4.

• Estimate the parameters with Maximum Likelihood.
• Compare your estimation results to an OLS estimation.

Readings

• Kilian and Lütkepohl (2017, Ch. 2.3)
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3. Identification Problem in Structural Vector Autoregressive Models
Consider a simple 2-variable model:

it = βπt + γ1it−1 + γ2πt−1 + εMP
t

πt = δit + γ3it−1 + γ4πt−1 + επ
t

where it denotes the interest rate set by the central bank and πt the inflation rate. Assume for the
structural shocks: εt = (εMP

t , επ
t )′ ∼ N(0, Σε).

1. Rewrite the model in a compact matrix form B0yt = B1yt−1 + εt. Note that this is a structural
VAR(1) model.

2. Since the structural VAR model is not directly observable, derive the reduced-form representa-
tion: yt = A1yt−1 + ut. What is the relationship between structural shocks εt and reduced-form
residuals ut?

3. In your own words, explain the identification problem in SVAR models. Provide intuition behind
the popular identification assumptions of short-run, long-run and sign restrictions.

Readings

• Kilian and Lütkepohl (2017, Ch. 7.6)
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A. Solutions
1 Solution to Ordinary Least Squares Estimation of VAR(p)

1. The dimensions are: yt is K × 1, Y is K × T , ut is K × 1, U is K × T , c is K × 1, A1 is K × K,
. . . , Ap is K ×K, A is K × (1+pK), α is (pK2 +K)×1, Zt−1 is (1+pK)×1, Z is (Kp+1)×T ,
Σu is K × K and Σα̂ is (pK2 + K) × (pK2 + K).

progs/matlab/VARpDimensionsIllustration.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Illustrate dimensions of VAR(p) model using MATLAB's symbolic toolbox

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Willi Mutschler, November 29, 2022

5 % willi@mutschler.eu

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 clearvars; clc; close all;

8
9 T = 10; % time periods

10 K = 3; % number of variables

11 p = 2; % number of lags

12
13 data = transpose(sym('y', [K T],'real')) % e.g. y2_4 denotes the second variable

at t=4

14
15 %% y_{t} is [Kx1]

16 y_1 = data(1,:)'

17 y_2 = data(2,:)'

18 y_3 = data(3,:)'

19 y_4 = data(4,:)'

20 y_5 = data(5,:)'

21 y_6 = data(6,:)'

22 y_7 = data(7,:)'

23 y_8 = data(8,:)'

24 y_9 = data(9,:)'

25 y_10 = data(10,:)'

26
27 %% Z_{t−1} is [(1+K*p)x1]; note that we start in t=p not in t=0

28 Z_2 = [1 y_2' y_1']'

29 Z_3 = [1 y_3' y_2']'

30 Z_4 = [1 y_4' y_3']'

31 Z_5 = [1 y_5' y_4']'

32 Z_6 = [1 y_6' y_5']'

33 Z_7 = [1 y_7' y_6']'

34 Z_8 = [1 y_8' y_7']'

35 Z_9 = [1 y_9' y_8']'

36
37
38 %% Y = [y_{p+1},..., y_{T}] is [Kx(T−p)]; note that we need to start in t=p+1 not

in t=1

39 % manually by hand

40 Y_hand = [y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_10]

41 % more general

42 Y = transpose(data(p+1:T,:))

43 % check whether both are equal
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44 isequal(Y,Y_hand)

45 isequal(size(Y),[K (T−p)])
46
47 %% Z = [Z_{p} Z_{p+1} ... Z_{T−1}] is [(1+K*p)x(T−p)]
48 % manually by hand

49 Z_hand = [Z_2 Z_3 Z_4 Z_5 Z_6 Z_7 Z_8 Z_9]

50 % more general

51 Z = sym(nan(p*K,T));

52 for ii=1:p

53 Z( (K*(ii−1)+(1:K)) , (1+ii):T ) = data(1:T−ii,:)'; % this is basically what

transpose(lagmatrix(data,[1:p])) does!

