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1. DSGE Models: Definition, Key Challenges, Basic Structure
1. Briefly define the term and key challenges of Dynamic Stochastic General Equilibrium (DSGE)

models. What are DSGE models useful for?

2. Outline the common structure of a DSGE model. How do Neo-Classical, New-Classical and
New-Keynesian models differ?

3. Comment whether or not the assumptions underlying DSGE models should be as realistic as
possible. For example, a very common assumption is that all agents live forever.

Readings

• Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, Ch. 1)

• Torres (2013, Ch. 1)
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2. RBC model
Consider the basic Real Business Cycle (RBC) model with leisure. The representative household
maximizes present as well as expected future utility

maxEt
∞∑
j=0

βjUt+j

with β < 1 denoting the discount factor and Et is expectation given information at time t. The
contemporaneous utility function

Ut = γ log(ct) + ψ log (1 − lt)

is additively separable and has two arguments: consumption ct and normalized labor supply lt. The
marginal utility of consumption is positive, whereas more labor supply reduces utility. Accordingly,
γ is the consumption weight in the utility function and ψ the weight on leisure. In each period
the household takes the real wage wt as given and supplies perfectly elastic labor service to the
representative firm. In return, she receives real labor income in the amount of wtlt and, additionally,
real profits divt from the firm as well as revenue from lending capital kt−1 at real rental rate rk,t to
the firms, as it is assumed that the firm and capital stock are owned by the household. Income and
wealth are used to finance consumption ct and investment it. In total, this defines the (real) budget
constraint of the household:

ct + it = wtlt + rk,tkt−1 + divt

The law of motion for capital kt at the end of period t is given by

kt = (1 − δ)kt−1 + it

where δ is the capital depreciation rate.1 Assume that the transversality condition is full-filled.
Productivity at is the driving force of the economy and evolves according to

log at = ρa log at−1 + εa,t

where ρa denotes the persistence parameter and εa,t is assumed to be normally distributed with mean
zero and variance σ2

a.
Real profits divt of the representative firm are revenues from selling output yt minus costs from

labor wtld,t and renting capital rk,tkd,t−1:

divt = yt − wtld,t − rk,tkd,t−1

The representative firm maximizes expected profits

maxEt
∞∑
j=0

Λt,t+jdivt+j

subject to a Cobb-Douglas production function

f(kd,t−1, ld,t) = yt = atk
α
d,t−1l

1−α
d,t

The stochastic discount factor Λt,t+j takes into account that firms are owned by the household, i.e. it
is the present value of a unit of consumption in period t + j or, respectively, the marginal utility of
an additional unit of profit; therefore

Λt,t+j = βj
∂Ut+j/∂ct+j
∂Ut/∂ct

Finally, we have non-negativity constraints kt ≥ 0, ct ≥ 0 and 0 ≤ lt ≤ 1.
1Note that we use the end-of-period timing convention for capital, i.e. kt instead of kt+1, because the investment

decision is done in period t and hence capital is also determined in t. In older papers and books you will often find
beginning-of-period timing convention for capital, so always think about when a variable is decided and determined.
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1. Show that the first-order conditions of the representative household are given by

Uc,t = βEt [Uc,t+1 (1 − δ + rk,t+1)]

wt = −Ul,t
Uc,t

where Uc,t = γc−1
t and Ul,t = −ψ

1−lt . Interpret these equations in economic terms.

2. Show that the first-order conditions of the representative firm are given by

wt = fl

rk,t = fk

where fl = (1 − α)at
(
kd,t−1
ld,t

)α
and fk = αat

(
kd,t−1
ld,t

)1−α
. Interpret these equations in economic

terms.

3. Show that combining the optimal decisions with clearing of both the labor market, i.e. lst = lt,
and the capital market, kdt = kt implies clearing of the goods market:

yt = ct + it

4. Derive the steady-state of the model, in the sense that there is a set of values for the endogenous
variables that in equilibrium remain constant over time.

5. Discuss how to calibrate the following parameters α, β, δ, γ, ψ, ρa and σa.

6. Briefly provide intuition behind the transversality condition.

7. Write a script for this RBC model with a feasible calibration for an OECD country that computes
the steady-state of the model.

