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1. Properties Of AR(1)
Let {εt} be a white noise process with variance σ2

ε .

1. Consider the univariate first-order autoregressive process AR(1):

yt = c + ϕyt−1 + εt

where |ϕ| < 1 and c ∈ R. Derive the unconditional first and second moments.
Hint:

• If |ϕ| < 1, then ∑∞
j=0 ϕj = 1

(1−ϕ)

2. Do the following simulation exercise:
• Simulate AR(1) processes for t = 1, . . . , 200 with c = 2, σ2

ε = 12 and different values of
ϕ = {−0.8; 0.4; 0.9; 1.01}.

• Plot the corresponding autocorrelation functions (ACF) for data vector y and maximum
number of lags pmax = 8 using MATLAB’s autocorr(y,’NumLags’,8) function.

• Write a function acfPlots(y,pmax,α) that plots the autocorrelation function (ACF) of
the data vector y with maximum number of lags pmax. Your plot should also include an
approximate (1-α)% confidence interval around zero. Your plots should look similar to
MATLAB’s autocorr command.

Hints:
• The empirical autocorrelation function at lag k is defined as ρ̂k = γ̂k/γ̂0 where

γ̂k = 1
T

T∑
t=k+1

(yt − ȳ)(yt−k − ȳ)

and

γ̂0 = 1
T

T∑
t=1

(yt − ȳ)(yt − ȳ)

• You can either use a for-loop to compute the sum or use vectors: (y − ȳ)′(y − ȳ).
• The sample autocorrelation function is an estimate of the actual autocorrelation only if the

process is stationary. If the process is purely random, that is, all members are mutually inde-
pendent and identically distributed, then yt and yt−k should be stochastically independent
for any k ̸= 0. According to the Lindeberg-Levy central limit theorem (see corresponding
exercise), the normalized estimated autocorrelations are asymptotically standard normally
distributed, i.e.

√
T ρ̂k → U ∼ N(0, 1) and thus ρ̂k → Ũ ∼ N(0, 1/T ).

Readings

• Bjørnland and Thorsrud (2015, Ch.2)

• Lütkepohl (2004)
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2. Properties AR(1) With Time Trend
Consider the univariate AR(1) model with a constant and time trend

yt = c + d · t + ϕyt−1 + ut

where ut ∼ WN(0, σ2
u), |ϕ| < 1, c ∈ R and d ∈ R.

1. Compute the unconditional first and second moments, i.e. the unconditional mean, variance,
autocovariance and autocorrelation function of yt.

2. Why is this process not covariance-stationary? How could one proceed to make it covariance-
stationary?

Hints:

• If |ϕ| < 1, then ∑∞
j=0 ϕj = 1

(1−ϕ)

• If |ϕ| < 1, then ∑∞
j=0 jϕj = ϕ

(1−ϕ2)

Readings

• Lütkepohl (2004)
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3. Law Of Large Numbers
Let Y1, Y2, . . . be an iid sequence of arbitrarily distributed random variables with finite variance σ2

Y

and expectation µ. Define the sequence of random variables

Y T = 1
T

T∑
t=1

Yt

1. Briefly outline the intuition behind the “law of large numbers”. What are the differences between
“almost-sure convergence” and “convergence in probability”?

2. Write a program to illustrate the law of large numbers for uniformly distributed random variables
(you may also try different distributions such as normal, gamma, geometric, student’s t with
finite or infinite variance). To this end, do the following:

• Set T = 10000 and initialize the T × 1 output vector u.
• Choose values for the parameters of the uniform distribution. Note that E[u] = (a + b)/2,

where a is the lower and b the upper bound of the uniform distribution.
• For t = 1, . . . , T do the following computations:

– Draw t random variables from the uniform distribution with lower bound a and upper
bound b.

– Compute and store the mean of the drawn values in your output vector at position t.
• Plot your output vector and add a line to indicate the theoretical mean of the uniform

distribution.

3. Now suppose that the sequence Y1, Y2, . . . is an AR(1) process:

Yt = ϕYt−1 + εt

where εt ∼ iid(0, σ2
ε) is not necessarily normally distributed and |ϕ| < 1. Illustrate numerically

that the law of large numbers still holds despite the intertemporal dependence.

Readings

• Lütkepohl (2005, App. C)

• Neusser (2016, App. C)

• Ploberger (2010)

• White (2001, Ch. 3)
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4. Central Limit Theorem For Dependent Data
Suppose that the sequence Y1, Y2, . . . is an AR(1) process, i.e.

Yt − µ = ϕ (Yt−1 − µ) + εt

where εt ∼ iid(0, σ2
ε) is (not necessarily but in our case) normally distributed and |ϕ| < 1.

1. Briefly state and describe the intuition of the “Lindeberg-Levy Central Limit Theorem” for iid
random variables. What does “convergence in distribution” mean? Why can we not use the
theorem for the AR(1) process?

2. Show that Yt has mean equal to µ and finite variance equal to σ2
ε/(1 − ϕ2).

3. To derive the asymptotic distribution of the sample mean, do the following steps:
a) Derive the asymptotic distribution of 1√

T

∑T
t=1 εt.

b) Show that

1√
T

T∑
t=1

εt =
√

T

[
(1 − ϕ) (µ̂ − µ) + ϕ

(
YT − Y0

T

)]

with µ̂ = 1
T

∑T
t=1 Yt.

c) Show that

plim
[

ϕ

1 − ϕ

(
YT − Y0√

T

)]
= 0

Hint: Use Tchebychev’s Inequality, i.e. for a random variable X with expectation µx and
finite variance σ2

x:

Pr(|X − µx| > δ) ≤ σ2
x

δ2

for any small real number δ > 0.
d) Put your results of (a), (b) and (c) together and derive the asymptotic distribution of the

sample mean. That is, show that

ZT =
√

T
µ̂ − µ

σZ

d→ U ∼ N(0, 1)

for σZ =
√

σ2
ε/(1 − ϕ)2.

