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1. Visualizing Time Series Data
1. What sort of variables are we dealing with in macroeconomics?

2. List sources and providers to get macroeconomic data.

3. Establish a strategy for obtaining macroeconomic data.

4. Analyze the quarterly growth rate of gross domestic product (GDP) for Norway. To this end,
do the following:

• Find a source for this data and download it to your computer (preferably as csv or xlsx).
• Load the data using MATLAB’s interactive import tool. Save the dates and data in two

separate variables.
• Create a new figure and plot the quarterly growth rate. Name it “Plot of Q-on-Q growth

in Norway”.
• Create a new figure and plot two histograms, one with 10 bins and another one with 30

bins. Call it “Histogram of Q-on-Q growth in Norway”. Compare them to a fitted normal
distribution.

• Create a new figure and assess the fit of your data to a normal distribution via a “Q-Q
plot”. Call it “Normal probability plot”.

• Create a new figure and plot a boxplot of your data. Call it “Boxplot”.
• Give a numerical estimate for the average growth rate and its standard deviation.

5. Redo the previous exercise for (i) 1980Q1 to 2012Q4, (ii) 2012Q4 to 2019Q4, and (iii) 2020Q1
to 2022Q2

6. Redo the whole exercise for another country of your choice. Do a Pull Request on the course’s
GitHub repository. to upload the used data file (preferably as csv) and your MATLAB script.

Readings

• https://de.mathworks.com/help/matlab/import_export/import-data-interactively.html

• https://de.mathworks.com/help/matlab/import_export/select-spreadsheet-data-interactively.
html

• Bjørnland and Thorsrud (2015, Ch.2)

Useful resources

• Economic Data Resources (https://libguides.umn.edu/c.php?g=843682&p=6527336)

• Gould Library - The Data Search (https://gouldguides.carleton.edu/c.php?g=147179&p=
965273)

• DBNomics Providers (https://db.nomics.world/providers)

• Our World in Data (https://ourworldindata.org)

• FRED (https://fred.stlouisfed.org)

1

https://github.com/wmutschl/Quantitative-Macroeconomics
https://de.mathworks.com/help/matlab/import_export/import-data-interactively.html
https://de.mathworks.com/help/matlab/import_export/select-spreadsheet-data-interactively.html
https://de.mathworks.com/help/matlab/import_export/select-spreadsheet-data-interactively.html
https://libguides.umn.edu/c.php?g=843682&p=6527336
https://gouldguides.carleton.edu/c.php?g=147179&p=965273
https://gouldguides.carleton.edu/c.php?g=147179&p=965273
https://db.nomics.world/providers
https://ourworldindata.org
https://fred.stlouisfed.org


2. Definition and Frequencies of Time Series Data
1. Briefly define a time series in terms of random variables and stochastic processes.

2. Consider data for various time series given in
• NorwayGDP.xls

• NorwayInterestRate3m.xls

• NorwayInterestRate10yrs.xls

• NorwayOSEBXGR.csv

• NorwayPopulation.xls

• NorwayRealHousePrices.xlsx

• NorwayUnemploymentRate.xls

Open the individual files and make note of the structure and source of the data. Import the
data and replicate figure 1.

3. What are the data frequencies for each time series? For what kind of economic analysis would
you use these frequencies?

4. What are the sample sizes? From an economic and/or statistical point of view, is it always
better to have a larger sample size?

5. Roughly speaking, a time series consists of four components: a trend, a cycle, a season, and
noise. To what extent do you find these features in figure 1?

6. Consider the plots in figure 1 jointly. What are possible macroeconomic issues that could be
analyzed?

7. How do you aggregate time series of stock variables (like capital or debt) and of flow variables
(like GDP)? For example, if you have monthly data, how do you get a quarterly time series?

Readings

• Bjørnland and Thorsrud (2015, Ch.1, Ch.2)
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Various time series for Norway
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Figure 1: Various Time Series For Norway
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3. Some Fundamental Concepts Of Univariate Time Series Analysis
1. Define the “White Noise Process” labeled shortly as εt ∼ WN(0, σ2

ε).

2. Plot 200 observations of

(i) yt = εt

(ii) yt = 1
5(εt−2 + εt−1 + εt + εt+1 + εt+2)

with εt ∼ N(0, 1). What are the differences?