54 % note that lagmatrix.m

does not work on

symbolic variables

55 % unless you change line

85 of lagmatrix.m with

56 % "YLag = sym(

missingValue(ones(

numObs,numSeries*
numLags)));

57 end

58 Z = [ones(1,T−p); Z(:,p+1:T)] % add deterministic term

59 % check whether both are equal

60 isequal(Z,Z_hand)

61 isequal(size(Z),[(1+K*p) (T−p)])

2. A modified version looks like this. Note that it also includes OLS estimation of each equation
in turn.

progs/matlab/VARReducedForm.m
1 function VAR = VARReducedForm(ENDO,nlag,opt)

2 % VAR = VARReducedForm(ENDO,nlag,opt)

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Perform vector estimation with OLS and Gaussian−ML of a VAR(p) model:

5 % y_t = [c d A_1 ... A_p] [1 t y_{t−1}' ... y_{t−p}']' + u(t) = A Z_{t−1} + u_t

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % INPUT

8 % − ENDO: [nobs x nvar] matrix of endogenous variables, nobs is number of

observations and nvar is number of variables

9 % − nlag: [integer] lag length

10 % − opt: [structure] optional, with possible fields

11 % * const [flag] 0 no constant; 1 constant; 2 constant and linear

trend

12 % * dispestim [boolean] 1: display estimation results, 0: do not

13 % * eqOLS [boolean] 1: perform additional estimation for each equation

in turn, 0: do not

14 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 % OUTPUT

16 % VAR: structure including VAR estimation results with the following fields:

17 % * ENDO: [nobs x nvar] matrix of endogenous variables

18 % * nlag: [integer] lag length

19 % * opt: [structure] options used in estimation

20 % * Z: [(opt.const+nvar*nlag)x(nobs−nlag)] matrix of regressors
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21 % * Y: [nvar x (nobs−nlag)] matrix of lagged endogenous variables

actually used in estimation

22 % * A: [nvar x (opt.const+nvar*nlag] matrix of estimated coefficients

23 % * residuals: [(nobs−nlag) x 1] vector of residuals

24 % * SigmaOLS: [nvar x nvar] OLS estimate of covariance matrix of innovations u

25 % * SigmaML: [nvar x nvar] ML estimate of covariance matrix of innovations u

26 % * Acomp [nvar*nlag x nvar*nlag] matrix of companion VAR(1) form

27 % * maxEig [double] maximum absolute Eigenvalue of Acomp

28 %

29 % Moreover, equation by equation OLS estimation results can be accessed

30 % by the substructures VAR.eqj where j=1,...,nvar, i.e. VAR.eq1, VAR.eq2,...

31 % with the following fields for equation j

32 % * beta: [opt.const+nvar*nlag x 1] double vector of regression coefficients

33 % * yhat: [(nobs−nlag) x 1] predicted values of endogenous variable

34 % * resid: [(nobs−nlag) x 1] residuals

35 % * sige: [double] estimated standard error of error term

36 % * bstd: [opt.const+nvar*nlag x 1] estimated standard error of regression

coefficients

37 % * bint: [opt.const+nvar*nlag x 2] confidence intervall for regression

coefficients

38 % * tstat: [opt.const+nvar*nlag x 1] t−statistic of regression coefficients

39 % * rsqr: [double] determination coefficient

40 % * rbar: [double] adjusted determination coefficient

41 % * dw: [double] Durbin−Watson statistic

42 % * y: [(nobs−nlag) x 1] endogenous variable used in estimation

43 % * x: [(nobs−nlag) x (opt.const+nvar*nlag)] exogenous variables used in

estimation

44 % * nobs: [double] effective sample size used in estimation

45 % * nvar: [double] number of exogenous variables

46 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
47 % CALLS

48 % − OLSmodel.m: builtin function (see below) to robustly estimate regression

models with ols

49 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50 % Willi Mutschler, November 29, 2022, willi@mutschler.eu

51 % Codes are based on

52 % − vare.m function of James P. LeSage

53 % − VARmodel.m function of Ambrogio Cesa−Bianchi
54 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55
56
57 %% Get some parameters and set defaults

58 if nargin < 2

59 error('You need to specify the number of lags ''nlag''.');

60 end

61 if nlag < 1

62 error('nlag needs to be positive');

63 end

64
65 % set default options

66 if nargin < 3

67 opt.const = 1;
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68 opt.dispestim = true;

69 opt.eqOLS = true;

70 end

71
72 if ~isfield(opt,'const')

73 opt.const = 1;

74 else

75 if ~ismember(opt.const,[0,1,2])

76 error('''opt.const'' can only take values 0, 1, or 2');

77 end

78 end

79
80 if ~isfield(opt,'dispestim')

81 opt.dispestim = 1;

82 end

83
84 if ~isfield(opt,'eqOLS')

85 opt.eqOLS = 1;

86 end

87
88 [nobs, nvar] = size(ENDO);

89 % feasability check

90 if nobs < nvar

91 error('The number of observations is smaller than the number of variables,

you probably need to transpose the ''ENDO'' input.')