8. Write a DYNARE mod file for this RBC model with a feasible calibration for an OECD country
and compute the steady-state of the model by using a steady_state_model block. Compare
this to the steady-state computed above.

9. Now assume a contemporaneous utility function of the CRRA (constant Relative Risk Aversion)
type:2

Ut = γ
c1−ηc
t − 1
1 − ηc

+ ψ
(1 − lt)1−ηl − 1

1 − ηl

a) Derive the model equations and steady-state analytically.
b) Write a script to compute the steady-state for this model.
c) Write a DYNARE mod file and compute the steady-state for this model by using a helper

function in the steady_state_model block.

Readings

• McCandless (2008, Ch. 3, Ch. 6)

• Torres (2013, Ch. 1, Ch. 2)

2Note that due to L’Hopital’s rule ηc = ηl = 1 implies the original specification, Ut = γ log ct + ψ log(1 − lt).
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3. The Algebra of New Keynesian Models
Consider the basic New Keynesian (NK) model without capital, a linear production function and
Calvo (1983) price frictions.

Households The economy is assumed to be inhabited by a large number of identical households. The
representative household maximizes present as well as expected future utility

maxEt
∞∑
j=0

βjU(ct+j , lt+j , zt+j)

with β < 1 denoting the discount factor and Et is the expectation operator conditional on information
at time t. The contemporaneous utility function

U(ct, lt, zt) = zt ·
(
c1−σ
t

1 − σ
− l1+φ

t

1 + φ

)

has three arguments: a consumption index ct, a labor supply index lt which corresponds to either
hours worked or employed household members, and an exogenous preference shifter zt. Note that
the marginal utility of consumption is positive, whereas more labor reduces utility. The inverse of
σ is the intertemporal elasticity of substitution, whereas the inverse of φ is the Frisch elasticity of
labor. Note that the exogenous preference shifter zt influences only intertemporal decisions, but not
intratemporal ones. The consumption index is formed by aggregating a continuum of goods represented
on the interval h ∈ [0, 1] into a single consumption good using a Dixit and Stiglitz (1977) aggregation
technology:

ct =
(∫ 1

0
ct(h)

ϵ−1
ϵ dh

) ϵ
ϵ−1

That is, ct(h) denotes the quantity of good h consumed by the household in period t. ϵ > 1 is
an elasticity parameter measuring the love-of-variety. The household decides how to allocate its
consumption expenditures among the different goods by taking the price Pt(h) of good h as given and
maximizing the consumption index ct for any given level of expenditures. Similarly, in each period
the household takes the nominal wage Wt as given and supplies perfectly elastic labor service to the
firm sector. In return she receives nominal labor income Wtlt and, additionally, nominal profits and
dividends Pt

∫ 1
0 divt(f)df from each firm f ∈ [0, 1] in the intermediate goods sector, because the firms

are owned by the household. Moreover, the household purchases a quantity of one-period nominally
riskless bonds Bt at price Qt. The bond matures the following period and pays one unit of money at
maturity. Income and wealth are used to finance consumption expenditures. In total this defines the
(nominal) budget constraint of the household∫ 1

0
Pt(h)ct(h)dh+QtBt ≤ Bt−1 +Wtlt + Pt

∫ 1

0
divt(f)df

In addition, it is assumed that the household is subject to a solvency constraint that prevents it from
engaging in Ponzi-type schemes:

lim
T→∞

Et

{
Λt,T

BT
PT

}
≥ 0

for all periods t, where

Λt,T = βT−t∂U(cT , lT , zT )/∂cT
∂U(ct, lt, zT )/∂ct

(1)

denotes the stochastic discount factor.
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Furthermore, let Πt = Pt/Pt−1 denote the gross inflation rate, then the following relationships for
the nominal interest rate Rt and the real interest rate rt hold:

Qt = 1
Rt

(2)

Rt = rtEtΠt+1 (3)

1. Explain the economic intuition behind equation (2) that determines the nominal interest rate
and equation (3) that determines the real interest rate.

2. Is there debt in this model? In other words, what is the optimal path for Bt in this model?

3. Explain the difference between the solvency constraint limT→∞Et
{

Λt,T BT
PT

}
≥ 0 and the transver-

sality condition limT→∞Et
{

Λt,T BT
PT

}
= 0 which holds in the optimum allocation.

