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1. Ordinary Least Squares Estimation of VAR(p)

Consider the VAR(p) model with a constant written in the compact form
yr=lc, A1, ..., AplZi1 +ue = AZp 1+

where Z; 1 = (1,9;_1,-..,¥;_,)" and u; is assumed to be iid white noise with non-singular covariance
matrix »,. Given a sample of size T, y1,...,yr, and p presample vectors, y_p11,...,Yo, ordinary
least squares for each equation separately results in efficient estimators. The OLS estimator is
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where Y = [y1,...,yr] and Z = [Zy,...,Z7_1]. More precisely, stacking the columns of A =
[c, Ai,..., Ap] in the vector o = vec(A),

VT (& —a) % N(0,Z4)

where X4 = plim(%Z Z")~'®@X,, if the process is stable. Under fairly general assumptions this estima-
tor has an asymptotic normal distribution. A sufficient condition for the consistency and asymptotic
normality of A would be that u; is a continuous iid random variable with four finite moments. A
consistent estimator of the innovation covariance matrix X, is, for example,
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where U =Y — AZ are the OLS residuals. Thus, in large samples,
vec(A) & N(vee(A), (22 ' @ )

where ~ denotes the approximate large-sample distribution. In other words, asymptotically the usual
t-statistics can be used for testing restrictions on individual coefficients and for setting up confidence
intervals.

1. What are the dimensions of v, Y, us, U, ¢, A1, ..., Ap, A, o, Zy_1, Z, 3y, and Xy,

2. Modify your ARpOLS function such that it is able to estimate VAR(p) models. Save the modified
function as VARReducedForm.

3. Consider data given in threeVariableVAR.csv for y; = (Agnpy,it, Ap:)’, where gnp; denotes
the log of U.S. real GNP, p; the corresponding GNP deflator in logs, and 4; the federal funds
rate, averaged by quarter. The estimation period is restricted to 1954q4 to 2007q4.

e Load the data and visualize it. Comment whether you think the data looks stationary.

o Estimate a VAR(4) model using the VARReducedForm function. Examine the stability of
the estimated process and the significance of the estimated parameters at a 95% level.

Readings

 Kilian and Liitkepohl (2017, Ch. 2.3)



2. Maximum Likelihood Estimation of VAR(p)

Consider the VAR(p) model with constant written in the more compact form
yr=lc, A1, ..., AplZi1 +ue = AZp 1+

where Z; 1 = (1,4;_1,---,¥%—p)- In VAR analysis, it is common to postulate that the innovations,
ut, are iid N(0,3,) random variables. This assumption implies that the y;’s are also jointly normal
and, for given initial values y_p1,..., %0,
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Conditional on the first p observations, the conditional log-likelihood becomes:
KT T 1 <&

logl = 5 log(27m) — 3 log(det(X,)) — 3 ZuiE;lut
t=1

Maximizing this function with respect to the unknown parameters yields the Gaussian ML estimators

A and X,

1. Compare the Gaussian ML estimator A with the OLS estimator A from the previous exercise.
Comment on the asymptotic distribution.

2. Provide an expression for the ML estimator ¥, of the innovation covariance matrix.

3. Consider data given in threeVariableVAR.csv for y; = (Agnpy,it, Apy)', where gnp; denotes
the log of U.S. real GNP, p; the corresponding GNP deflator in logs, and i; the federal funds
rate, averaged by quarter. The estimation period is restricted to 1954q4 to 2007q4.

o Estimate the parameters with Maximum Likelihood.

e Compare your estimation results to an OLS estimation.

Readings
 Kilian and Liitkepohl (2017, Ch. 2.3)



3. Identification Problem in Structural Vector Autoregressive Models

Consider a simple 2-variable model:
iy = By + Yide—1 + yamo1 + 0

T = 0t + Y3lp—1 + Yami—1 + €7

where i; denotes the interest rate set by the central bank and 7; the inflation rate. Assume for the
structural shocks: ¢, = (M T) ~ N(0,%.).