4. Write a program to demonstrate the central limit theorem for the AR(1) process. To this end:
• Simulate B = 5000 stationary (e.g. ϕ = 0.8) AR(1) processes with each T = 10000 obser-

vations. Store these in a T × B matrix Y .
• Compute µ̂ for each column of Y .
• Plot the histograms of the standardized variables according to the Lindeberg-Levy Central

Limit Theorem:

Z̃T =
√

T
µ̂ − µ

σε/
√

1 − ϕ2

and of the correct standardized variables that we derived in 3(d):

ZT =
√

T
µ̂ − µ

σε/(1 − ϕ)

Compare the histograms to the standard normal distribution.
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Readings

• Crack and Ledoit (2010)

• Lütkepohl (2005, App. C)

• Neusser (2016, App. C)

• White (2001, Ch. 5)
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A. Solutions
1 Solution to Properties of AR(1)

1. Geometric sequence: First, note that we can use the geometric sequence with or without the
lag operator, i.e.

(1 − ϕ)−1 = lim
j→∞

(ϕ0 + ϕ1 + ϕ2 + · · · + ϕj) =
∞∑

j=0
ϕj

(1 − ϕL)−1 = lim
j→∞

((ϕL)0 + (ϕL)1 + (ϕL)2 + · · · + (ϕL)j) =
∞∑

j=0
(ϕL)j

The proof for this is pretty simple. Denote

Sk =
k∑

j=0
ϕj = 1 + ϕ1 + ϕ2 + ϕ3 + · · · + ϕk

then multiply with ϕ:

ϕSk = ϕ1 + ϕ2 + ϕ3 + · · · + ϕk+1

Now look at Sk − ϕSk = (1 − ϕ)Sk:

(1 − ϕ)Sk = 1 − ϕk+1 ⇔ Sk = 1
1 − ϕ

− ϕk+1

1 − ϕ

Looking at the limit of Sk for k → ∞, we get

lim
k→∞

Sk = 1
1 − ϕ

Next let’s get a representation of the process yt that is useful to compute the moments.
We can do this in different ways:

• Recursive substitution (starting at some infinite time j):

yt = c + ϕyt−1 + εt

= c + ϕ (c + ϕyt−2 + εt−1) + εt

= c + ϕc + εt + ϕεt−1 + ϕ2(c + ϕyt−3 + εt−2)
...
= c + ϕc + ϕ2c2 + · · · + ϕjcj + εt + ϕεt−1 + ϕ2εt−2 + · · · + ϕjεt−j + ϕj+1yt−j+1

yt is a linear function of an initial value ϕj+1yt−j+1, historical values of the white noise
process εt, and a sum of polynomials in c. If |ϕ| < 1 and j becomes large, then ϕj+1yt−j+1 →
0, thus we get a so-called MA(∞) process:

yt = c + ϕc + ϕ2c2 + . . .︸ ︷︷ ︸∑∞
j=0 ϕjcj

+ εt + ϕεt−1 + ϕ2εt−2 + . . .︸ ︷︷ ︸∑∞
j=0 ϕjεt−j

= c
∞∑

j=0
ϕj +

∞∑
j=0

ϕjεt−j = c

1 − ϕ
+

∞∑
j=0

ϕjεt−j
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• With Lag Operators: works only if |ϕ| < 1 and {yt} is bounded (that is, there exists a
finite number k such that |yt| < k for all t). Then

(1 − ϕL)yt = c + εt

(1 − ϕL)−1(1 − ϕL)yt = yt = (1 − ϕL)−1c + (1 − ϕL)−1εt

Using the geometric series, we get:

yt = (1 + ϕL + ϕ2L2 + · · · + (ϕL)j)c + (1 + ϕL + ϕ2L2 + · · · + (ϕL)j)εt

=
(
c + ϕc + ϕ2c + . . .

)
+
(
εt + ϕεt−1 + ϕ2εt−2 + . . .

)
= c

∞∑
j=0

ϕj +
∞∑

j=0
ϕjεt−j

= c

1 − ϕ
+

∞∑
j=0

ϕjεt−j

If we can express an AR process as a MA process, we call this process invertible. Let’s now
compute the moments from the MA(∞) representation and using the fact that εt is a white noise
process:

• Unconditional Mean:

E[yt] = E

[
c

1 − ϕ

]
+ E

 ∞∑
j=1

ϕjεt−j

 = c

1 − ϕ

∞∑
j=1

ϕjE[εt−j ]

= c

1 − ϕ︸ ︷︷ ︸
:=µ

As this process is covariance-stationary, the unconditional mean is time invariant. We
typically denote this time-independence by using the greek letter µ.

• Unconditional variance:

V ar[yt] = E [(yt − E[yt])(yt − E[yt])] = E

 ∞∑
j=0

ϕjεt−j

 ∞∑
j=0

ϕjεt−j


= E

[
ϕ0ϕ0εtεt + ϕ0ϕ1εtεt−1 + ϕ0ϕ2εtεt−2 + ϕ0ϕ3εtεt−3 + . . .