4. Show that cost minimization of consumption expenditures implies

ct(h) =
(
Pt(h)
Pt

)−ϵ
ct

Pt =
(∫ 1

0
Pt(h)1−ϵdh

) 1
1−ϵ

Interpret these equations. What does this imply for the budget constraint?

5. Derive the intratemporal and intertemporal optimality conditions:

wt := Wt

Pt
= −

∂U(ct,lt,zt)
∂lt

∂U(ct,lt,zt)
∂ct

∂U(ct, lt, zt)
∂ct

= βEt

[
∂U(ct+1, lt+1, zt+1)

∂ct+1
rt

]
where wt denotes the real wage and Πt+1 = Pt+1/Pt the gross inflation rate. Interpret these
equations.

Firms: final good The economy is populated by a continuum of firms indexed by f ∈ [0, 1] that
produce differentiated goods yt(f). The technology for transforming these intermediate goods into
the final output good yt has the Dixit and Stiglitz (1977) form:

yt =

 1∫
0

(yt(f))
ϵ−1

ϵ df


ϵ

ϵ−1

(4)

where ϵ > 1 is the substitution elasticity between inputs, the so-called love-of-variety.

6. Show that profit maximization in the final goods sector implies:

yt(f) =
(
Pt(f)
Pt

)−ϵ
yt

Pt =
[∫ 1

0
Pt(f)1−ϵdf

] 1
1−ϵ

Interpret these equations. What does this imply for profits in the final goods sector?
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Firms: intermediate goods Intermediate firm f uses the following linear production function to
produce their differentiated good

yt(f) = atld,t(f) (5)

where at denotes the common technology level available to all firms. Firms face perfectly competitive
factor markets for hiring labor ld,t(f). Real profits of firm f are equal to revenues from selling its
differentiated good at price Pt(f) minus costs from hiring labor at wage wt:

divt(f) = Pt(f)
Pt

yt(f) − wtld,t(f) (6)

The objective of the firm is to choose contingent plans for Pt(f) and ld,t(f) so as to maximize the
present discounted value of nominal dividend payments given by

Et

∞∑
j=0

Λt,t+jPt+jdivt+j(f)

where household’s stochastic discount factor Λt,t+j takes into account that firms are owned by the
household.

Prices of intermediate goods are determined by nominal contracts as in Calvo (1983) and Yun
(1996). In each period firm f faces a constant probability 1−θ, 0 ≤ θ ≤ 1, of being able to re-optimize
the price Pt(f) of its good yt(f). The probability is independent of the time it last reset its price.
Formally:

Pt(f) =
{
P̃t(f) with probability 1 − θ

Pt−1(f) with probability θ
(7)

where P̃t(f) is the re-optimized price in period t. Accordingly, when a firm cannot re-set its price for j
periods, its price in period t+ j is given by P̃t(f) and stays there until the firm can optimize it again.
Hence, the firm’s objective in t is to set P̃t(f) to maximize expected profits until it can re-optimize
the price again in some future period t+ j. The probability to be stuck at the same price for j periods
is given by θj .

7. Derive the following expression for the stochastic discount factor:

Λt,t+1+j = β
λt+1
λt

Π−1
t+1Λt+1,t+1+j

8. Show that the optimal labor demand schedule of intermediate good firm f is given by:

wt = mct(f)at = mct(f) yt(f)
ld,t(f)

where mct(f) are real marginal costs of firm f . What does this imply for aggregate real marginal
costs mct =

∫ 1
0 mct(f)df?

9. Denote p̃t := P̃t(f)
Pt

and show that optimal price setting of intermediate firms must satisfy:

p̃t · s1,t = ϵ

ϵ− 1 · s2,t

s1,t = yt
∂U(ct, nst , zt)

∂ct
+ βθEtΠϵ−1

t+1s1,t+1

s2,t = mctyt
∂U(ct, nst , zt)

∂ct
+ βθEtΠϵ

t+1s2,t+1

Explain why firms that reset prices set the same price, i.e. P̃t(f) = P̃t or in other words we can
drop the f .