92 end

93 nobs_eff = nobs − nlag; % effective sample size used in estimation

94
95 %% create independent vector and lagged dependent matrix

96 % Y = [y_{nlag+1},..., y_{nobs}] is [nvarx(nobs−nlag)] matrix of lagged

endogenous variables; note that we need to start in t=nlag+1 not in t=1

97 Y = transpose(ENDO((nlag+1):nobs,:));

98
99 % Z = [Z_{nlag} Z_{nlag+1} ... Z_{nobs−1}] is [(opt.const+nvar*nlag)x(nobs−nlag)]

matrix of regressors

100 Z = transpose(lagmatrix(ENDO,[1:nlag]));

101 Z = Z(:,nlag+1:nobs); % remove initial observations

102 % add deterministic terms if any

103 if opt.const == 1

104 Z = [ones(1,nobs_eff); Z];

105 elseif opt.const == 2

106 Z=[ones(1,nobs_eff); (nlag+1):nobs; Z];

107 end

108
109
110 %% compute the matrix of coefficients and covariance matrix

111 A = (Y*Z')/(Z*Z'); % OLS and Gaussian ML estimate

112 U = Y−A*Z; % OLS and Gaussian ML residuals

113 UUt = U*U'; % sum of squared residuals

114 SIGOLSu = (1/(nobs_eff−nvar*nlag−opt.const))*UUt; % OLS: adjusted for number of

estimated coefficients

115 SIGMLu = (1/nobs_eff)*UUt; % Gaussian ML: not adjusted for number of estimated
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coefficients

116
117 % compute maximum absolute Eigenvalue of companion VAR(1) matrix to check for

stability

118 Acomp = [A(:,1+opt.const:nvar*nlag+opt.const);

119 eye(nvar*(nlag−1)) zeros(nvar*(nlag−1),nvar)];
120 maxEig = max(abs(eig(Acomp)));

121
122
123 %% OLS estimation equation by equation

124 if opt.eqOLS == 1

125 for j=1:nvar

126 y = Y(j,:)';

127 x = Z';

128 % put into structure

129 aux = sprintf('eq%d',j); % this creates strings 'eq1' 'eq2' 'eq3' which

you can use below, i.e. VAR.(aux) is then VAR.eq1, VAR.eq2, etc.

130 VAR.(aux) = OLSmodel(y,x); %uses built−in function (see below)

131 end

132 end

133
134 %% display estimation results

135 if opt.dispestim

136 if opt.const == 0

137 estimtable = table([]);

138 elseif opt.const == 1

139 nuhat = A(:,1);

140 estimtable = table(nuhat);

141 elseif opt.const == 2

142 nuhat = A(:,1);

143 timehat = A(:,2);

144 estimtable = table(nuhat,timehat);

145 end

146 ntrend = size(estimtable,2);

147 Ai = reshape(A(:,(1+ntrend):end),[nvar,nvar,nlag]);

148 for ii = 1:nlag

149 estimtable = [estimtable table(Ai(:,:,ii),'VariableNames', {sprintf('Ahat

%d',ii)})];

150 end

151 disp(estimtable);

152 disp([table(SIGOLSu) table(SIGMLu)]);

153 end

154
155 %% save into structure

156 VAR.ENDO = ENDO;

157 VAR.nlag = nlag;

158 VAR.opt = opt;

159 VAR.Z = Z;

160 VAR.Y = Y;

161 VAR.A = A;

162 VAR.residuals = U;

163 VAR.SigmaOLS = SIGOLSu;
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164 VAR.SigmaML = SIGMLu; % Maximum Likelihood COV Matrix is not adjusted for # of

estimated coefficients

165 VAR.Acomp = Acomp;

166 VAR.maxEig = maxEig;

167
168 %% OLSmodel.m

169 function OLS = OLSmodel(y,x,meth)

170 % OLS = OLSmodel(y,x)

171 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
172 % INPUT

173 % − y: dependent variable vector (nobs x 1)

174 % − x: independent variables matrix (nobs x nvar)

175 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
176 % OUPUT

177 % − OLS: structure including OLS estimation results

178 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
179 % Based on OLSmodel.m from Ambrogio Cesa Bianchi and olse.m from James P.

180 % LeSage and fn_ols.m from Tao Tzha (Dynare implemenation).