ϕ1ϕ0εt−1εt + ϕ1ϕ1εt−1εt−1 + ϕ1ϕ2εt−1εt−2 + ϕ1ϕ3εt−1εt−3 + . . .

ϕ2ϕ0εt−2εt + ϕ2ϕ1εt−2εt−1 + ϕ2ϕ2εt−2εt−2 + ϕ2ϕ3εt−2εt−3 + . . .

. . .]
= ϕ0ϕ0E[εtεt] + ϕ0ϕ1E[εtεt−1] + ϕ0ϕ2E[εtεt−2] + ϕ0ϕ3E[εtεt−3] + . . .

ϕ1ϕ0E[εt−1εt] + ϕ1ϕ1E[εt−1εt−1] + ϕ1ϕ2E[εt−1εt−2] + ϕ1ϕ3E[εt−1εt−3] + . . .

ϕ2ϕ0E[εt−2εt] + ϕ2ϕ1E[εt−2εt−1] + ϕ2ϕ2E[εt−2εt−2] + ϕ2ϕ3E[εt−2εt−3] + . . .

. . .

Note that εt is a white-noise process with variance E[εt−jεt−j ] = σ2
ε for any j, but zero

autocovariance, i.e. E[εt−jεt−k] = 0 for any j ̸= k. Therefore:

V ar[yt] = ϕ0ϕ0E[εtεt] + ϕ1ϕ1E[εt−1εt−1] + ϕ2ϕ2E[εt−2εt−2] + ϕ3ϕ3E[εt−3εt−3] + . . .

=
∞∑

j=0
(ϕ2)jE[εt−jεt−j ] =

∞∑
j=0

(ϕ2)jσ2
ε = σ2

ε

∞∑
j=0

(ϕ2)j

= σ2
ε

1
1 − ϕ2︸ ︷︷ ︸
:=γ0
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As the process is covariance-stationary, the unconditional variance is time invariant. We
typically denote this time-independence by using the Greek letter γ0.

• Unconditional autocovariance:

V ar[yt, yt−k] = E [(yt − E[yt])(yt − E[yt−k])] = E

 ∞∑
j=0

ϕjεt−j

 ∞∑
j=0

ϕjεt−k−j


= E

[
ϕ0ϕ0εtεt−k + ϕ0ϕ1εtεt−k−1 + ϕ0ϕ2εtεt−k−2 + ϕ0ϕ3εtεt−k−3 + . . .

ϕ1ϕ0εt−1εt−k + ϕ1ϕ1εt−1εt−k−1 + ϕ1ϕ2εt−1εt−k−2 + ϕ1ϕ3εt−1εt−k−3 + . . .

ϕ2ϕ0εt−2εt−k + ϕ2ϕ1εt−2εt−k−1 + ϕ2ϕ2εt−2εt−k−2 + ϕ2ϕ3εt−2εt−k−3 + . . .

. . .]

This can be simplified due to the white noise property of εt to:

V ar[yt, yt−k] = ϕk(ϕ0E[εt−kεt−k] + ϕ2E[εt−k−1εt−k−1] + ϕ4E[εt−k−2εt−k−2] + . . .)

= ϕk
∞∑

j=0
(ϕ2)jσ2

ε = ϕk σ2
ε

1 − ϕ2 = ϕkγ0︸ ︷︷ ︸
:=γk

As the process is covariance-stationary, the unconditional autocovariance is only dependent
on the time difference k. We typically denote this by using the Greek letter γk.

2. Here is a possible run-script:

progs/matlab/acfPlots_run.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Run script for simulating AR(1) processes and plotting their empirical

3 % autocorrelation function

4 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % Willi Mutschler, November 07, 2022

6 % willi@mutschler.eu

7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 %% Housekeeping

10 clearvars; clc;close all;

11
12 %% Generate and plot autoregressive processes

13 phi=[−0.8 0.4 0.9 1.01]; % different values for the phi coefficient

14 c=2; % value for constant

15 sigma=1; % value for standard deviation of white noise,

experiment with different values

16 T=200; % value for number of observations

17 Y=nan(T,size(phi,2)); % initialize output vector with nan

18 Y(1,:)=c./(1−phi); % set first period equal to unconditional mean

19
20 for j=1:size(phi,2) % loop over coefficients

21 for t=2:T % begin loop to compute AR(1) at t=2, as there is no y(0,j), i.e.

you cannot index with 0

22 Y(t,j)=phi(j)*Y(t−1,j)+randn()*sigma; % Simulate time seriers, randn

simply generates one draw from N(0,1), we scale the standard deviation

with sigma

23 end

24 end
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25
26 %% Plot autocorrelation functions

27 % common figure

28 figure('Name','autocorrelation function')

29 sgtitle('autocorr (left) vs. ACFPlots (right)')

30
31 % use MATLAB's builin function

32 subplot(4,2,1); autocorr(Y(:,1),'NumLags',8); title('\phi=−0.8');

33 subplot(4,2,3); autocorr(Y(:,2),'NumLags',8); title('\phi=−0.4');

34 subplot(4,2,5); autocorr(Y(:,3),'NumLags',8); title('\phi=0.9');

35 subplot(4,2,7); autocorr(Y(:,4),'NumLags',8); title('\phi=1.01');

36
37 % use self−written function

38 subplot(4,2,2); acfPlots(Y(:,1),8,0.05); title('\phi=−0.8');