10. Show that the law of motion for the optimal re-set price p̃t = P̃t(f)
Pt

is given by:

1 = θΠϵ−1
t + (1 − θ) p̃1−ϵ

t
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Monetary Policy The central bank adjusts the nominal interest rate Rt according to an interest
rate rule in response to deviations of (i) gross inflation Πt from a target Π∗ and (ii) output yt from
steady-state output y:

Rt = R

(
πt
π∗

)ϕπ
(
yt
y

)ϕy

eνt (8)

where R denotes the nominal interest rate in steady state, ϕπ the sensitivity parameter to inflation
deviations, ϕy the feedback parameter of the output gap and νt an exogenous deviation to the rule.

Exogenous variables and stochastic shocks The exogenous preference shifter zt, the level of tech-
nology at and the exogenous deviations νt from the monetary rule evolve according to

log zt = ρz log zt−1 + εz,t (9)
log at = ρa log at−1 + εa,t (10)

νt = ρννt−1 + εν,t (11)

with persistence parameters ρz, ρa and ρν . The preference shock εz,t, the productivity shock εa,t and
the monetary policy shock εν,t are iid Gaussian:εz,tεa,t

εν,t

 ∼ N


0

0
0

 ,
σ2

z 0 0
0 σ2

a 0
0 0 σ2

ν




Market clearing
11. What does market clearing imply for private bonds Bt?

12. Explain why labor market clearing implies:

lt =
∫ 1

0
ld,t(f)df

13. Show that aggregate real profits of the intermediate firms are given by

divt ≡
∫ 1

0
divt(f)df = yt − wtlt

14. Show that aggregate demand is given by

yt = ct (12)

15. Denote p∗
t =

∫ 1
0

(
Pt(f)
Pt

)−ϵ
df . Show that aggregate supply is given by

p∗
t yt = atlt

Explain why p∗
t is called the price efficiency distortion.

16. Derive the law of motion for the price efficiency distortion p∗
t :

p∗
t = (1 − θ) p̃−ϵ

t + θπϵtp
∗
t−1 (13)

Readings
• Galí (2015, Ch. 3)

• Heijdra (2017, Ch. 19)

• Romer (2019, Ch. 7)

• Woodford (2003, Ch. 3)

• Walsh (2017, Ch. 8)
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A. Solutions
1 Solution to DSGE Models: Definition, Key Challenges, Basic Structure

1. DSGE models use modern macroeconomic theory to explain and predict co-movements of aggre-
gate time series. DSGE models start from what we call the micro-foundations of macroeconomics
(i.e. to be consistent with the underlying behavior of economic agents), with a heart based on the
rational expectation forward-looking economic behavior of agents. In reality all macro variables
are related to each other, either directly or indirectly, so there is no “cetribus paribus”, but a
dynamic stochastic general equilibrium system.

• General Equilibrium (GE): equations must always hold.
Short-run: decisions, quantities and prices adjust such that equations are full-filled.
Long-run: steady-state, i.e. a condition or situation where variables do not change their
value (e.g. balanced-growth path where the rate of growth is constant).

• Stochastic (S): disturbances (or shocks) make the system deviate from its steady-state, we
get business cycles or, more general, a data-generating process

• Dynamic (D): Agents are forward-looking and solve intertemporal optimization problems.
When a disturbance hits the economy, macroeconomic variables do not return to equilib-
rium instantaneously, but change gradually over time, producing complex reactions. Fur-
thermore, some decisions like investment or saving only make sense in a dynamic context.
We can analyze and quantify the effects after (i) a temporary shock: how does the economy
return to its steady-state, or (ii) a permanent shock: how does the economy transition to
a new steady-state.

Basic model structure:

Et [f(yt+1, yt, yt−1, ut)] = 0

where Et is the expectation operator with information conditional up to and including period
t, yt is a vector of endogenous variables at time t, ut a vector of exogenous shocks or random
disturbances with proper density functions. f(·) is what we call economic theory.
First key challenge: values of endogenous variables in a given period of time depend on future
expected values. We need dynamic programming techniques to find the optimality conditions
which define the economic behavior of the agents. The solution to this system is called a decision
or policy function:

yt = g(yt−1, ut)

describing optimal behavior of all agents given the current state of the world yt−1 and after
observing current shocks ut.
Second key challenge: DSGE models cannot be solved analytically, except for some very
simple and unrealistic examples. We have to resort to numerical methods and a computer to
find an approximated solution.
third key challenge: Once the theoretical model and solution is at hands, the next step is
the application to the data. A common procedure called calibration is assigning values to the
parameters of the model by using previous information or matching some key ratios or moments
provided by the data. More recently, researchers are commonly applying formal statistical
methods to estimate the parameters using maximum likelihood, Bayesian techniques, indirect
inference, or a method of moments.