1. Rewrite the model in a compact matrix form Byy; = Biy:—1 + €:. Note that this is a structural
VAR(1) model.

2. Since the structural VAR model is not directly observable, derive the reduced-form representa-
tion: yr = A1yr—1 + uz. What is the relationship between structural shocks e; and reduced-form
residuals u;?

3. In your own words, explain the identification problem in SVAR models. Provide intuition behind
the popular identification assumptions of short-run, long-run and sign restrictions.

Readings

o Kilian and Liitkepohl (2017, Ch. 7.6)
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A. Solutions

1 Solution to |Ordinary Least Squares Estimation of VAR(p)|

1.

The dimensions are: y; is K X 1, Y is K x T, u is K x 1, Uis K xT,cis K x1, A1 is K x K,
oy Apis KX K, Ais K x (1+pK), ais (pK?+ K) x1, Z;_1is (1+pK) x1, Zis (Kp+1)x T,
Y, is K x K and ¥4 is (pK?2 + K) x (pK? + K).

progs/matlab/VARpDimensionslllustration.m
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Illustrate dimensions of VAR(p) model using MATLAB's symbolic toolbox

o®

Willi Mutschler, November 29, 2022
willi@mutschler.eu

o°
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“©

clearvars; clc; close all;

T 10; % time periods
K = 3; % number of variables
p =2; % number of lags

data = transpose(sym('y', [K T],'real')) % e.g. y2 4 denotes the second variable
at t=4

%% y_{t} is [Kx1]

= data(l,:)"
= data(2,:)"
= data(3,:)"
= data(4,:)"
data(5,:)"'
= data(6,:)"
= data(7,:)"
= data(8,:)"
= data(9,:)"
data(1o0,:)"

|
O© 00 NO U B~ WN B
Il

‘<“<‘<‘<“‘<‘<‘<‘<‘<‘<

|

=

o
1]

%% Z_{t—1} is [(1+Kxp)x1l]; note that we start in t=p not in t=0
Z2=[1y2 y1']
Z3=1[1y3"y2'T]"
Z4=1[1y4" y3']
Z5=1[1vy.5" y4']"
Z6=1[1y6"yS5"]
Z7=1[1vy.7 y_6']
Z8=1[1y8" y 7'
Z9=1[1y9 y38]'

%% Y = [y_{p+1},..., y—{T}] is [Kx(T—p)]; note that we need to start in t=p+1 not
in t=1

% manually by hand

_hand = [y_3, y_4, y.5, y 6, y 7, y_8, y_9, y_10]

% more general

Y = transpose(data(p+1:T,:))

% check whether both are equal

<




46

58
59
60
61

20

isequal(Y,Y_hand)
isequal(size(Y),[K (T-p)1)

%% Z = [Z_{p} Z_{p+1} ... Z_{T—1}] is [(1+Kxp)x(T—p)]
% manually by hand
_hand = [Z2.2 23 724275761727 78 Z09]
% more general
Z = sym(nan(pxK,T));
for ii=1l:p
Z( (Kx(ii—1)+(1:K)) , (1+4ii):T ) = data(1l:T4i,:)'; % this is basically what
transpose(lagmatrix(data,[1:p])) does!

N

o°

note that lagmatrix.m
does not work on
symbolic variables

unless you change line
85 of lagmatrix.m with

"YLag = sym(
missingValue(ones(
numObs, numSeriesx*
numLags)));

o°

o°

end

Z = [ones(1,T-p); Z(:,p+1:T)] % add deterministic term
% check whether both are equal

isequal(Z,Z_hand)

isequal(size(Z),[(1+Kxp) (T—p)1)

A modified version looks like this. Note that it also includes OLS estimation of each equation
in turn.

progs/matlab/VARReducedForm.m

function VAR = VARReducedForm(ENDO,nlag,opt)
VAR = VARReducedForm(ENDO,nlag,opt)

o°

o°

o°

Perform vector estimation with OLS and Gaussian—ML of a VAR(p) model:

% y.t=1[cdAl ... Ap] [Tty {t-1} ...y {tp}'1" +u(t) =AZ{t-1} + u_t

% INPUT

% — ENDO: [nobs x nvar] matrix of endogenous variables, nobs is number of
observations and nvar is number of variables

% — nlag: [integer] lag length

% — opt: [structure] optional, with possible fields

% * const [flag] 0 no constant; 1 constant; 2 constant and linear
trend

% * dispestim [boolean] 1: display estimation results, 0: do not

% * eqOLS [boolean] 1: perform additional estimation for each equation

in turn, 0: do not

% OUTPUT

% VAR: structure including VAR estimation results with the following fields:
% * ENDO: [nobs x nvar] matrix of endogenous variables

% * nlag: [integer] lag length

% * opt: [structure] options used in estimation

%  x Zi [ (opt.const+nvar*nlag)x(nobs—nlag)] matrix of regressors
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% ok Y: [nvar x (nobs—lag)] matrix of lagged endogenous variables
actually used in estimation

% * A: [nvar x (opt.const+nvarxnlag] matrix of estimated coefficients

% * residuals: [(nobs—nlag) x 1] vector of residuals

% * SigmaOLS: [nvar x nvar] OLS estimate of covariance matrix of innovations u

% * SigmaML: [nvar x nvar] ML estimate of covariance matrix of innovations u
% * Acomp [nvarxnlag x nvarxnlag] matrix of companion VAR(1l) form
% * maxEig [double] maximum absolute Eigenvalue of Acomp

% Moreover, equation by equation OLS estimation results can be accessed

% by the substructures VAR.eqj where j=1,...,nvar, i.e. VAR.eql, VAR.eq2,...
% with the following fields for equation j

* beta: [opt.const+nvarx*nlag x 1] double vector of regression coefficients
* yhat: [(nobs—nlag) x 1] predicted values of endogenous variable

* resid: [(nobs—nlag) x 1] residuals
*
*

% sige: [double] estimated standard error of error term

% bstd: [opt.const+nvarxnlag x 1] estimated standard error of regression
coefficients

% * bint: [opt.const+nvarxnlag x 2] confidence intervall for regression
coefficients

% * tstat: [opt.const+nvarxnlag x 1] t—statistic of regression coefficients
* rsqr: [double] determination coefficient
* rbar: [double] adjusted determination coefficient
I dw: [double] Durbin—Watson statistic
* y: [(nobs—nlag) x 1] endogenous variable used in estimation
* x: [(nobs—nlag) x (opt.const+nvarxnlag)] exogenous variables used in
estimation
* nobs: [double] effective sample size used in estimation
* nvar: [double] number of exogenous variables

o°

o°

o°

CALLS
— OLSmodel.m: builtin function (see below) to robustly estimate regression
models with ols

o°

o°

o

Willi Mutschler, November 29, 2022, willi@mutschler.eu
Codes are based on

— vare.m function of James P. LeSage

— VARmodel.m function of Ambrogio Cesa—Bianchi

o® o°

o°

o°

%% Get some parameters and set defaults
if nargin < 2

error('You need to specify the number of lags ''nlag''.');
end
if nlag <1

error('nlag needs to be positive');
end

% set default options
if nargin < 3
opt.const = 1;




opt.dispestim = true;
opt.eqOLS = true;
end

if ~isfield(opt, 'const")
opt.const = 1;
else
if ~ismember(opt.const,[0,1,2])
error('''opt.const'' can only take values 0, 1, or 2');
end
end

if ~isfield(opt, 'dispestim')
opt.dispestim = 1;
end

if ~isfield(opt, 'eqOLS")
opt.eqOLS = 1;
end

[nobs, nvar] = size(ENDO);
% feasability check
if nobs < nvar
error('The number of observations is smaller than the number of variables,
you probably need to transpose the ''ENDO'' input.')
end
nobs_eff = nobs — nlag; % effective sample size used in estimation