3. Briefly explain the concepts of (i) weak stationarity and (ii) strict stationarity.

4. Define the autocovariance and autocorrelation function for a covariance-stationary stochastic
process {Yt}.

5. Consider the linear first-order difference equation

yt = ϕyt−1 + εt

with εt ∼ N(0, 1). Simulate and plot 200 observations of (i)|ϕ| < 1, (ii)ϕ = 1, and (iii)|ϕ| > 1.
What does this imply in terms of stationarity of the process?

6. Briefly explain the Lag-operator and Lag-polynomials. How can we check whether an AR(p)
process

yt − ϕ1yt−1 − ϕ2yt−2 − ... − ϕpyt−p = (1 − ϕ1L − ϕ2L2 − ... − ϕpLp)yt = εt

is weakly stationary?

Readings

• Bjørnland and Thorsrud (2015, Ch.2)

• Lütkepohl (2004)
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A. Solutions
1 Solution to Visualizing Time Series Data

1. Variables: gross domestic product (GDP), personal income, corporate profits, government spend-
ing, tax revenue, government deficit, unemployment rate, consumer price indices, interest rates,
oil price, Greenhouse Gas emissions, debt, stock price indices, house prices, population, banking,
debt securities, credit, global liquidity, derivatives, foreign exchange, property prices, and so on

2. Here are some databases:
• European-centric sources:

– Eurostat: official source for statistical data on the European Union, member states and
sub-state regions

– ECB Statistical Data Warehouse: Data on Euro area monetary policy, financial stabil-
ity and the activities of the European System of Central Banks (ESCB), with aggregate
series based on observations from national central banks, credit institutions and inter-
national data sources.

– Data Europa EU (the former European Data Portal) provides access to over a million
public datasets from 36 countries (European Union member states, the EEA, Switzer-
land and countries in the EU Neighborhood Policy programme). Data resources are
indexed by the European Commission from national, regional, local and domain-specific
public data providers.

• US-centric sources:
– FRED database: User-friendly database of U.S. and international time series data

maintained by the Federal Reserve Bank of St. Louis
– Bureau of Labor Statistics (BLS): publishes data on unemployment and consumer

prices, as well as a host of data related to the U.S. labor force
– Bureau of Economic Analysis (BEA): compiles extensive data on gross domestic prod-

uct (GDP), personal income, and corporate profits
– National Bureau of Economic Research (NBER): hosts data covering the U.S. economy,

industry, and international trade
– Congressional Budget Office: data on federal spending and revenue, projections of

future spending and deficits, and forecasts
• Worldwide:

– Central or national banks maintain many macroeconomic statistics
– World Bank maintains many large datasets across most countries, including the World

Development Indicators (WDI) database and the Global Financial Development Database
(GFDD). While they maintain an extensive set of data series with expansive country
coverage, there are some missing data issues in many of the series.

– Bank for International Settlements: datasets on international banking, debt securities,
credit, global liquidity, derivatives, foreign exchange, property prices

– United Nations maintains numerous databases, tables, and glossaries containing over
60 million data points covering international economic, health, education, and devel-
opment data

– OECD.Stat includes data and metadata for OECD countries and selected non-member
economies

• Others/Data aggregator (commercial)
– Our World in Data
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– DB NOMICS
– Datastream and EIKON
– Macrobond

3. It all depends on the analysis you want to conduct, i.e. whether you need country-, sector- or
firm-specific data. Try to get a name for a category the dataset might belong to. Tipp: Go
through the list of Providers on DBNomics to see which categories there are. Our World in
Data also tends to give good ideas where to get data from. Always try official sources first, i.e.
national statistical offices or central banks, then large international organizations, i.e. World
Bank, OECD or BIS. Also when reading other papers, have a close look which sources have been
used.

4. The data was downloaded on October 26, 2022 from FRED and saved into a CSV (comma-
seperated values) file NorwayGDP.csv. The shortcode is CLVMNACSCAB1GQNO: Real Gross Do-
mestic Product for Norway, Millions of Chained 2010 National Currency, Quarterly, Seasonally
Adjusted. The time period included is 1978-01-01 to 2022-04-01. Use MATLAB’s Import Data
feature and select the columns and rows of the data. Edit the names of the variables and the
input format of the dates; it is useful to tell MATLAB that the column for dates are actual
dates, such that MATLAB creates a so called datetime array, and we can easily manipulate
dates. Then click on the arrow under the green checkmark and select Generate Script to get
MATLAB code that always will load in your data the same way. See the following script file:

progs/matlab/visualizingTimeSeriesDataNorway.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Visualization and descriptive statistics and plots for GDP growth in Norway