2. The dynamic equilibrium is the result from the combination of economic decisions taken by all
economic agents. For example, the following agents or sectors are commonly included:

• Households: benefit from private consumption, leisure and possibly other things like money
holdings or state services; subject to a budget constraint in which they finance their ex-
penditures via (utility-reducing) work, renting capital and buying (government) bonds ↪→
maximization of utility
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• Firms produce a variety of products with the help of rented equipment (capital) and labor.
They (possibly) have market power over their product and are responsible for the design,
manufacture and price of their products. ↪→ cost minimization or profit maximization

• Monetary policy follows a feedback rule for either interest rates or money supply (growth).
For instance: nominal interest rate reacts to deviations of the current (or lagged) inflation
rate from its target and of current output from potential output.

• Fiscal policy (the government) collects taxes from households and companies in order to
finance government expenditures (possibly utility-enhancing) and government investment
(possibly productivity-enhancing). In addition, the government can issue debt securities.

There is no limitation, i.e. you can also add other agents and sectors like financial intermediaries
(banks), international trade, research & development, climate, etc.

3. Neoclassical or New-Classical models are basically the same terminology (unless you study eco-
nomic history or really want to dive into the different school of thoughts). Basically, both
approaches focus on so-called micro-foundations, the one more in a classical sense (focus on
real rigidities) and the other more in a Keynesian sense (focus on nominal rigidities). In principle
this is already evident in the baseline RBC model and the baseline New-Keynesian model:

• RBC model is the canonical neoclassical model: reduce economy to the interaction of just
one (representative) consumer/household and one (representative) firm. Representative
household takes decisions in terms of how much to consume (save) and how much time is
devoted to work (leisure). Representative firm decides how much it will produce. Equi-
librium of the economy will be defined by a situation in which all decisions taken by all
economic agents are compatible and feasible. One can show that business cycles can be
generated by one special disturbance: total factor productivity or neutral technological
shock; hence, the model generates so-called real business cycles without nominal frictions.
Moreover, there is monetary neutrality in the model.

• New-Keynesian models have the same foundations as New-Classical general equilibrium
models, but incorporate different types of rigidities in the economy. Whereas new clas-
sical DSGE models are constructed on the basis of a perfect competition environment,
New-Keynesian models include additional elements to the basic model such as imperfect
competitions, existence of adjustment costs in investment process, liquidity constraints or
rigidities in the determination of prices and wages. Due to these nominal rigidities there is
no monetary neutrality in the short run. Moreover, New-Keynesian models have become
the leading macroeconomic paradigm.

Noth that the scale of DSGE models has grown over time with incorporation of a large number
of features. To name a few: consumption habit formation, nominal and real rigidities, non-
Ricardian agents, investment adjustment costs, investment-specific technological change, taxes,
public spending, public capital, human capital, household production, imperfect competition,
monetary union, steady-state unemployment, green vs. brown production sector etc.

