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1. Matrix Algebra
Let

A =

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

 Σu =

2.25 0 0
0 1 0.5
0 0.5 0.74

 R =
[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]

1. Compute the eigenvalues of A. What would this imply for the system yt = c + Ayt−1 + ut with
ut being white noise?

2. Consider the matrices D: m × n, E: n × p and F: p × k. Show that

vec(DEF ) =
(
F ′ ⊗ D

)
vec(E),

where ⊗ is the Kronecker product and vec the vectorization operator either on paper or using a
symbolic toolbox.

3. Show that R is an orthogonal matrix. Why is this matrix called a rotation matrix?

4. Compute a regular lower triangular matrix W ∈ R3×3 and a diagonal matrix Σε ∈ R3×3 such
that Σu = WΣεW ′.

Hint: Use the Cholesky factorization Σu = PP ′ = WΣ
1
2
ε (WΣ

1
2
ε )′.

5. Solve the discrete Lyapunov matrix equation Σy = AΣyA′ + Σu using
a) the Kronecker product and vectorization
b) the following iterative algorithm:

Σy,0 = I, A0 = A, Σu,0 = Σu

Σy,i+1 = AiΣy,iA
′
i + Σu,i

Σu,i+1 = AiΣu,iA
′
i + Σu,i

Ai+1 = AiAi

Write a loop until either a maximal number of iterations (say 500) is reached or each element
of Σy,i+1 − Σy,i is less than 10−25 in absolute terms.

c) Compare both approaches for A and Σu given above.

Readings:

• E. W. Anderson et al. (1996, Ch. 4.2)

• B. Anderson and Moore (1979, Ch. 6.7)

• Lütkepohl (2005, App. A)

• Uribe and Schmitt-Grohe (2017, Ch. 4.10)
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2. Understanding multivariate time series concepts
Let yt be a K-dimensional time series and ut a K-dimensional white noise process.

1. Why are we concerned with multivariate time series? For example, why do we model the VAR(1)
process (

y1,t

y2,t

)
=
(

c1
c2

)
+
(

a11 a12
a21 a22

)(
y1,t−1
y2,t−1

)
+
(

u1,t

u2,t

)

simultaneously instead of two models for each variable separately?

2. Interpret E[yt] and Γh := Cov[yt, yt−h].

3. How does the definition of covariance stationary change in the multivariate case?

4. Consider the following VAR(1) process yt = c + Ayt−1 + uty1,t

y2,t

y3,t

 =

0
0
0

+

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3


y1,t−1

y2,t−1
y3,t−1

+

u1,t

u2,t

u3,t


provided that ut ∼ WN(0, Σu) and

Σu =

2.25 0 0
0 1 0.5
0 0.5 0.74


Compute the coefficients Φ0, Φ1, · · · ∈ R3×3 of the lag polynomial Φ(L) := ∑∞

i=0 ΦiL
i, and a

ν ∈ R3 such that we get the following MA(∞) process:

yt = ν + Φ(L)ut

Readings

• Lütkepohl (2005, Ch. 2)
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3. Dimensions and VAR(1) representation
Let yt be a K-dimensional covariance stationary random vector. Consider the VAR(p)-process

yt = ν +
p∑

i=1
Aiyt−i + ut

1. What are the dimensions of ν, Ai and ut?

2. Assume that E(ut) = 0; E(utu
′
t) = Σu with Σu being symmetric and positive definite. Which

additional assumptions do we need to assure that ut is a multivariate white noise process?

3. Consider a VAR(2) model with K = 4 variables and a constant term. How many parameters do
we need to estimate?

4. Show how to represent a VAR(3) model as a VAR(1) model. Hint: stack yt, yt−1 and yt−2 into
a vector.

5. Write a function to compute the “companion VAR(1) form” of any VAR(p) model with constant
term.

Readings

• Kilian and Lütkepohl (2017, Ch. 2.2)

• Lütkepohl (2005, Ch. 2)
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A. Solutions
1 Solution to Matrix Algebra

progs/matlab/matrixAlgebraEigenvalues.m1.
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Compute Eigenvalues of a Matrix

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Willi Mutschler, November 16, 2021

5 % willi@mutschler.eu

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 clearvars; clc; close all;

8
9 A = [0.5, 0, 0;