181 if nargin < 3

182 meth = 0; % use SVD decomposition, it is not the fastest but most robust

to compute the inverse

183 end

184 signifVal = 0.05;

185 [T, K] = size(x);

186 %% compute inv(X'X)

187 if meth == 0 % use SVD decomposition

188 [u d v] = svd(x,0);

189 vd = v.*(ones(size(v,2),1)*diag(d)');

190 dinv = 1./diag(d);

191 vdinv = v.*(ones(size(v,2),1)*dinv');

192 xtxinv = vdinv*vdinv';

193 uy = u'*y;

194 xty = vd*uy;

195 beta = xtxinv*xty;

196 yhat = u*uy;

197 else

198 if T < 10000 % use QR decomposition

199 [~, r] = qr(x,0);

200 xtxinv = (r'*r)\eye(K);

201 else % use built−in functions

202 xtxinv = (x'*x)\eye(K);

203 end

204 beta = xtxinv*(x'*y);

205 yhat = x*beta;

206 end

207 resid = y − yhat;

208 sigu = resid'*resid;

209 sige = sigu/(T−K);
210 tmp = (sige)*(diag(xtxinv));

211 sigb = sqrt(tmp);

212 tcrit = −tinv(signifVal/2,T);
213 bint = [beta−tcrit.*sigb, beta+tcrit.*sigb];
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214 tsta = beta./(sigb);

215
216 ym = y − mean(y);

217 rsqr1 = sigu;

218 rsqr2 = ym'*ym;

219 rsqr = 1.0 − rsqr1/rsqr2;

220 rsqr1 = rsqr1/(T−K);
221 rsqr2 = rsqr2/(T−1.0);

222 if rsqr2 ~= 0

223 rbar = 1 − (rsqr1/rsqr2);

224 else

225 rbar = rsqr;

226 end

227 ediff = resid(2:T) − resid(1:T−1);
228 dw = (ediff'*ediff)/sigu; % durbin−watson
229
230 % put into output structure

231 OLS.beta = beta;

232 OLS.yhat = yhat;

233 OLS.resid = resid;

234 OLS.sige = sige;

235 OLS.bstd = sigb;

236 OLS.bint=bint;

237 OLS.tstat = tsta;

238 OLS.rsqr = rsqr;

239 OLS.rbar = rbar;

240 OLS.dw = dw;

241 OLS.y = y;

242 OLS.x = x;

243 OLS.nobs = T;

244 OLS.nvar = K;

245
246 end % OLSmodel end

247
248
249 end % main Function end

3. The OLS estimation of the three variables VAR model might look like this:

progs/matlab/threeVariableVAROLS.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Visualize and estimate 3−equation VAR(4) model with OLS

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Willi Mutschler, November 29, 2022

5 % willi@mutschler.eu

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7
8 clearvars; close all;

9
10 %% load data

11 threeVariableVAR = importdata('../../data/threeVariableVAR.csv');

12 y = threeVariableVAR.data;

13 varnames = {'Real GNP Growth' 'Federal Funds Rate' 'GNP Deflator Inflation'};
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14 subsample_start = datetime('1954Q4','InputFormat','yyyyQQQ');

15 subsample_end = datetime('2007Q4','InputFormat','yyyyQQQ');

16 subsample = transpose(subsample_start:calquarters(1):subsample_end);

17
18 %% plot data

19 for j=1:size(y,2)

20 subplot(3,1,j);

21 plot(subsample,y(:,j),'linewidth',2);

22 title(varnames{j});

23 end

24
25 %% VAR(4) estimation with OLS

26 nlag = 4;

27 opt.const = 1;

28 VAR4 = VARReducedForm(y,nlag,opt);

29
30 %% check stability via maximum eigenvalue

31 VAR4.maxEig

32
33 %% check significance of coefficients via confidence intervals

34 VAR4.eq1.bint

35 VAR4.eq2.bint

36 VAR4.eq3.bint

The data for Federal Funds Rate as well as the GNP Deflator Inflation do seem to have some
trend in it, but nothing serious.

12



2 Solution to Maximum Likelihood Estimation of VAR(p)

1. From the univariate case (and undergraduate econometrics), we know that both estimators are
identical; hence, the asymptotic normal distribution holds as well.

2. Taking the derivative of the conditional log-likelihood function with respect to Σu yields:

Σ̃u = Û Û ′

T

where Û are both the ML and OLS residuals (as Ã = Â). Note that from previous exercises in
the univariate case we have already seen that the only difference to the OLS estimator of Σu is
given in the fact that for ML we don’t correct the degrees of freedom, but simply divide by the
effective sample size used in the estimation T .