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Willi Mutschler (willi@mutschler.eu)

5 % Version: October 26, 2022

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7
8 %% Housekeeping

9 clearvars; clc;close all;

10
11 %% Set up the Import Options and import the data

12 opts = delimitedTextImportOptions("NumVariables", 2);

13 % Specify range and delimiter

14 opts.DataLines = [2, Inf];

15 opts.Delimiter = ",";

16 % Specify column names and types

17 opts.VariableNames = ["DATE", "DATA"];

18 opts.VariableTypes = ["datetime", "double"];

19 % Specify file level properties

20 opts.ExtraColumnsRule = "ignore";

21 opts.EmptyLineRule = "read";

22 % Specify variable properties

23 opts = setvaropts(opts, "DATE", "InputFormat", "yyyy−MM−dd");
24 % Import the data; load data from different folders, e.g. '../' goes one

subdirectory down

25 NorwayGDP = readtable("../../data/NorwayGDP.csv", opts);

26 % Clear temporary variables

27 clear opts

28 NorwayGDP % note readtable has already detected dates as datetime arrays and we

specified the format as "yyyy−MM−dd"
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29 % let's change the format of the dates

30 NorwayGDP.DATE.Format = 'yyyy−QQQ'; % note that under the hood we did not really

change the date string

31
32
33 %% Computations

34 gdp_mean = nan(1,3); %initialize variable to contain the means for different

subsamples

35 gdp_sd = nan(1,3); %initialize variable to contain the standard deviations for

different subsamples

36 gdp = NorwayGDP.DATA;

37 dates = NorwayGDP.DATE;

38
39 for select_sample = 1:4 % this loop runs from 1,2,3,4

40
41 if select_sample == 1 % note the double equal sign for comparisons!

42 str_sample = '1978−Q1 to 2022−Q2'; %full sample

43 sample_start = 1;

44 sample_end = length(gdp);

45 elseif select_sample == 2

46 str_sample = '1980−Q1 to 2012−Q4';

47 % dates == '01−Jan−1980' gives you a vector of 0s and 1s

48 % find() finds the position of the 1

49 sample_start = find(dates == '1980−Q1');

50 sample_end = find(dates == '2012−Q4');

51 elseif select_sample == 3

52 str_sample = '2012−Q4 to 2019−Q4';

53 sample_start = find(dates== '2012−Q4');

54 sample_end = find(dates == '2019−Q4');

55 elseif select_sample == 4

56 str_sample = '2020−Q1 to 2022−Q2';

57 sample_start = find(dates== '2020−Q1');

58 sample_end = find(dates == '2022−Q2');

59 else

60 error('select_sample needs to be 1,2,3,4');

61 end

62
63 % Compute growth rate, note that I make use of ":" and of "./"

64 gdp_growth = ( gdp((sample_start+1):sample_end) − gdp(sample_start:(

sample_end−1)) ) ./ gdp(sample_start:(sample_end−1)); % exact

65 gdp_log_dev = log(gdp((sample_start+1):sample_end)) − log(gdp(sample_start:(

sample_end−1))); % log approximation

66 dates_subsample = dates((sample_start+1):sample_end);

67
68 %% Make figures

69 figure('name',['Plot of Q−on−Q growth in Norway from ',str_sample]); % this

opens a new window and names it

70 hold on; %this enables you to draw in the same window

71 plot(dates_subsample,gdp_growth,'linewidth',2,'Color','red','LineStyle','−.')
; % simple plot with some options

72 plot(dates_subsample,gdp_log_dev,'linewidth',2,'Color','blue','LineStyle','−−
'); % simple plot with some options
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73 legend('Exact','Log') % this creates a legend, there are more options to it

74 title(['Plot of Q−on−Q growth in Norway from',str_sample]); %add title

75 hold off; %turn off drawing in same windows

76
77 figure('name',['Histogram of Q−on−Q growth in Norway from ',str_sample]);

78 hold on;

79 subplot(1,2,1); % number of rows x number of columns x number of plot, so

here first plot in left column

80 histfit(gdp_growth,10,'normal'); % 'normal' adds a fitted normal distribution

81 title('10 bins');

82 subplot(1,2,2); % number of rows x number of columns x number of plot, so

here second plot in right column

83 histfit(gdp_growth,30,'normal');

84 title('30 bins');