10 0.1, 0.1, 0.3;

11 0, 0.2, 0.3];

12
13 EV_A = eig(A);

14 disp(abs(EV_A)<1);

In the univariate AR(1) model we would check whether the autocorrelation coefficient is between -
1 and 1, i.e. whether |ϕ| = |A| < 1 such that∑∞

j=0(AL)j = 1/(1−AL) where L is the lag operator.
In the multivariate case, we want to check the same thing, i.e. ∑∞

j=0(AL)j = (1 − AL)−1. Note
that A is a square matrix and taking the power of a matrix is not a trivial task. One convenient
way to do so, is to consider an eigenvalue decomposition (if it exists):

A = QΛQ−1

where Q is a square matrix whose columns contain the eigenvectors qi corresponding to the
eigenvalues λi found on the diagonal of Λ = [λi]ii. Moreover, Λ is a diagonal matrix and Q is
an orthogonal matrix Q−1 = Q′. Using this decomposition one can show that it is very easy to
compute any power of a matrix:

• matrix inverse A−1 = QΛ−1Q−1 where the inverse of [Λ−1]ii = 1/λi is very easy to calculate
as it is a diagonal matrix

• matrix powers: A2 = (QΛQ−1)(QΛQ−1) = QΛ(Q−1Q)ΛQ−1 = QΛ2Q−1 or more generally:
Aj = QΛjQ−1.

So, for ∑∞
j=0 (AL)j = (1 − AL)−1 we need that limj→∞ Λj = 0. As this is a diagonal matrix,

the task simplifies as we only need to look at each eigenvalue whether it is between -1 and 1:
|λi| < 1. In other words, for VAR(1) systems yt = c + Ayt−1 + ut we need to check whether the
eigenvalues of A are inside the unit circle. If they are, then the VAR(1) model is said to be both
stable and covariance-stationary.

2. Example for vectorization and Kronecker product:

vec

1 3 2
1 0 0
1 2 2


︸ ︷︷ ︸

3×3

=



1
1
1
3
0
2
2
0
2


︸ ︷︷ ︸
9×1

,

1 3 2
1 0 0
1 2 2


︸ ︷︷ ︸

3×3

⊗

0 5
5 0
1 1


︸ ︷︷ ︸

3×2

=



1 ·

0 5
5 0
1 1

 3 ·

0 5
5 0
1 1

 2 ·

0 5
5 0
1 1


1 ·

0 5
5 0
1 1

 0 ·

0 5
5 0
1 1

 0 ·

0 5
5 0
1 1


1 ·

0 5
5 0
1 1

 2 ·

0 5
5 0
1 1

 2 ·

0 5
5 0
1 1




︸ ︷︷ ︸

9×6
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Using this definition, we can show that vec(DEF ) = (F ′ ⊗ D)vec(E) using e.g. a symbolic
toolbox:

progs/matlab/matrixAlgebraKroneckerFormula.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Show that vec(D*E*F) = kron(F',D)*vec(E) using MATLAB's symbolic toolbox

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Willi Mutschler, November 16, 2021

5 % willi@mutschler.eu

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 clearvars; clc; close all;

8
9 %% Some basics on the symbolic toolbox

10 syms x % create symbolic variable

11 % note that matlab does not simplify or expand by default! example:

12 f1 = (x − 2)^2;

13 f2 = x^2 − 4*x + 4;

14 expand(f1)

15 simplify(f2)

16 isequal(f1,f2)

17 isequal(expand(f1),f2)

18 isequal(f1,simplify(f2)) % note that simplify usually takes longer than expand

19
20 %% Show that vec(D*E*F) = kron(F',D)*vec(E)

21 dim = randi([1 10],1,4); % generate 4 random integers between 1 and 10 as

dimensions

22 % create symbolic matrices

23 D = sym('d',[dim(1) dim(2)]);

24 E = sym('e',[dim(2) dim(3)]);

25 F = sym('f',[dim(3) dim(4)]);

26 DEF = D*E*F; % check whether matrix product is defined

27 vecDEF = DEF(:); %vectorization

28
29 % correct: compare expanded symbolic expressions

30 if isequal(expand(vecDEF),expand(kron(transpose(F),D)*E(:)))

31 fprintf('Expanded expressions are identical\n');

32 else

33 error('Expanded expressions are not identical');

34 end

Of course you can do this on paper as well:

DEF = D
(
e1 e2 · · · ep

)


f11 f12 · · · f1k

f21 f22 · · · f2k
...