%% create independent vector and lagged dependent matrix
Y = [y_{nlag+1},..., y_{nobs}] is [nvarx(nobs—nlag)] matrix of lagged
endogenous variables; note that we need to start in t=nlag+l not in t=1

o®

Y = transpose(ENDO((nlag+1l):nobs,:));

% Z = [Z_{nlag} Z_{nlag+1l} ... Z_{nobs—1}] is [(opt.const+nvarxnlag)x(nobs—nlag)]
matrix of regressors

Z = transpose(lagmatrix(ENDO, [1:nlag]));

Z = Z(:,nlag+l:nobs); % remove initial observations

o°

add deterministic terms if any
if opt.const ==
Z = [ones(1,nobs_eff); Z1;
elseif opt.const ==
Z=[ones(1,nobs_eff); (nlag+l):nobs; Z];

end

%% compute the matrix of coefficients and covariance matrix
A = (YxZ')/(ZxZ'); % OLS and Gaussian ML estimate

U = Y-AxZ; % OLS and Gaussian ML residuals

UUt = UxU'; % sum of squared residuals

SIGOLSu = (1/(nobs_eff-nvar*nlag—opt.const))*UUt; % OLS: adjusted for number of
estimated coefficients

SIGMLu = (1/nobs_eff)*UUt; % Gaussian ML: not adjusted for number of estimated




coefficients

% compute maximum absolute Eigenvalue of companion VAR(1)
stability
Acomp = [A(:,1l+opt.const:nvarxnlag+opt.const);
eye(nvarx(nlag—1)) zeros(nvarx(nlag—1),nvar)];

maxEig = max(abs(eig(Acomp)));

%% OLS estimation equation by equation
if opt.eqOLS ==
for j=1l:nvar
y =Y(3,)"
X =17";

% put into structure
aux =

sprintf('eg%d',j); % this creates strings 'eql'

matrix to check for

'eq2' 'eq3' which

you can use below, i.e. VAR.(aux) is then VAR.eql, VAR.eq2, etc.
VAR. (aux) = OLSmodel(y,x); %uses built—in function (see below)

end
end

%% display estimation results
if opt.dispestim
if opt.const ==
estimtable =
elseif opt.const
nuhat = A(:,1);
estimtable = table(nuhat);
elseif opt.const ==
nuhat = A(:,1);
timehat = A(:,2);
estimtable = table(nuhat, timehat);
end
ntrend = size(estimtable,2);
Ai = reshape(A(:, (1+ntrend):end), [nvar,nvar,nlag]);
for ii = 1l:nlag
estimtable =
%d',i1)})1;

table([]);

end

disp(estimtable);

disp([table(SIGOLSu) table(SIGMLu)l);
end

%% save into structure

VAR.ENDO = ENDO;
VAR.nlag = nlag;
VAR.opt = opt;

VAR.Z = Z;

VAR.Y =Y;

VAR.A = A;
VAR.residuals = U;
VAR.SigmaOLS = SIGOLSu;

[estimtable table(Ai(:,:,ii), 'VariableNames', {sprintf('Ahat




VAR.SigmaML = SIGMLu; % Maximum Likelihood COV Matrix is not adjusted for # of
estimated coefficients

VAR.Acomp = Acomp;

VAR.maxEig = maxEig;

%% 0LSmodel.m
function OLS = OLSmodel(y,x,meth)
OLS = OLSmodel(y,x)

o°

o°

o°

INPUT
y: dependent variable vector (nobs x 1)
— X: independent variables matrix (nobs x nvar)

o°

o°

0% of
o
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structure including OLS estimation results

o°

Based on OLSmodel.m from Ambrogio Cesa Bianchi and olse.m from James P.