85 sgtitle(['Histogram of Q−on−Q growth in Norway from ',str_sample]); % add

common title for subplots

86 hold off;

87
88 figure('name',['Normplot of data from ',str_sample]);

89 normplot(gdp_growth);

90 title(['Normal Probability Plot of data from ',str_sample])

91
92 figure('name',['Boxplot of data from ',str_sample]);

93 boxplot(gdp_growth);

94 title(['Box Plot of data from ',str_sample])

95
96 %% Estimates

97 gdp_mean(select_sample) = mean(gdp_growth,'omitnan'); % 'omitnan' removes the

Not−A−Number values in the computations

98 gdp_sd(select_sample) = std(gdp_growth,'omitnan');

99 fprintf('%s:The empirical mean is %.4f, the empirical standard deviation is %

f\n',str_sample,gdp_mean(select_sample),gdp_sd(select_sample));

100 % "%s" is a placeholder for strings

101 % "%.2.f" is a placeholder for floating numbers, the .2 prints 2 numbers

after the decimal

102 end

Remarks:
• A growth rate can be approximated using logs

Yt − Yt−p

Yt−p
≈ log

(
Yt

Yt−p

)
where p = 1 would correspond to one period lagged. If we want to compute year-on-year
rates we would set p = 4 for quarterly data.

• Normal distribution is not a very good choice, as we have asymmetry and some probability
mass in the tails of the distribution.

5. See above for the code. The distributions differ significantly depending on the subsample con-
sidered. The assumption of normality is violated; thus, we are faced with skewed distributions
and have to deal with possible outliers. This is very typical for macroeconomic time series data,
see e.g. Ascari, Fagiolo, and Roventini (2015) or Fagiolo, Napoletano, and Roventini (2008).
However, we will see that during the course we will still keep the normality assumption; so keep
this in mind for later whether this is correct or not.
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6. Optional:
• Clone the repository.
• Download data for e.g. Germany and put that into data/GermanyGDP.csv

• Create a MATLAB script with your codes under progs/matlab/visualizingTimeSeriesDataGermany.m

• Uncomment the line at the end of exercises/visualizing_time_series_data_solution.inc,
so that your script is included in the compiled PDF.

• Do a pull request on GitHub.
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2 Solution to Definition and Frequencies of Time Series Data

1. A time series is a collection of observations Yt indexed by the date of each observation t. For
simplicity often one denotes t = 0, 1, 2, ..., T , then {Yt}T

0 = {Y0, Y1, Y2, ..., YT } is a sequence of
random variables ordered in time (each Yt is a random variable), which we call a stochastic
process. Sometimes we rely on the concept of an infinite sample and consider {Yt}∞

t=−∞ or
simply {Yt}. A stochastic process can have many outcomes, due to its randomness, and a single
outcome of a stochastic process is called a sample function or realization. A time series model
assigns a joint probability distribution to the stochastic process.

2. Most of the files are downloaded from FRED except NorwayOSEBXGR.csv which is downloaded
from Euronext and NorwayRealHousePrices.xlsx from the Norges Bank in October 2021.

progs/matlab/definitionFrequenciesTimeSeriesData.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % This script imports and plots various time series for Norway.

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Hint:

5 % 1. Always look at the Excel/csv file first (outside MATLAB)

6 % 2. Use Matlab's "Import Data" tool, select the data you want to include.

7 % Then click on the arrow below "Import Selection" and "Generate Script"

8 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 % Willi Mutschler (willi@mutschler.eu)

10 % Version: October 26, 2022

11 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12
13 %% Housekeeping

14 clearvars; clc;close all;

15 figure('Name','Various time series for Norway')

16 sgtitle('Various time series for Norway');

17
18 %% GDP growth (% quarterly)

19 opts = spreadsheetImportOptions("NumVariables", 2);

20 opts.Sheet = "FRED Graph"; % Specify sheet

21 opts.DataRange = "A12:B185"; % Specify range

22 opts.VariableNames = ["observation_date", "real_gdp"]; % Specify column names

23 opts.VariableTypes = ["datetime", "double"]; % Specify column types

24 opts = setvaropts(opts, "observation_date", "InputFormat", "yyyy−MM−dd"); %

Specify variable properties

25 NorwayGDP = readtable("../../data/NorwayGDP.xls", opts, "UseExcel", false); %

Import the data

26 gpd_growth = 100*(log(NorwayGDP.real_gdp(4:end)) − log(NorwayGDP.real_gdp(3:end