...
...

...
fp1 fp2 · · · fpk


= D

(
e1f11 + e2f21 + · · · + epfp1, e1f12 + e2f22 + · · · + epfp2, . . . , e1f1k + e2f2k + · · · + epfpk

)
︸ ︷︷ ︸

n×k
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Vectorizing:

vec(DEF ) =


f11De1 + f21De2 + · · · + fp1Dep

f12De1 + f22De2 + · · · + fp2Dep
...

f1kDe1 + f2kDe2 + · · · + fpkDep

 =


f11D f21D · · · fp1D
f12D f22D · · · fp2D

...
...

...
...

f1kD f2kD · · · fpkD




e1
e2
...

ep


=
(
F ′ ⊗ D

)
vec(E)

3. An orthogonal matrix is characterized by R′ = R−1 and therefore R′R = RR′ = I. Here:

R′R =
(

(cos(ϕ))2 + (sin(ϕ))2 − cos(ϕ) sin(ϕ) + sin(ϕ) cos(ϕ)
− sin(ϕ) cos(ϕ) + cos(ϕ) sin(ϕ) (sin(ϕ))2 + (cos(ϕ))2

)

with (cos(ϕ))2 + (sin(ϕ))2 = 1 (so-called trigonometric Pythagoras).

progs/matlab/matrixAlgebraRotation.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Show orthogonality of 2−dimensional rotation matrix using MATLAB's

3 % symbolic toolbox

4 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % % Willi Mutschler, November 16, 2021

6 % willi@mutschler.eu

7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 clearvars; clc; close all;

9
10 theta = sym('theta');

11 R = [cos(theta), −sin(theta);
12 sin(theta), cos(theta)];

13
14 simplify(transpose(R)*R)

15 simplify(R*transpose(R))

16 Rinv = R\eye(size(R,1));

17 simplify(transpose(R) − Rinv)

R is called a rotation matrix, because it rotates vectors or objects in the Euclidian space without
stretching or shrinking the object.
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In this example the matrix R rotates the vector counter-clockwise given angle ϕ. An active
rotation means that the vector is multiplied by the rotation matrix and this rotates the vector
counterclockwise x′ = Rx. A passive rotation means that the coordinate system is rotated and
therefore the vector is also rotated: x′ = R−1x. Later on we will need rotation matrices for
identification of structural shocks!

progs/matlab/matrixAlgebraCholesky.m4.
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Decompose a covariance matrix using the Cholesky decomposition, i.e.

3 % SIGu = W*SIGe*W'

4 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % Willi Mutschler, November 16, 2021

6 % willi@mutschler.eu

7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 clearvars; clc; close all;

9
10 SIGu = [2.25 0 0; 0 1 0.5; 0 0.5 0.74];

11 P = chol(SIGu,'lower');

12 % Note that P = W*SIGe^(1/2)

13 SIGe_sqrt = diag(P);

14 SIGe = diag(SIGe_sqrt.^2);
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15 % Find W which is solution to equation W*SIGe^(1/2) = P

16 % − A\B (mldivide) solves A*x = B

17 % − A/B (mrdivide) solves x*B = A <−− we want this to get W

18 W = P/diag(SIGe_sqrt);

19 isequal(W*SIGe*W',SIGu)

1 0 0
0 1 0
0 0.5 1


︸ ︷︷ ︸

W

2.25 0 0
0 1 0
0 0 0.49


︸ ︷︷ ︸

Σε

1 0 0
0 1 0.5
0 0 1


︸ ︷︷ ︸

W ′

=

2.25 0 0
0 1 0.5
0 0.5 0.74


︸ ︷︷ ︸

Σ

5. Solving this equation can be done either analytically or using an algorithm:
a) Analytically:

vec(Σy) = vec(AΣyA′) + vec(Σu) = (A ⊗ A)vec(Σy) + vec(Σu)
(I − A ⊗ A)vec(Σy) = vec(Σu)

vec(Σy) = (I − A ⊗ A)−1vec(Σu)

b) Doubling algorithm:

progs/matlab/dlyapdoubling.m
1 % =========================================================================