4. The degree of realism offered by an economic model is not a goal per se to be pursued by
macroeconomists; typically we are focused on the model’s usefulness in explaining macroe-
conomic reality. General strategy is the construction of formal structures through equations
that reflect the interrelationships between the different economic variables. These simplified
structures is what we call a model. The essential question is not that these theoretical construc-
tions are realistic descriptions of the economy, but that they are able to explain the dynamics
observed in the economy. Therefore, it is not possible to reject a model ex-ante because it is
based on assumptions that we believe are not realistic. Rather, the validations must be based
on the usefulness of these models to explain reality, and whether they are more useful than
other models. Of course, most of the times unrealistic assumptions will yield non-useful models;
often, however, simplified assumptions that are a very rough approximation of reality yield quite
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useful models. Either way, the DSGE model paradigm is up-front with our assumptions and
provide the EXACT model dynamics in terms of mathematical correct formulations that can be
challenged, adapted and, ideally, improved.
Regarding the assumption that the lifetime of economic agents is assumed to be infinite: We
know that the lifetime of consumers, firms and governments is in fact finite. Nevertheless, in most
models this is a valid approximation of reality, because for solving and simulating these models
is is not important that agents actually live forever, but that they use the infinite time horizon as
their reference period for taking economic decisions. Framed this way, the assumption
becomes highly realistic. Viewing at the economy from a macroeconomic point of view: No
government thinks it will cease to exist at some point in the future and no entrepreneur takes
decisions based on the idea that the firm will go bankrupt sometime in the future. Granted, for
consumers this is rather weak; however„ we may think about families, dynasties or households
rather than individual consumers. Again, the infinite time planning horizon assumption is a
feasible one. On the other hand, if you want to study the finite life cycle of an agent (school-
work-retirement) or pension schemes, the so-called Overlapping-Generations (OLG) framework
is probably more adequate. Either way, we need the same methods and techniques to deal with
OLG models as we do with New-Keynesian models or RBC models, because all these models
belong to the same class, i.e. are all DSGE models.
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2 Solution to RBC model

1. Due to the transversality condition, we will not have corner solutions and can neglect the non-
negativity constraints. Moreover, due to the concave optimization problem, we only need to
focus on the first-order conditions.
The Lagrangian for the household problem is

£H = Et

∞∑
j=0

βj {γ log(ct+j) + ψ log(1 − lt+j)}

+βjλt+j {(wt+jlt+j + rk,t+jkt−1+j − ct+j − it+j)}
+βjµt+j {((1 − δ)kt−1+j + it+j − kt+j)}

Note that the problem is not to choose {ct, it, lt, kt}∞
t=0 all at once in an open-loop policy, but

to choose these variables sequentially given the information at time t in a closed-loop policy, i.e.
at period t decision rules for {ct, it, lt, kt} given the information set at period t; at period t + 1
decision rules for {ct+1, it+1, lt+1, kt+1} given the information set at period t+ 1, and so on.
The first-order condition w.r.t. ct is given by

∂£H

∂ct
= Et

(
γc−1
t − λt

)
= 0

⇔ λt = γc−1
t (I)

The first-order condition w.r.t. lt is given by

∂£H

∂lt
= Et

( −ψ
1 − lt

+ λtwt

)
= 0

⇔ λtwt = ψ

1 − lt
(II)

The first-order condition w.r.t. it is given by

∂£H

∂it
= Et (−λt + µt) = 0

⇔ λt = µt (III)

The first-order condition w.r.t. kt is given by

∂£H

∂kt
= Et(−µt) + Etβ (λt+1rk,t+1 + µt+1(1 − δ)) = 0

⇔ µt = Etβ(µt+1(1 − δ) + λt+1rk,t+1) (IV )

(I) and (III) in (IV) yields

γc−1
t︸ ︷︷ ︸

Uc,t

= βEt γc
−1
t+1︸ ︷︷ ︸

Uc,t+1

(1 − δ + rk,t+1)

This is the Euler equation of intertemporal optimality. It reflects the trade-off between
consumption and savings. If the household saves a (marginal) unit of consumption, i.e. invest
this into the capital stock, she can consume (1 − δ + rk,t+1) units in the following period. The
marginal utility of consuming a unit today is equal to Uc,t, whereas consuming tomorrow has
expected utility equal to Et(Uc,t+1). Discounting expected marginal utility with β, an optimum
is characterized by a situation in which the household must be indifferent between both choices.
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(I) in (II) yields:

wt = −
−ψ
1−lt
γc−1
t

≡ −Ul,t
Uc,t

This equation reflects intratemporal optimality; in other words, the labor supply function.
According to the equation, the real wage must be equal to the marginal rate of substitution
between consumption and leisure.