−1)));
27 subplot(3,2,1)

28 h = plot(NorwayGDP.observation_date(4:end),gpd_growth);

29 title('GDP growth (% − quarterly)')

30 xtickformat('yyyy−QQQ')
31 set(h.Parent, 'XTick', NorwayGDP.observation_date(4:16:end)) % get more ticks

32 sampleSize(1,1) = length(gpd_growth);

33
34 %% Unemployment rate (rate − monthly)

35 opts = spreadsheetImportOptions("NumVariables", 2);

36 opts.Sheet = "FRED Graph"; % Specify sheet

37 opts.DataRange = "A12:B332"; % Specify range
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38 opts.VariableNames = ["observation_date", "unemployment_rate"]; % Specify column

names

39 opts.VariableTypes = ["datetime", "double"]; % Specify column types

40 opts = setvaropts(opts, "observation_date", "InputFormat", "yyyy−MM−dd"); %

Specify variable properties

41 NorwayUnemploymentRate = readtable("../../data/NorwayUnemploymentRate.xls", opts,

"UseExcel", false); % Import the data

42
43 subplot(3,2,2)

44 h = plot(NorwayUnemploymentRate.observation_date,NorwayUnemploymentRate.

unemployment_rate);

45 title('Unemployment rate (monthly)')

46 xtickformat('yyyy−MMM')
47 set(h.Parent, 'XTick', NorwayUnemploymentRate.observation_date(4:20:end)) % get

more ticks

48 sampleSize(1,2) = length(NorwayUnemploymentRate.unemployment_rate);

49
50 %% interest rates (rate − monthly)

51 opts = spreadsheetImportOptions("NumVariables", 2);

52 opts.Sheet = "FRED Graph"; % Specify sheet

53 opts.DataRange = "A12:B523"; % Specify range

54 opts.VariableNames = ["observation_date", "interest_rate_3m"]; % Specify column

names

55 opts.VariableTypes = ["datetime", "double"]; % Specify column types

56 opts = setvaropts(opts, "observation_date", "InputFormat", "yyyy−MM−dd"); %

Specify variable properties

57 NorwayInterestRate3m = readtable("../../data/NorwayInterestRate3m.xls", opts, "

UseExcel", false); % Import the data

58
59 opts.DataRange = "A12:B452"; % Specify range

60 opts.VariableNames = ["observation_date", "interest_rate_10yrs"]; % Specify

column names

61 NorwayInterestRate10yrs = readtable("../../data/NorwayInterestRate10yrs.xls",

opts, "UseExcel", false); % Import the data

62
63 subplot(3,2,3)

64 hold on;

65 h = plot(NorwayInterestRate10yrs.observation_date,NorwayInterestRate10yrs.

interest_rate_10yrs);

66 plot(NorwayInterestRate3m.observation_date,NorwayInterestRate3m.interest_rate_3m)

;

67 legend('Interbank rate (3−month)','Long−term Govt bond (10yrs)')

68 title('interest rates (monthly)')

69 xtickformat('yyyy−MMM')
70 set(h.Parent, 'XTick', NorwayInterestRate3m.observation_date(4:30:end)) % get

more ticks

71 hold off;

72 sampleSize(1,3) = length(NorwayInterestRate3m.interest_rate_3m);

73
74 %% Oslo Stock Exchange Benchmark Index (OSEBX:IND)

75 opts = delimitedTextImportOptions("NumVariables", 3);

76 opts.DataLines = [2, Inf];
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77 opts.Delimiter = ",";

78 opts.VariableNames = ["time", "OSEBXGR", "Var3"];

79 opts.SelectedVariableNames = ["time", "OSEBXGR"];

80 opts.VariableTypes = ["datetime", "double", "string"];

81 opts.ExtraColumnsRule = "ignore";

82 opts.EmptyLineRule = "read";

83 opts = setvaropts(opts, "Var3", "WhitespaceRule", "preserve");

84 opts = setvaropts(opts, "Var3", "EmptyFieldRule", "auto");

85 opts = setvaropts(opts, "time", "InputFormat", "yyyy−MM−dd HH:mm");

86 NorwayOSEBXGR = readtable("../../data/NorwayOSEBXGR.csv", opts);

87
88 subplot(3,2,4)

89 h = plot(NorwayOSEBXGR.time,NorwayOSEBXGR.OSEBXGR);

90 title('Oslo Stock Exchange (index − daily)')