39 subplot(4,2,4); acfPlots(Y(:,2),8,0.05); title('\phi=−0.4');

40 subplot(4,2,6); acfPlots(Y(:,3),8,0.05); title('\phi=0.9');

41 subplot(4,2,8); acfPlots(Y(:,4),8,0.05); title('\phi=1.01');

and the corresponding acfPlots.m function:

progs/matlab/acfPlots.m
1 function RHOHAT = acfPlots(y,pmax,alph)

2 % RHOHAT = acfPlots(y,pmax,alph)

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Computes and plots the empirical autocorrelation function

5 % \hat{\gamma}_k = 1/T*\sum_{t=k+1}^T (y_t−\bar{y})(y_{t−k}−\bar{y})
6 % \hat{rho}_k = \hat{\gamma}_k/\hat{\gamma}_0

7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 % INPUTS

9 % − y [periods x 1] vector of data

10 % − pmax [scalar] maximum number of lags to plot

11 % − alph [scalar] significance level for asymptotic bands, e.g. 0.05

12 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 % OUTPUTS

14 % − RHOHAT [1 x pmax] Sample autocorrelation coefficient

15 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 % Willi Mutschler, November 07, 2022

17 % willi@mutschler.eu

18 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19
20 T=size(y,1); % get number of periodes

21 y_demeaned = y−mean(y); % put y in deviations from mean

22 RHOHAT = nan(1,pmax); % initialize output vector

23
24 % Compute variance

25 c0 = 1/T*(y_demeaned' * y_demeaned);

26 % Compute autocorrelations

27 for k=1:pmax

28 c_k = 1/T * (y_demeaned(1+k:T,:)' * y_demeaned(1:T−k,:));
29 RHOHAT(1,k) = c_k/c0;

30 end

31
32 % Asymptotic bands
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33 critval = norminv(1−alph/2);
34 ul = repmat(critval/sqrt(T),pmax,1);

35 ll = −1*ul;
36
37 % Barplots

38 bar(RHOHAT);

39 hold on;

40 plot(1:pmax,ul,'color','black','linestyle','−−');
41 plot(1:pmax,ll,'color','black','linestyle','−−');
42 hold off;

43
44 % The following is just for pretty plots

45 acfbarplot = gca; % Get current axes handle

46 acfbarplot.Title.String = 'Sample autocorrelation coefficients';

47 acfbarplot.XAxis.Label.String = 'lags';

48 acfbarplot.XAxis.TickValues = 1:pmax;

49 acfbarplot.YAxis.Label.String = 'acf value';

50 acfbarplot.YAxis.Limits = [−1 1];

51 acfbarplot.XAxis.Limits = [0 pmax];

52
53 end % function end
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2 Solution to Properties AR(1) With Time Trend

1. First, let’s get a MA representation using the lag operator or recursive substitution techniques:

yt = c + d · t + ϕyt−1 + ut

⇔ yt = c + d · t + ut

1 − ϕL

⇔ yt =
∞∑

j=0
ϕj(c + d(t − j) + ut−j) = c

1 − ϕ
+ dt

1 − ϕ
− d

∞∑
j=0

ϕjj +
∞∑

j=0
ϕjut−j

As |ϕ| < 1 the geometric series holds. For ∑k
j=0 ϕjj we also have a closed-form formula. There-

fore, yt is given by

yt = c

1 − ϕ
+ dt

1 − ϕ
− d

ϕ

(1 − ϕ)2 +
∞∑

j=0
ϕjut−j .

Unconditional mean:

E[yt] = c

1 − ϕ
+ dt

1 − ϕ
− d

ϕ

(1 − ϕ)2 +
∞∑

j=0
ϕjE[ut−j ]

︸ ︷︷ ︸
=0, as ut∼iid(0,σ2)

= c

1 − ϕ
+ dt

1 − ϕ
− d

ϕ

(1 − ϕ)2

Unconditional variance:

γ0 = V ar[yt] = E[(yt − E[yt])2]

= E[(
∞∑

j=0
ϕjE[ut−j ]) · (

∞∑
j=0

ϕjE[ut−j ])]

= E[(ut + ϕ1ut−1 + ϕ2ut−2 + . . . )(ut + ϕ1ut−1 + ϕ2ut−2 + . . . )]
= E[u2

t + 2ϕ1utut−1 + 2ϕ2utut−2 + · · · + ϕ2u2
t−1 + 2ϕ3ut−1ut−2 + 2ϕ4ut−1ut−3 + . . .

+ ϕ4u2
t−2 + 2ϕ5ut−2ut−3 + 2ϕ5ut−2ut−4 + . . . ]

iid= E[u2
t + ϕ2u2

t−1 + ϕ4u2
t−2 + . . . ]

with V ar[ut] = E[u2
t ] − E[ut]2 = E[u2

t ] = σ2 we get

V ar[yt] = σ2(ϕ0 + ϕ2 + ϕ4 + . . . ) = σ2

1 − ϕ2 .

12



Autocovariance:

γ(k) = E[(yt − E[yt])(yt−k − E[yt−k])]

= E[(
∞∑

j=0
ϕjut−j)(

∞∑
j=0

ϕjut−j−k)]

= E[(ut + ϕ1ut−1 + ϕ2ut−2 + · · · + ϕkut−k + ϕk+1ut−k−1 + ϕk+2ut−k−2 + . . . )
(ut−k + ϕ1ut−k−1 + ϕ2ut−k−2 + . . . )]
= E[utut−k + ϕ1utut−k−1 + ϕ2utut−k−3 + . . .