2 % dlyapdoubling.m

3 % =========================================================================

4
5 function SIGy = dlyapdoubling(A,SIGu)

6 % =========================================================================

7 % Solves the Lyapunov equation SIGy = A*SIGy*A' + SIGu using the doubling

8 % algorithm

9 % =======================================================================

10 % SIGy = dlyapdoubling(A,SIGu)

11 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 % INPUT

13 % − A : square matrix [n x n] (usually autoregressive or state space

matrix)

14 % − SIGu : square matrix (n x n] (usually covariance matrix)

15 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 % OUTPUT

17 % − SIGy: square matrix (usually covariance matrix) [n x n] that solves

18 % the Lyapunov equation

19 % =======================================================================

20 % Willi Mutschler, October 30, 2021

21 % willi@mutschler.eu

22 % =======================================================================

23
24 max_iter = 500;

25 A_old = A;

26 SIGu_old = SIGu;

27 SIGy_old = eye(size(A));

28 difference = .1;

29 index1 = 1;

9



30 tol = 1e−25;
31 while (difference > tol) && (index1 < max_iter)

32 SIGy = A_old*SIGy_old*transpose(A_old) + SIGu_old;

33 difference = max(abs(SIGy(:)−SIGy_old(:)));
34 SIGu_old = A_old*SIGu_old*transpose(A_old) + SIGu_old;

35 A_old = A_old*A_old;

36 SIGy_old = SIGy;

37 index1 = index1 + 1;

38 end

39
40 end %function end

The basic idea of the doubling algorithm is to start at some Σy,0 and find new values for
Σy,i+1 using the equation AΣy,iA

′ +Σu until the difference Σy,i+1 −Σy,i becomes very small
or a certain maximum number of iterations is reached.
The doubling algorithm, however, allows one to pass in one iteration from Σy,i to Σy,2i

rather than Σy,i+1, provided that one updates three other matrices. There are also other
(generalized) algorithms to solve such matrix Lyapunov (or Sylvester) equations.

c) Comparison:

progs/matlab/matrixAlgebraLyapunovComparison.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Compares different ways to compute solution of Lyapunov equation

3 % SIGy = A*SIGy*A' + SIGu, i.e. analytically using the Kronecker formula

4 % and the doubling algorithm

5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % Willi Mutschler, November 16, 2021

7 % willi@mutschler.eu

8 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 clearvars; clc; close all;

10
11 %% Small example

12 A = [0.5, 0, 0;

13 0.1, 0.1, 0.3;

14 0, 0.2, 0.3];

15 SIGu = [2.25 0 0; 0 1 0.5; 0 0.5 0.74];

16
17 tic

18 vecSIGy = (eye(size(A,1)^2)−kron(A,A)) \ SIGu(:);

19 SIGy_kron = reshape(vecSIGy,size(A));

20 toc

21
22 tic

23 SIGy_dlyap = dlyapdoubling(A,SIGu);

24 toc

25 fprintf('The maximum absolute difference of entries is %d\n',max(abs(

SIGy_kron(:)−SIGy_dlyap(:))));
26
27 % re−run to see that dlyapdoubling becomes faster

28 % (quicker access to ram and just−in−time compilation)

29
30 %% Example with larger matrices
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31 % Define the matrix size

32 n = 100;

33 % Loop until A has all eigenvalues inside the unit circle

34 while true

35 SIGu = randn(n,n);

36 SIGu = SIGu'*SIGu;

37 Arand = rand(n, n);

38 % Normalize the matrix to ensure its spectral radius (maximum absolute

eigenvalue) is less than 1

39 spectral_radius = max(abs(eig(Arand)));

40 A = Arand / (spectral_radius + 1e−5); % Adding a small value to avoid

division by zero

41 % Check if all eigenvalues are inside the unit circle

42 if max(abs(eig(A))) < 1

43 break;

44 end

45 end

46
47 % run comparison

48 tic

49 vecSIGy = (eye(size(A,1)^2)−kron(A,A)) \ SIGu(:);