91 xtickformat('yyyy−MMM−dd')
92 set(h.Parent, 'XTick', NorwayOSEBXGR.time(1:400:end)) % get more ticks

93 sampleSize(1,4) = length(NorwayOSEBXGR.OSEBXGR);

94
95 %% Population (millions − yearly)

96 opts = spreadsheetImportOptions("NumVariables", 2);

97 opts.Sheet = "FRED Graph"; % Specify sheet

98 opts.DataRange = "A12:B72"; % Specify range

99 opts.VariableNames = ["observation_date", "population"]; % Specify column names

100 opts.VariableTypes = ["datetime", "double"]; % Specify column types

101 opts = setvaropts(opts, "observation_date", "InputFormat", "yyyy−MM−dd"); %

Specify variable properties

102 NorwayPopulation = readtable("../../data/NorwayPopulation.xls", opts, "UseExcel",

false); % Import the data

103
104 subplot(3,2,5)

105 plot(NorwayPopulation.observation_date,NorwayPopulation.population./1e6)

106 title('Population (millions − yearly)')

107 xtickformat('yyyy')

108 sampleSize(1,5) = length(NorwayPopulation.population);

109
110 %% Real house prices (index − yearly)

111 opts = spreadsheetImportOptions("NumVariables", 2);

112 opts.Sheet = "Composite house price indices";

113 opts.DataRange = "A15:B216";

114 opts.VariableNames = ["Year", "Real_House_Prices"];

115 opts.VariableTypes = ["string", "double"];

116 %opts = setvaropts(opts, "Year", "InputFormat", "yyyy"); % Specify variable

properties

117 NorwayRealHousePrices = readtable("../../data/NorwayRealHousePrices.xlsx", opts,

"UseExcel", false);

118 NorwayRealHousePrices.Year = datetime(NorwayRealHousePrices.Year,'InputFormat','

yyyy');

119 subplot(3,2,6)

120 plot(NorwayRealHousePrices.Year,NorwayRealHousePrices.Real_House_Prices./1000)

121 title('Real house prices (in thousand, index − yearly)')

122 xtickformat('yyyy')

123 ylim([−1 25])
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124 sampleSize(1,6) = length(NorwayRealHousePrices.Real_House_Prices);

125
126 %% Save as pdf

127 print(gcf, '../../plots/NorwayDataOverviewMatlab.pdf', '−dpdf', '−fillpage')
128
129 %% display sample sizes

130 %note that "..." enables you to continue writing the command in the next line

131 array2table(sampleSize,...

132 'VariableNames',{'GDP Growth (q)',...

133 'Unemployment (m)',...

134 'Interest Rates (m)',...

135 'Stock Exchange (d)',...

136 'Population (y)',...

137 'House prices (y)'})

3. Wide range of frequencies:
• Daily data: Oslo Stock Exchange
• Monthly data: Interest rates, unemployment rate
• Quarterly data: GDP growth
• Yearly data: population and real house price index

For business cycle analysis one usually focuses on monthly or quarterly data; for understanding
stock returns we consider daily or monthly data; for long-run growth and wealth of nations
considerations yearly data might be sufficient.

4. Sample sizes vary considerably. While quarterly data of GDP growth covers a much shorter
sample than yearly house prices series, the number of observations are not that different. Higher
frequencies typically mean more observations. On the one hand, many results in statistics and
econometrics depend on having many observations, so the more the better. On the other hand
consider for example the stock market index. We have nearly 300 business day observations
every year. However, information in all these daily data does not say much about, say, the
overall state of the economy. We rather have several periods: prior to mid 2003 when stock
index hovered around 200, run-up to the financial crisis period from mid-2007 to mid-2008, the
sharp fall during the financial crisis, the continuous recovery afterwards and then Covid. From a
macroeconomic perspective we rather have a couple of “informative” periods, evident in monthly
or quarterly data, all other daily observations are more or less just noise. So it is not always
better to have a larger sample size if is uninformative.

5. For the different figures
• GDP growth: no trend, pronounced cyclical patterns (business cycles), no seasonality (data

is seasonally adjusted), much noise
• Unemployment rate: no trend, pronounced cyclical patterns (business cycles), seasonality

evident (data is not seasonally adjusted), some noise
• interest rates: downward (linear) trend, pronounced cyclical patterns in long-term yields,

less so in short-term, no seasonality, moderate noise
• Oslo stock Exchange: upward (piecewise-linear) trend, cyclical patterns, no seasonality,

moderate noise
• Population: upward (linear) trend, no cyclical patterns, no seasonality, no noise
• Real house prices: upward (exponential) trend, no cyclical patterns, no seasonality, no noise

6. We could analysis for instance:
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• While financial crisis is clearly visible in the stock exchange, the effect on unemployment
rate or real house prices is hard to detect. Real income, job opportunities and consumer
confidence remained high. Why?