LeSage and fn_ols.m from Tao Tzha (Dynare implemenation).

if nargin < 3

meth = 0; % use SVD decomposition, it is not the fastest but most robust
to compute the inverse

o°

end
signifval = 0.05;
[T, KI = size(x);
%% compute inv(X'X)
if meth == 0 % use SVD decomposition
[udv] = svd(x,0);
vd = v.*x(ones(size(v,2),1)*diag(d)"');
dinv = 1./diag(d);
vdinv = v.x(ones(size(v,2),1)*dinv');
xtxinv = vdinvxvdinv';
uy = u'xy;
xty = vdxuy;
beta = xtxinvxxty;
yhat = uxuy;
else
if T < 10000 % use QR decomposition
[~, r] =qr(x,0);
xtxinv = (r'xr)\eye(K);
else % use built—in functions
xtxinv = (x'xx)\eye(K);

end
beta = xtxinv*(x'xy);
yhat = xxbeta;

end

resid = y — yhat;

sigu resid'x*resid;

sige = sigu/(TXK);

tmp = (sige)x(diag(xtxinv));

sigh = sqrt(tmp);

tcrit = —tinv(signifVal/2,T);

bint = [beta—tcrit.*sigb, beta+tcrit.xsigbl;

10




tsta = beta./(sigb);

ym =y — mean(y);
rsqrl = sigu;
rsqr2 = ym'sym;
rsqr = 1.0 — rsqrl/rsqr2;
rsqrl = rsqrl/(T—K);
rsqr2 = rsqr2/(7—1.0);
if rsqr2 ~= 0
rbar = 1 — (rsqrl/rsqr2);
else
rbar
end
ediff = resid(2:T) — resid(1:T—1);
dw = (ediff'xediff)/siqu; % durbin-watson

rsqr;

% put into output structure
OLS.beta = beta;

OLS.yhat = yhat;

OLS.resid = resid;

OLS.sige = sige;

OLS.bstd = sigb;
OLS.bint=bint;

OLS.tstat = tsta;

OLS.rsqr = rsqr;

OLS.rbar = rbar;

OLS.dw = dw;
OLS.y = vy;
OLS.x = Xx;
OLS.nobs = T;
OLS.nvar = K;

end % 0LSmodel end

end % main Function end

. The OLS estimation of the three variables VAR model might look like this:
progs/matlab/threeVariableVAROLS.m

o®

o°

Visualize and estimate 3—equation VAR(4) model with OLS

o°

Willi Mutschler, November 29, 2022
willi@mutschler.eu

o°

clearvars; close all;

%% Lload data

threeVariableVAR = importdata('../../data/threeVariableVAR.csv');

y = threeVariableVAR.data;

varnames = {'Real GNP Growth' 'Federal Funds Rate' 'GNP Deflator Inflation'};

11




datetime('1954Q4', 'InputFormat', 'yyyyQQQ');
datetime('2007Q4"', 'InputFormat', "yyyyQQQ');
transpose(subsample_start:calquarters(1l):subsample_end);

subsample_start
subsample_end
subsample

%% plot data

for j=1l:size(y,2)
subplot(3,1,j);
plot(subsample,y(:,j), 'linewidth',2);
title(varnames{j});

end

%% VAR(4) estimation with OLS
nlag = 4;

opt.const = 1;

VAR4 = VARReducedForm(y,nlag,opt);

%% check stability via maximum eigenvalue
VAR4 .maxEig

%% check significance of coefficients via confidence intervals
VAR4.eql.bint
VAR4.eq2.bint
VAR4.eq3.bint

The data for Federal Funds Rate as well as the GNP Deflator Inflation do seem to have some
trend in it, but nothing serious.

12




2 Solution to [Maximum Likelihood Estimation of VAR(p)|

1.

From the univariate case (and undergraduate econometrics), we know that both estimators are
identical; hence, the asymptotic normal distribution holds as well.

Taking the derivative of the conditional log-likelihood function with respect to ¥, yields:

. Sdad
Eu:UU
T

where U are both the ML and OLS residuals (as A= j) Note that from previous exercises in
the univariate case we have already seen that the only difference to the OLS estimator of ¥, is
given in the fact that for ML we don’t correct the degrees of freedom, but simply divide by the
effective sample size used in the estimation 7.