ϕ1ut−1ut−k + ϕ2ut−1ut−k−1 + ϕ3ut−1ut−k−2 + . . .

ϕ2ut−2ut−k + ϕ3ut−2ut−k−1 + ϕ4ut−2ut−k−2 + . . .

...
ϕku2

t−k + 2ϕk+1ut−kut−k−1 + 2ϕk+2ut−kut−k−2 + . . .

ϕk+2u2
t−k−1 + 2ϕk+3ut−k−1ut−k−2 + 2ϕk+4ut−k−1ut−k−3 + . . .

ϕk+4u2
t−k−2 + 2ϕk+5ut−k−2ut−k−3 + 2ϕk+6ut−k−2ut−k−4 + . . . ]

iid= E[ϕku2
t−k + ϕk+2u2

t−k−1 + ϕk+4u2
t−k−2 + . . . ]

= ϕkσ2(ϕ0 + ϕ2 + ϕ4 + . . . )

= ϕkσ2

1 − ϕ2

Autocorrelation: ρk = γk
γ0

. Therefore:

ρ(k) = γ(k)
γ(0) =

ϕkσ2

1−ϕ2

σ2

1−ϕ2

= ϕk.

2. The expectation is time-dependent, hence it is not stationary. One could subtract the expec-
tation, e.g. look at ydemeaned

t = yt − E[yt], where ydemeaned
t is now covariance stationary. The

unknown coefficient d must be estimated first though.
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3 Solution to Law Of Large Numbers

1. In probability theory, the law of large numbers (LLN) is a theorem that describes the result
of performing the same experiment a large number of times (repetitions, trials, experiments,
iterations, sample size). According to the LLN, the average of the results obtained from a large
number of times will be close to the theoretical expected value, and will tend to become closer
as more iterations are performed. There are different laws of large numbers that differ in the
underlying assumptions on the stochastic process. These laws are the cornerstones of asymptotic
theory in statistics and econometrics.
In this exercise, the LLN is about determining what happens to Y T as T → ∞ (note that Y T is
a random variable). The LLN states that this series converges to the (unknown) expected value
E[Yt] = µ. More precisely, the strong LLN implies that at the limit, we can exactly determine
µ, whereas the weak LLN implies that we can only approximately determine µ, even though we
can make the approximation very close to the unknown number µ.
Econometrically speaking:

• Strong LLN means almost-sure convergence:
At some point adding more observation does not matter at all for the average, Y T will be
exactly equal to the expected value µ. That is, the sequence Y 1, Y 2, . . . of random variables
converges almost surely to the variable µ, if

Pr
({

lim
T →∞

Y T = µ

})
= 1

or simply:

Y T
a.s.→ µ

This definition of convergence is not very important in Quantitative Macroeconomics.
• Weak LLN means that the sample mean Y T converges in probability to the population

mean µ. That is, the sequence Y 1, Y 2, . . . of random variables converges in probability
to the variable µ, if

lim
T →∞

Pr (|YT − µ| < δ) = 1

As T → ∞, the probability is approaching 1 very closely, but typically it will not be
exactly equal to 1. In other words, the probability that the average is “far away” from the
expectation µ is zero, where we measure closeness by an arbitrary small number δ > 0.
More compact notation:

Y T
p→ µ

plim Y T = µ

This definition of convergence is very important in Quantitative Macroeconomics.
In Quantitative Macroeconomics, we are mainly concerned with identically distributed pro-
cesses that are either independent of each other (like the white noise process) or that are
homogenously dependent (like the VAR(1) process). Given assumptions on existence and
boundedness of the unconditional moments of these processes, the weak LLN typically
applies.

2. Here is an extended illustration for several distributions:

progs/matlab/lawOfLargeNumbers.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Illustration of the weak law of large numbers for several distributions:
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3 % normal,uniform,geometric,student's t (finite and infinite variance),gamma.

4 % Note that the draws are i.i.d.

5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % Willi Mutschler, October 28, 2022

7 % willi@mutschler.eu

8 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 %% Housekeeping

11 clearvars; clc;close all;

12
13 %% Initializations

14 T = 10000; % maximum horizon of periods

15 z = nan(1,T); sig_z = 0.2; mu_z = 10; % normal distribution

16 u = nan(1,T); a = 2; b = 4; mu_u = (a+b)/2; % uniform distribution

17 ge = nan(1,T); p = 0.2; mu_ge = (1−p)/p; % geometric distribution

18 ga = nan(1,T); k=2; thet=2; mu_ga=k*thet; % gamma distribution

19 st1 = nan(1,T); nu1 = 8; mu_st1 = 0; % student t with finite variance

20 st2 = nan(1,T); nu2 = 2; mu_st2 = 0; % student t with infinite variance

21
22 %% Draw random variables

23 ZZ = mu_z + sig_z.*randn(1,T); % normal distribution

24 UU = a + (b−a).*rand(1,T); % uniform distribution

25 GeGe = geornd(p,1,T); % geometric distribution

26 GaGa = gamrnd(k,thet,1,T); % gamma distribution

27 ST1 = trnd(nu1,1,T); % student t with finite variance

28 ST2 = trnd(nu2,1,T); % student t with infinite variance

29
30 %% Compute and store mean for growing sample sizes

31 wait = waitbar(0,'Please wait...'); % open waitbar

32 for t = 1:T

33 % get random numbers with growing sample size

34 Zt = ZZ(1:t); % normal distribution

35 Ut = UU(1:t); % uniform distribution

36 Get = GeGe(1:t); % geometric distribution

37 Gat = GaGa(1:t); % gamma distribution

38 ST1t = ST1(1:t); % student t with finite variance

39 ST2t = ST2(1:t); % student t with infinite variance

40
41 % Compute and store averages

42 z(t) = mean(Zt);