– Maybe monetary policy influenced the behavior of the unemployment rate as Figure c
indicates expansionary monetary policy.

– Or Norwegian oil sector is highly productive (makes up 25% of GDP) so is this the
reason why the financial crisis was cushioned?

• Are house prices in line with their fundamentals? Is there a bubble?

7. Aggregation of higher frequencies to lower frequencies is straightforward; that is, for stock vari-
ables (such as capital or debt) we simply take the value observed, i.e. kQ1

t = km3
t , whereas for

flow variables (such as GDP) we can take the mean: yQ1
t = 1/3(ym1

t +ym2
t +ym3

t ). Disaggregation
is much more difficult and we need to use tools like interpolation or spline functions etc. → not
straightforward!
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3 Solution to Some Fundamental Concepts Of Univariate Time Series Analysis

1. A white noise has mean zero, a constant variance and all other second-order moments (i.e.
autocovariances/autocorrelations) are zero:

E[εt] = 0
V ar[εt] = E[ε2

t ] − E[εt]E[εt] = σ2
ε

Cov(εt, εs) = E[εtεs] − E[εt]E[εs] = 0 for s ̸= t

progs/matlab/whiteNoisePlots.m2.
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Illustration of white noise and 5 point moving average filter

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Willi Mutschler, October 26, 2022

5 % willi@mutschler.eu

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 clearvars; clc; close all;

8
9 %% Generate white noise

10 sigma = 1; % set value for standard deviation

11 T = 200; % set value for number of observations

12 epsi = randn(T,1); % draw Tx1 vector of standard normally distributed random

variables

13 epsi = sigma*epsi; % scale with sigma to get N(0,sigma^2) distributed random

variables (linear transformation)

14 size(epsi) % check size of epsi, should be Tx1

15
16 yWN = nan(T,1); % initialize a Tx1 vector with nan (not a number)

17 for t=1:T % the variable t runs from 1,2....,T

18 yWN(t,1) = epsi(t);

19 end

20
21 %% Generate 5−point moving average

22 yMA5 = nan(T,1); % initialize output vector with nan

23 for t=3:T−2 % 1) since epsi is Tx1, t cannot start at 1 as we need epsi(t

−2) −> start at 3

24 % 2) t cannot end at T, as we end the loop with epsi(t+2) −>
end at T−2

25 yMA5(t) = 1/5*(epsi(t−2)+epsi(t−1)+epsi(t)+epsi(t+1)+epsi(t+2));
26 end

27
28 %% Plots

29 figure('name','White Noise Plots'); % open new window for figure

30 subplot(1,2,1); % subplot(rows,columns, plotindex)

31 plot(yWN); % plot white noise

32 title('White Noise'); % set title

33 subplot(1,2,2); % subplot(rows,columns, plotindex)

34 plot(yMA5); % plot moving−average
35 title('5−point Moving Average'); % set title

Every simulation is different, model can thus generate an infinite set of realizations over the
period t = 1, ..., 200. The processes do differ in their persistence. (i) is the white noise process,
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which is not persistent. (ii) is a 5-point-moving-average, which is a linear combination of white
noise processes. It is smoother and more persistent and very different from just noise. Linear
combinations of white noise processes build the basis of many models in time series analysis.

3. A process is said to be N-order weakly stationary if all its joint moments up to order N exist
and are time invariant. We are particularly interested in N = 2, i.e. covariance stationarity:

E[Yt] = µ (constant for all t)
V ar[Yt] = E[(Yt − µ)(Yt − µ)] = γ0 (constant for all t)

Cov[Yt1 , Yt1−k] = E[(Yt1 − µ)(Yt1−k − µ)] = Cov[Yt2 , Yt2−k] = γk (only dependent on k)

That is the first two moments are not dependent on t. Particularly, the autocovariance is only
dependent on the time difference k, but not on the actual point in time t.
Strict stationarity: for all k and h:

f(Yt, Yt−1, ..., Yt−k) = f(Yt−h, Yt−h−1, ..., Yt−h−k)

That is, not only the first two moments but the whole distribution is not dependent on the point
in time t, but on the time difference k.