See the previous exercise, as the VARReducedForm function also outputs the ML estimate of X,,:

progs/matlab/threeVariableVARML.m

% Willi Mutschler, November 17, 2021
% willi@mutschler.eu

clearvars; close all;

threeVariableVAR = importdata('../../data/threeVariableVAR.csv');

y = threeVariableVAR.data;

nlag = 4;

opt.const = 1;

VAR4 = VARReducedForm(y,nlag,opt);

% note the only difference between OLS and ML is in the estimate for Sigma_u
% VARReducedForm computes both for convenience

13




3 Solution to [Identification Problem in Structural Vector Autoregressive Models|

1. Rewrite the equations:

. . MP
it — B = Y1t—1 + Yem—1 + &

T — 0ty = Y3lp—1 + Yam—1 + €f

Lo=BY (i) _ (m 2) (i n eMP
-0 1 Tt Y3 Ya) \Tt-1 ef
—_—— e —— D ==

Bo Yt B1 Yt—1 &t

or in matrix notation:

2. Pre-multiply both sides by Bal:
Y+ = By B yi—1 + By e
—— ——
Aq ut
Note that the reduced-form innovations u; are a composite of the underlying structural shocks
Et:
Uy = BO_IEt
The covariance matrices are related by:
Elu)) =%, = By'v.By " = By 'By Y

Above, we make use of a normalization rule for ¥ = I. For the example above:
_(1 =5
B1l_ 1 1L BY_(a b
O " det(By)\é6 1) \c d

So the system of equations that relates reduced-form innovations to structural shocks is given
by:

j MP
up = agy " + bef
MP
up =cep +dep

Each reduced-form shock is a weighted average of structural shocks, where a, b, ¢, d represents
the amounts by which a particular structural shock contributes to the variation in each residual.

3. There is not enough information to solve this system of equations, because in By we have
4 unknowns, but due to symmetry from ¥, = B 136 U we only have 3 elements in ¥,: two
variances and one covariance. More generally, the covariance structure leaves K (K —1)/2 degrees
of freedom in specifying B 1 and hence further restrictions are needed to achieve identification.

Some popular strategies:

a) Recursive ordering of variables (aka orthogonalization): In the above example, we would
set b = 0 to get a lower triangular B, L The economics behind this choice is based on delay
assumptions, i.e. how long it takes for a variable to react to a certain shock. We can think
of the structural shock in terms of the effect it exerts contemporaneously on the variable
of interest: Jy; = uy = By le,, so we could write:

(=)= 2) (%)

This lower triangular structure can be obtained by e.g. a Cholesky decomposition of X3,
and yields exact identification. The order of variables, however, matters!

14



b)

Short-run restrictions: Exclusion restrictions on the impact matrix B, ! more flexible than
orthogonalization.

Separating transitory from permanent components by assuming long-run structural rela-
tionships, i.e. on the long-run multiplier matrix (I — A(L)) "By L.

Combination of short-run and long-run relationships.

Sign restrictions: Take the Cholesky decomposition which yields exact identification ¥, =
By 1BO_ " — PP'. In this special case: By~! = P, but this is just ONE possible solution. It
is also possible to decompose ¥, = PP’, where P = PQ' and Q is an orthogonal rotation
matrix: Q'Q = QQ’ = I; that is, P and P are observationally equivalent, because they
both reproduce ¥,. @ is called a rotation matrix because it allows us to rotate the initial
Cholesky (recursive) matrix while maintaining the property that shocks are uncorrelated.
Put differently, it helps us generate new weights! This is the basic idea of sign restrictions:
Examine a large number of candidate impact matrices by repeatedly drawing at random
from the set of orthogonal matrices ). For each B 1 check whether the candidate impact
matrix is compatible with the sign restrictions that characterize a certain structural shock.
Then we construct the set of admissable models based on accepted draws.
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