3. See the previous exercise, as the VARReducedForm function also outputs the ML estimate of Σu:

progs/matlab/threeVariableVARML.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Estimate 3−equation VAR(4) model with ML

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Willi Mutschler, November 17, 2021

5 % willi@mutschler.eu

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 clearvars; close all;

8 threeVariableVAR = importdata('../../data/threeVariableVAR.csv');

9 y = threeVariableVAR.data;

10 nlag = 4;

11 opt.const = 1;

12 VAR4 = VARReducedForm(y,nlag,opt);

13 % note the only difference between OLS and ML is in the estimate for Sigma_u

14 % VARReducedForm computes both for convenience
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3 Solution to Identification Problem in Structural Vector Autoregressive Models

1. Rewrite the equations:

it − βπt = γ1it−1 + γ2πt−1 + εMP
t

πt − δit = γ3it−1 + γ4πt−1 + επ
t

or in matrix notation: (
1 −β

−δ 1

)
︸ ︷︷ ︸

B0

(
it

πt

)
︸ ︷︷ ︸

yt

=
(

γ1 γ2
γ3 γ4

)
︸ ︷︷ ︸

B1

(
it−1
πt−1

)
︸ ︷︷ ︸

yt−1

+
(

εMP
t

επ
t

)
︸ ︷︷ ︸

εt

2. Pre-multiply both sides by B−1
0 :

yt = B−1
0 B1︸ ︷︷ ︸
A1

yt−1 + B−1
0 εt︸ ︷︷ ︸
ut

Note that the reduced-form innovations ut are a composite of the underlying structural shocks
εt:

ut = B−1
0 εt

The covariance matrices are related by:

E[utu
′
t] = Σu = B−1

0 ΣεB−1′

0 = B−1
0 B−1′

0

Above, we make use of a normalization rule for Σε = I. For the example above:

B0 =
(

1 −β
−δ 1

)

B−1
0 = 1

det(B0)

(
1 β
δ 1

)
≡
(

a b
c d

)
So the system of equations that relates reduced-form innovations to structural shocks is given
by:

ui
t = aεMP

t + bεπ
t

uπ
t = cεMP

t + dεπ
t

Each reduced-form shock is a weighted average of structural shocks, where a, b, c, d represents
the amounts by which a particular structural shock contributes to the variation in each residual.

3. There is not enough information to solve this system of equations, because in B0 we have
4 unknowns, but due to symmetry from Σu = B−1

0 B−1′

0 we only have 3 elements in Σu: two
variances and one covariance. More generally, the covariance structure leaves K(K−1)/2 degrees
of freedom in specifying B−1

0 and hence further restrictions are needed to achieve identification.
Some popular strategies:

a) Recursive ordering of variables (aka orthogonalization): In the above example, we would
set b = 0 to get a lower triangular B−1

0 . The economics behind this choice is based on delay
assumptions, i.e. how long it takes for a variable to react to a certain shock. We can think
of the structural shock in terms of the effect it exerts contemporaneously on the variable
of interest: ∂yt = ut = B−1

0 εt, so we could write:(
it

πt

)
=
(

a 0
c d

)(
εMP

t

επ
t

)
This lower triangular structure can be obtained by e.g. a Cholesky decomposition of Σu

and yields exact identification. The order of variables, however, matters!
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b) Short-run restrictions: Exclusion restrictions on the impact matrix B−1
0 , more flexible than

orthogonalization.
c) Separating transitory from permanent components by assuming long-run structural rela-

tionships, i.e. on the long-run multiplier matrix (I − A(L))−1B−1
0 .

d) Combination of short-run and long-run relationships.
e) Sign restrictions: Take the Cholesky decomposition which yields exact identification Σu =

B−1
0 B−1′

0 = PP ′. In this special case: B0
−1 = P , but this is just ONE possible solution. It

is also possible to decompose Σu = P̃ P̃ ′, where P̃ = PQ′ and Q is an orthogonal rotation
matrix: Q′Q = QQ′ = I; that is, P̃ and P are observationally equivalent, because they
both reproduce Σu. Q is called a rotation matrix because it allows us to rotate the initial
Cholesky (recursive) matrix while maintaining the property that shocks are uncorrelated.
Put differently, it helps us generate new weights! This is the basic idea of sign restrictions:
Examine a large number of candidate impact matrices by repeatedly drawing at random
from the set of orthogonal matrices Q. For each B−1

0 check whether the candidate impact
matrix is compatible with the sign restrictions that characterize a certain structural shock.
Then we construct the set of admissable models based on accepted draws.
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