4. Autocovariance function for a covariance-stationary process:

γk = E[(Yt − µ)(Yt−k − µ)]

where γ0 is the variance. Autocorrelation function:

ρk = γk/γ0

We can estimate this by using:

γ̂k = ck = 1
T

T∑
t=k+1

(yt − ȳ)(yt−k − ȳ)

ρ̂k = rk = ck/c0

Note: In most applications we don’t correct the degrees of freedom for numerical reasons (e.g.
to avoid singularity of autocovariance matrices in the multivariate case), i.e. the sums are not
divided by T −k −1 but simply by T . For T > 100 this does not really matter as the expressions
are very close to each other.

progs/matlab/plotsAR1.m5.
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Plots of different AR(1) processes and random walks

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Willi Mutschler, October, 26 2022

5 % willi@mutschler.eu

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7
8 %% Housekeeping

9 clearvars; clc;close all;

10
11 %% Generate and plot autoregressive processes

12 phi=[−0.8 0.4 0.9 1.01]; % different values for the phi coefficient

13 sigma=1; % value for standard deviation of white noise,

experiment with different values
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14 T=200; % value for number of observations

15 Y=nan(T,size(phi,2)); % initiailize output vector with nan

16 Y(1,:)=zeros(1,size(phi,2)); % set first period to zero

17
18 for j=1:size(phi,2) % loop over coefficients

19 for t=2:T % begin loop to compute AR(1) at t=2, as there is no y(0,j), i.e.

you cannot index with 0

20 Y(t,j)=phi(j)*Y(t−1,j)+randn()*sigma; % Simulate time seriers, randn

simply generates one draw from N(0,1), we scale the standard deviation

with sigma

21 end

22 end

23
24 str_phi=["\phi=−0.8","\phi=0.4","\phi=0.9","\phi=1.01"]; % create array with

titles of plots, note that MATLAB can handle (some) Latex expressions

25 % note the use of double quotes which creates a string array and it is easy to

deal with strings of different length

26
27 figure('name','AR Plots'); % open new window for figure

28 for j=1:size(phi,2) % loop over coefficients

29 subplot(2,2,j);

30 plot(Y(:,j));

31 title(str_phi(j));

32 end

33
34
35 %% Generate and plot random walks

36 nRW=16; % number of Random Walks to generate

37 sigma=1; % value of standard error of white noise, experiment with

different values

38 T=200; % number of observations

39 Y_RW=nan(T,nRW); % initialize output vector with nan

40 Y_RW(1,:)=zeros(1,nRW); % set first period to zero

41 for j = 1:nRW

42 for t=2:T

43 Y_RW(t,j)=Y_RW(t−1,j)+randn()*sigma;
44 end

45 end

46
47 figure('name','Random Walks: y_t = y_{t−1} + /varepsilon');

48 sgtitle('Random Walks')

49 for j=1:nRW

50 subplot(4,4,j);

51 plot(Y_RW(:,j));

52 end

Remarks: If |ϕ| < 1 the series returns to the mean, i.e. it is stable and stationary. If |ϕ > 1| then
it explodes, i.e. it is unstable and not stationary. ϕ = 1 is a so-called random walk, it is the key
model when working with non-stationary models. Note that the random walk incorporates many
different shapes, in macroeconomic forecasts we often want to beat the random walk model.

6. It is a special LINEAR operator, similar to the expectation operator, and very useful when
working with time series. The operator transforms one time series into another by shifting
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the observation from period t to period t − 1: Lyt = yt−1 or L−1yt = yt+1. More general:
Lkyt = Lk−1Lyt = Lk−1yt−1 = ... = yt−k. Convenient use:

(1 − L)yt = yt − yt−1 = ∆yt

We can also work with lag-polynomials:

ϕ(L) = (1 − ϕ1L − ϕ2L2 − ... − ϕpLp)

where we call p the lag order. So:

ϕ(L)yt = (1 − ϕ1L − ϕ2L2 − ... − ϕpLp)yt = yt − ϕ1yt−1 − ϕ2yt−2 − ... − ϕpyt−p

To check whether an AR(p) model is covariance stationarity, we need to check whether the roots
of the lag-polynomial lie outside the unit circle. That is, we treat L as a complex number z ∈ C
and compute the roots of (1 − ϕ1z − ϕ2z2 − ... − ϕpzp) = 0 (using a computer in most cases).
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