43 u(t) = mean(Ut);

44 ge(t) = mean(Get);

45 ga(t) = mean(Gat);

46 st1(t) = mean(ST1t);

47 st2(t) = mean(ST2t);

48
49 waitbar(t/T); % update waitbar

50 end

51 close(wait); % close waitbar

52
53 %% Create plot for different distributions

54 figure('name','Law of Large Numbers for different distributions');
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55 subplot(2,3,1);

56 plot(z,'linewidth',2);

57 line(0:T,repmat(mu_z,1,T+1),'linestyle','−−','color','black');
58 title('Normal');

59 subplot(2,3,2);

60 plot(u,'linewidth',2);

61 line(0:T,repmat(mu_u,1,T+1),'linestyle','−−','color','black');
62 title('Uniform');

63 subplot(2,3,3);

64 plot(ge,'linewidth',2);

65 line(0:T,repmat(mu_ge,1,T+1),'linestyle','−−','color','black');
66 title('Geometric');

67 subplot(2,3,4);

68 plot(ga,'linewidth',2);

69 line(0:T,repmat(mu_ga,1,T+1),'linestyle','−−','color','black');
70 title('Gamma');

71 subplot(2,3,5);

72 plot(st1,'linewidth',2);

73 line(0:T,repmat(mu_st1,1,T+1),'linestyle','−−','color','black');
74 title('Student''s t finite variance');

75 subplot(2,3,6);

76 plot(st2,'linewidth',2);

77 line(0:T,repmat(mu_st2,1,T+1),'linestyle','−−','color','black');
78 title('Student''s t infinite variance');

Note that for the t-distribution with infinite variance the weak LLN actually does not apply.

3. Here is an extended illustration for different error term distributions:

progs/matlab/lawOfLargeNumbersAR1.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Illustration of the weak law of large numbers for the AR(1) process based

3 % on different error term distributions. Distributions considered:

4 % normal,uniform,geometric,student's t (finite and infinite variance),gamma.

5 % Note that the AR(1) process is not i.i.d. (it is NOT independently distributed)

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % Willi Mutschler, October 28, 2022

8 % willi@mutschler.eu

9 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10
11 %% Housekeeping

12 clearvars; clc;close all;

13
14 %% Initializations

15 T = 10000; % maximum horizon of periods

16 sig_z = 0.2; mu_z = 10; % parameters for normal distribution

17 a = 2; b = 4; mu_u = (a+b)/2; % parameters for uniform distribution

18 p = 0.2; mu_ge = (1−p)/p; % parameters for geometric distribution

19 k=2; thet=2; mu_ga=k*thet; % parameters for gamma distribution

20 nu1 = 8; mu_st1 = 0; % parameters for student t with finite variance

21 nu2 = 2; mu_st2 = 0; % parameters for student t with infinite variance

22 phi=0.8; mu_y = 0; % parameters for stable AR(1) process

23
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24 Y = nan(T,6); % initialize output vector: sample size in rows,

distributions in columns

25 %% Draw random variables

26 ZZ = mu_z + sig_z.*randn(1,T); % normal distribution

27 UU = a + (b−a).*rand(1,T); % uniform distribution

28 GeGe = geornd(p,1,T); % geometric distribution

29 GaGa = gamrnd(k,thet,1,T); % gamma distribution

30 ST1 = trnd(nu1,1,T); % student t with finite variance

31 ST2 = trnd(nu2,1,T); % student t with infinite variance

32
33 %% Compute and store mean for growing sample sizes

34 wait = waitbar(0,'Please wait...'); % open waitbar

35 for t = 1:T

36 Yt = nan(t,6); % initialize matrix for simulated data of sample size t in

the rows

37 % different processes due to the 6 different error term

distributions are in the columns

38 Yt(1,:) = mu_y; % initialize the first observation with the unconditional

mean

39
40 if t>1

41 for tt=2:t

42 % Note that we demean the errors

43 Yt(tt,1) = phi*Yt(tt−1,1) + (ZZ(tt)−mu_z); % normal distribution

with mean zero

44 Yt(tt,2) = phi*Yt(tt−1,2) + (UU(tt)−mu_u); % uniform

45 Yt(tt,3) = phi*Yt(tt−1,3) + (GeGe(tt)−mu_ge); % geometric

46 Yt(tt,4) = phi*Yt(tt−1,4) + (GaGa(tt)−mu_ga); % gamma

47 Yt(tt,5) = phi*Yt(tt−1,5) + (ST1(tt)−mu_st1); % finite variance

student t

48 Yt(tt,6) = phi*Yt(tt−1,6) + (ST2(tt)−mu_st2); % infinite variance

student t

49 end

50 end

51 % Compute and store averages

52 Y(t,:) = mean(Yt,1);

53 waitbar(t/T); % update waitbar

54 end

55 close(wait); % close waitbar

56
57 %% Create plot for AR(1) with different distributions

58 figure('name','Law of Large Numbers for stable AR(1)');

59 subplot(2,3,1);