50 SIGy_kron = reshape(vecSIGy,size(A));

51 toc

52
53 tic

54 SIGy_dlyap = dlyapdoubling(A,SIGu);

55 toc

56 fprintf('The maximum absolute difference of entries is %d\n',max(abs(

SIGy_kron(:)−SIGy_dlyap(:))));
57
58 % MATLAB's built−in functions

59 tic

60 lyap(A,SIGu);

61 toc

62 tic

63 dlyap(A,SIGu);

64 toc

65 tic

66 dlyapchol(A,chol(SIGu));

67 toc

The doubling algorithm is faster than the analytical closed-form expression based on the
Kronecker product.
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2 Solution to Understanding multivariate time series concepts

1. For the specification of multi-equation models we require a clear distinction between exogenous
and endogenous variables. In economic theory this is often not clear or arbitrarily made in
practice. Vectorautoregressive models do not need this distinction, they can rather be understood
as a dynamic version of a simultaneous multi-equation model. This corresponds to reality,
because economic variables are generated by dynamic processes which are often dependent. For
example, we are able to consider correlations between u1,t and u2,t, which we would not be able
if we considered each equation separately. VAR models therefore provide a powerful instrument.
Additionally, they can also deal with issues like non-stationarity (co-integration and long-term
equilibria) as well as the analysis of dynamics of random shocks / impulses. Lastly, VAR mod-
els tend to have better predictive power than multi-equation models and are often used as a
benchmark.

2. Interpretation of E[yt]: Each component of yt has its own expectation. Therefore, E[yt] is the
unconditional expectation of yt at period t. The expected value as a linear operator can be
dragged into a vector or matrix:

E[yt] = E


y1,t

...
yK,t


 =

E[y1,t]
...

E[yK,t]


Interpretation of Γy(h): In the univariate case we defined the autocovariance as the covariance
of a random variable with its own lagged values. In the multivariate case we also consider
covariances between different variables and different points in time. The autocovariance matrix
Γy(h) := Cov[yt, yt−h] summarizes this information up in a neat fashion and is therefore a
powerful tool in multivariate time series analysis:

Cov[yt, yt−h] = E
[
(yt − E[yt])(yt−h − E[yt−h])′]

= E


 y1,t − E[y1,t]

...
yK,t − E[yK,t]

(y1,t−h − E[y1,t−h] · · · yK,t−h − E[yK,t−h]
)

= E


 (y1,t − E[y1,t])(y1,t−h − E[y1,t−h]) · · · (y1,t − E[y1,t])(yK,t−h − E[yK,t−h])

... . . . ...
(yK,t − E[yK,t])(y1,t−h − E[y1,t−h]) · · · (yK,t − E[yK,t])(yK,t−h − E[yK,t−h])




=

 E[(y1,t − E[y1,t])(y1,t−h − E[y1,t−h])] · · · E[(y1,t − E[y1,t])(yK,t−h − E[yK,t−h])]
... . . . ...

E[(yK,t − E[yK,t])(y1,t−h − E[y1,t−h])] · · · E[(yK,t − E[yK,t])(yK,t−h − E[yK,t−h])]



=

Cov[y1,t, y1,t−h] · · · Cov[y1,t, yK,t−h]
... . . . ...

Cov[yK,t, y1,t−h] · · · Cov[yK,t, yK,t−h]


On the diagonals we have the autocovariance of each variable, on the off-diagonals we have the
covariances between the different variables.

3. Basically it is the same: A stochastic process is called weakly stationary (or covariance sta-
tionary), if for each period in time it has the same expectation independent of time and the
autocovariance between any two points in time is only dependent on the distance of these two
points. The difference is that in the multivariate case we also consider the autocovariances be-
tween different variables and require these to be only dependent on the distance in time, but not
on time itself.
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Definition: The K-dimensional stochastic process yt is called covariance stationary, if for all
h, t, τ ∈ Z:

E[yt] = E[yτ ] (1)
Cov(yt, yt−h) = Cov(yt+τ , yt−h+τ ) (2)

4. We will use the method of matching coefficients to transform the VAR(1) model into a
VMA(∞) representation.

yt = Ayt−1 + ut

(I3 − AL)︸ ︷︷ ︸
A(L)

yt = ut

A(L)yt = ut

A(L)−1A(L)yt = A(L)−1ut

yt = A(L)−1ut = ν + Φ(L)ut

⇒ν = 0, Φ(L) = A(L)−1

In the method of matching coefficient we compare the coefficient matrices multiplied to each
power of L. That is, the expression on the left hand side has to match the expression on the
right hand side. In our case:

Φ(L) = A(L)−1

A(L)Φ(L) = I3

(I3 − AL)
( ∞∑

i=0
ΦiL

i

)
= I3

Φ0L0 + Φ1L1 + Φ2L2 + . . .