60 plot(Y(:,1),'linewidth',2);

61 line(0:T,repmat(mu_y,1,T+1),'linestyle','−−','color','black');
62 title('Normal errors');

63 subplot(2,3,2);

64 plot(Y(:,2),'linewidth',2);

65 line(0:T,repmat(mu_y,1,T+1),'linestyle','−−','color','black');
66 title('Uniform errors');

67 subplot(2,3,3);

68 plot(Y(:,3),'linewidth',2);
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69 line(0:T,repmat(mu_y,1,T+1),'linestyle','−−','color','black');
70 title('Geometric errors');

71 subplot(2,3,4);

72 plot(Y(:,4),'linewidth',2);

73 line(0:T,repmat(mu_y,1,T+1),'linestyle','−−','color','black');
74 title('Gamma errors');

75 subplot(2,3,5);

76 plot(Y(:,5),'linewidth',2);

77 line(0:T,repmat(mu_y,1,T+1),'linestyle','−−','color','black');
78 title('Student''s t finite variance errors');

79 subplot(2,3,6);

80 plot(Y(:,6),'linewidth',2);

81 line(0:T,repmat(mu_y,1,T+1),'linestyle','−−','color','black');
82 title('Student''s t infinite variance errors');

Note that we need to make sure that E[εt] = 0 when we simulate data. We see that the weak
law of large numbers holds under weaker conditions than iid. For instance, one can show that
for the stationary AR(1), necessary and sufficient conditions are: V ar[yt] < ∞ and |γ(k)| → 0
as k → ∞. This does not hold for all considered distributions in the code.
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4 Solution to Central Limit Theorem For Dependent Data

1. We usually consider the Lindeberg-Levy Central Limit Theorem for identically and independently
(iid) random variables with finite mean µ and finite variance σ2

Y . Then the Lindeberg-Levy
Central Limit Theorem establishes the distribution of the sample mean Y T for a growing sample
size:

√
T (µ̂ − µ) d→ N(0, σ2

Y )

with µ̂ = ȲT = 1
T

∑T
t=1 yt. Or more compactly using standardized variables:

z =
√

T
µ̂ − µ

σY

d→ U ∼ N(0, 1)

The central limit theorem is closely related to the LLN, but while the LLN is a statement about
converging to a constant, central limit theorems look at convergence in distribution, i.e.
the distribution of the sample mean. More formally, a sequence Ȳ1, Ȳ2, . . . of random variables
with distribution functions F1, F2, . . . converges in distribution (weakly; in law) to a variable
µ with distribution function F , if

lim
T →∞

FT (x) = F (x)

for all x ∈ R where F (x) is continuous. Typically, we use the following notation for this:

ȲT
d→ µ

Unfortunately, the Lindeberg-Levy Central Limit Theorem does not apply for the AR(1) process
as we have dependent and not iid data. For stationary AR(1) processes, we can however use
similar central limit theorems either for Martingale-Difference-processes or mixing processes.

2. First let’s derive the expectation and variance of the AR(1) process with |ϕ| < 1. For this, we
use recursive substitution techniques given a starting value Y0:

Yt = (1 − ϕ)(1 + ϕ + ϕ2 + · · · + ϕT )µ + εt + ϕεt−1 + ϕ2εt−2 + · · · + ϕT εt−T + ϕT +1Y0

Note that limT →∞ ϕT +1 = 0 and limT →∞
∑∞

j=0 ϕj = 1
1−ϕ , since |ϕ| < 1. The AR(1) process

with |ϕ| < 1 can therefore be equally represented by

Yt = µ +
∞∑

j=1
ϕjεt−j

Its expectation and variance are then equal to

E[Yt] = µ +
∞∑

j=1
ϕjE[εt−j ] = µ

V ar[Yt] =
∞∑

j=1
(ϕj)2V ar[εt−j ] =

∞∑
j=1

(ϕ2)jσ2
ε = σ2

ε

1 − ϕ2

where we use the white noise property of εt.

3. Let’s derive the asymptotic distribution of the sample mean:
a) Due to the white noise assumption on εt, we can use the Lindeberg-Levy central limit

theorem such that

√
T

(
1
T

T∑
t=1

εt

)
= 1√

T

T∑
t=1

εt
d→ Uε ∼ N(0, σ2

ε)
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b) Let’s have a look at 1√
T

∑T
t=1 εt:

1√
T

T∑
t=1

εt = 1√
T

T∑
t=1

[(Yt − µ) − ϕ(Yt−1 − µ)]

= 1√
T

[
T∑

t=1
(Yt − µ) − ϕ

T∑
t=1

(Yt−1 − µ)
]

= 1√
T

[
T∑

t=1
(Yt − µ) − ϕ

[
T∑

t=1
(Yt − µ) − (YT − Y0)

]]

=
√

T

[
1
T

T∑
t=1

(Yt − µ) − ϕ

[
1
T

T∑
t=1

(Yt − µ) −
(

YT − Y0
T

)]]

=
√

T

[
µ̂ − µ − ϕ

[
µ̂ − µ −

(
YT − Y0

T

)]]
=

√
T

[
(1 − ϕ) (µ̂ − µ) + ϕ

(
YT − Y0

T

)]
c) Using the definition of the probability limit, i.e.

plim
[

ϕ

1 − ϕ

(
YT − Y0√

T

)]
= 0

is shorthand notation for

lim
T →∞

Pr

(∣∣∣∣ ϕ

1 − ϕ

(
YT − Y0√

T

)∣∣∣∣ > δ

)
= 0

We are going to show this by using Tchebychev’s Inequality. That is, according to the
inequality we have:

Pr

(∣∣∣∣ ϕ

1 − ϕ

(
YT − Y0√

T

)∣∣∣∣ > δ

)
≤ 1

δ2 var

[
ϕ

1 − ϕ

(
YT − Y0√

T

)]
for any δ > 0. Let’s have a look at var

[
ϕ

1−ϕ

(
YT −Y0√

T

)]
:

var

[
ϕ

1 − ϕ

(
YT − Y0√

T

)]
= 1

T

(
ϕ

1 − ϕ

)2
V ar[YT − Y0]

= 1
T

(
ϕ

1 − ϕ

)2
(V ar[YT ] + V ar[Y0] − 2Cov[YT , Y0]]

= 1
T

(
ϕ

1 − ϕ

)2
 σ2

ε

1 − ϕ2 + σ2
ε

1 − ϕ2 − 2Corr[YT , Y0]
√

σ2
ε

1 − ϕ2

√
σ2

ε

1 − ϕ2


≤ 1

T

(
ϕ

1 − ϕ

)2
4
(

σ2
ε

1 − ϕ2

)
since corr(YT , Y0) ≥ −1.
Thus for any δ > 0, we have

Pr

(∣∣∣∣ ϕ

1 − ϕ

(
YT − Y0√

T

)∣∣∣∣ > δ

)
≤ 1

δ2
1
T

(
ϕ

1 − ϕ

)2
4
(

σ2
ε

1 − ϕ2

)
In the limit for T → ∞ the right hand side converges to 0; hence:

lim
T →∞

Pr

(∣∣∣∣ ϕ

1 − ϕ

(
YT − Y0√

T

)∣∣∣∣ > δ

)
= 0.

or using our shorthand notation:

plim
[

ϕ

1 − ϕ

(
YT − Y0√

T

)]
= 0
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d) Now, let’s go back to

1√
T

T∑
t=1

εt =
√

T

[
(1 − ϕ) (µ̂ − µ) + ϕ

(
YT − Y0

T

)]

Let’s divide by (1 − ϕ)

1√
T

∑T
t=1 εt

1 − ϕ
=

√
T (µ̂ − µ) + ϕ

1 − ϕ

(
YT − Y0√

T

)

For the left-hand-side we have
1√
T

∑T
t=1 εt

1 − ϕ
d→ Ũε ∼ N

(
0,

σ2
ε

(1 − ϕ)2

)

This is also the distribution of the right-hand side. However, in the limit, the right-hand
side actually simplifies as we just derived that plim

[
ϕ

1−ϕ

(
YT −Y0√

T

)]
= 0. Therefore:

√
T (µ̂ − µ) d→ Ũ ∼ N

(
0,

σ2
ε

(1 − ϕ)2

)

and we’re done. We have just derived the distribution to which the sample mean µ̂ = Y T

of an AR(1) process converges to asymptotically. Note that the required standardization
is different than the Lindeberg-Levy central limit theorem would suggest. The correct
standardized variable to consider is:

ZT =
√

T
µ̂ − µ

σZ

d→ U ∼ N(0, 1)

where we need to set σ2
Z = σ2

ε
(1−ϕ)2 to get convergence to the standard normal distribution.

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Illustration of Central Limit Theorem For Dependent Data (Gaussian AR(1))

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Willi Mutschler, October 28, 2022

5 % willi@mutschler.eu

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7
8 % Housekeeping

9 clearvars; clc;close all;

10
11 % Initializations

12 B = 5000; % repetitions

13 T = 10000; % time periods, t=1,...,T

14 c = 3; % constant for AR(1)

15 phi = 0.8; % AR(1) parameter

16 mu = c/(1−phi); % theoretical expectation of AR(1)

17 sig_eps = 0.5; % standard deviation of error in AR(1) process

18 Y = nan(T,B); % output matrix

19
20 % Compute distributions

21 Y(1,:) = repmat(mu,1,B); % Initialize first period to expectation of AR(1)

22 for b = 1:B

23 epsi = sig_eps*randn(T,1);
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24 for t=2:T

25 Y(t,b) = c + phi*Y(t−1,b) + epsi(t);

26 end

27 end

28 muhat = mean(Y); % average

29 var_Y = sig_eps^2/(1−phi^2); % analytical variance of an AR(1)−process
30 var_Z = sig_eps^2/(1−phi)^2; % variance of standardized variable

31
32 % Standardizations

33 ZT = sqrt(T).*(muhat − mu)./sqrt(var_Z); % correct standardization

34 ZTnaive = sqrt(T).*(muhat − mu)./sqrt(var_Y); % naive standardization

35
36 % Plot histograms

37 f=figure('name','Central Limit Theorems');

38 x = −5:0.1:5; % values to plot normal distribution

39 subplot(1,2,1);

40 histogram(ZTnaive,'Normalization','pdf');

41 hold on;

42 plot(x,normpdf(x),'linewidth',2);

43 title('Lindeberg−Levy (wrong)');

44 ylim([0 0.45]);

45 hold off;

46 subplot(1,2,2);

47 histogram(ZT,'Normalization','pdf');

48 hold on;

49 plot(x,normpdf(x),'linewidth',2);

50 title('Dependent Data (correct)');

51 ylim([0 0.45]);

52 hold off;

53 sgtitle('Central Limit Theorems');
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