− Aϕ0L1 − Aϕ1L2 − · · · = I3L0

L0 : Φ0 = I3 ⇒Φ0 = I3 =

1 0 0
0 1 0
0 0 1


L1 : Φ1 − AΦ0 = 0 ⇒Φ1 = AΦ0 = A =

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3


L2 : Φ2 − AΦ1 = 0 ⇒Φ2 = AΦ1 = A2 =

0.25 0 0
0.06 0.07 0.12
0.02 0.08 0.15


...
In general : Φs = As
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3 Solution to Dimensions and VAR(1) representation

1. ν snd ut are both K-dimensional vectors: ν, ut ∈ RK×1. Ai is a K × K matrix.

2. We must have Γu(h) = Cov(ut, ut−h) = 0K×K for any h ̸= 0, that is all autocovariances are zero
(except for h = 0 which is the covariance matrix). Importantly: we do not need a distributional
assumption!

3. General: K constants + K2 · p autoregressive coefficients + K(K + 1)/2 covariance terms (due
to symmetry). Here: 4 + 42 · 2 + 4 · (4 + 1)/2 = 46. That’s a lot! Therefore we will try to restrict
some parameters (e.g. set equal to zero or by using Bayesian priors) or consider only small VAR
systems, e.g. K = 3 or p = 1, etc.

4. VAR(3): yt = ν + A1yt−1 + A2yt−2 + A3yt−3 + ut. Idea: Stack yt, yt−1 and yt−2 into a vector
and note that yt−1 = yt−1 and yt−2 = yt−2. That is yt

yt−1
yt−2


︸ ︷︷ ︸

ỹt

=

ν
0
0


︸︷︷︸

ν̃t

+

A1 A2 A3
I 0 0
0 I 0


︸ ︷︷ ︸

Ã

yt−1
yt−2
yt−3


︸ ︷︷ ︸

ỹt−1

+

ut

0
0


︸ ︷︷ ︸

ũt

where I is the K-dimensional identity matrix and 0 the K-dimensional zero matrix. Therefore:
ỹt = Ãỹt−1 + ũt. This is called the Companion Form. It is particularly useful, when checking the
stability and covariance-stationarity properties of VAR(p) processes as we can simply compute
the Eigenvalues of Ã and check whether all of them are inside the unit circle, i.e. between −1
and 1. No need to find the roots of the general Lag-polynomials.

progs/matlab/companionForm.m5.
1 function A = companionForm(Coefs,p)

2 % A = companionForm(Coefs,p)

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Computes matrix A of companion form of a VAR(p) model with constant

5 %

6 % That is, any VAR(p) model with constant

7 % y_t = c + A_1*y_{t−1} + ... + A_p*y_{t−p} + u_t

8 % can be represented as

9 % Y_t = C + A*Y_{t−1} + U_t

10 % where

11 % Y_t = [y_t;y_{t−1};...;y_{t−p+1}]
12 % C = [c;0;...;0]

13 % A = [A_1 A_2 ... A_{p−1} A_p;

14 % I_K 0_K ... 0_K 0_K;

15 % 0_K I_K ... 0_K 0_K:

16 % ... ... ... ... ...;

17 % O_K 0_K ... I_K 0_K]

18 % U_t = [u_t; 0; ...;0]

19 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 % INPUT

21 % − Coefs: matrix of coefficients Coef = [nu A_1 A_2 ... A_p]

22 % − p: number of lags

23 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 % OUTPUT

25 % − A: companion matrix

26 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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27 % Willi Mutschler, December 6, 2021

28 % willi@mutschler.eu

29 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30
31 K = size(Coefs,1); %number of variables

32 const = size(Coefs,2) − K*p; %if any deterministic terms are upfront

33
34 A = [Coefs(:,const+1:end);

35 eye(K*(p−1)) zeros(K*(p−1),K)];
36
37 end % function end
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