2. First, note that even though firms maximize expected profits it is actually a static problem as
there are no forward-looking terms. That is, the objective is to maximize profits

divt = atk
α
d,t−1l

1−α
d,t − wtld,t − rk,tkd,t−1

The first-order condition w.r.t. ld,t is given by
∂divt
∂ld,t

= (1 − α)atkαd,t−1l
−α
d,t − wt = 0

⇔ wt = (1 − α)atkαd,t−1l
−α
d,t = fl = (1 − α) yt

ld,t

The real wage must be equal to the marginal product of labor. Due to the Cobb-Douglas
production function it is a constant proportion (1 − α) of the ratio of total output to labor.
Simply put, this is the labor demand function.
The first-order condition w.r.t. kd,t−1 is given by

∂divt
∂kd,t−1

= αatk
α−1
d,t−1l

1−α
d,t − rk,t = 0

⇔ rk,t = αatk
α−1
d,t−1l

1−α
d,t = fk = α

yt
kd,t−1

The real rental rate for capital must be equal to the marginal product of capital. Due to the
Cobb-Douglas production function it is a constant proportion α of the ratio of total output to
capital. Simply put, this is the capital demand function.

3. Making use of clearing of labor and capital markets implies that the firms profits in the optimum
are given by:

divt = yt − wtlt − rk,tkt−1 = yt − (1 − α)yt − αyt = 0
⇔ yt = wtlt + rk,tkt−1

Insert into the budget restriction of the households yields:

ct + it = wtlt + rk,tkt−1 + divt = yt

This is a manifestation of Walras law: if 2 out of 3 markets are cleared, the last market must
clear as well.

4. First, consider the steady-state value of technology:

log a = ρa log a+ 0 ⇔ log a = 0
⇔ a = 1

The Euler equation in steady-state becomes:

Uc = βUc(1 − δ + rk)

⇔ rk = 1
β

+ δ − 1

Next we will provide recursively closed-form expressions for all variables in terms of steady-state
labor. That is the right-hand sides of the following equations are given in terms of parameters
or previously computed expressions.
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• The firms demand for capital in steady-state becomes

rk = αakα−1l1−α

⇔ k

l
=
(
αa

rk

) 1
1−α

• The firms demand for labor in steady-state becomes:

w = (1 − α)Akαl−α = (1 − α)a
(
k

l

)α
• The law of motion for capital in steady-state implies

i

l
= δ

k

l

• The production function in steady-state becomes

y

l
= a

(
k

l

)α
• The clearing of the goods market in steady-state implies

c

l
= y

l
− i

l

Now, we have expressions for all variables as a ratio to steady-state labor. Hence, once we
compute l, we can revisit the above expressions to compute all values in closed-form. Due to the
log-utility function, we can actually derive a closed-form expression for l. To this end, set labor
demand equal to labor supply and express the right hand side in terms of previously computed
expressions.

ψ
1

1 − l
= γc−1w

⇔ ψ
l

1 − l
= γ

(
c

l

)−1
w

⇔ l = (1 − l) γ
ψ

(
c

l

)−1
w

⇔ l =
γ
ψ

(
c
l

)−1
w

1 + γ
ψ

(
c
l

)−1
w

Lastly, it is straightforward to compute the remaining steady-state values, i.e.

c = c

l
l, i = i

l
l, k = k

l
l, y = y

l
l

5. The transversality condition for an infinite horizon dynamic optimization problem is the bound-
ary condition determining a solution to the problem’s first-order conditions together with the
initial condition. The transversality condition requires the present value of the state variables
(here kt and at) to converge to zero as the planning horizon recedes towards infinity. The
first-order and transversality conditions are sufficient to identify an optimum in a concave opti-
mization problem. Given an optimal path, the necessity of the transversality condition reflects
the impossibility of finding an alternative feasible path for which each state variable deviates
from the optimum at each time and increases discounted utility. These conditions are implicit
only, we don’t enter them in a computer program. But implicitly we do consider them when we
focus on unique and stable solutions or when we pick certain steady-state values.
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6. General hints: construct and parameterize the model such, that it corresponds to certain proper-
ties of the true economy. One often uses steady-state characteristics for choosing the parameters
in accordance with observed data. For instance, long-run averages (wages, hours worked, in-
terest rates, inflation, consumption-shares, government-spending-ratios, etc.) are used to target
certain steady-state values of the endogenous variables, which implies certain values for some
parameters. You can also use micro-studies, however, one has to be careful about the aggrega-
tion.
We will focus on OECD countries and discuss one “possible” way to calibrate the model param-
eters (there are many other ways):
α productivity parameter of capital. Due to the Cobb Douglas production function thus

should be equal to the proportion of capital income to total income of economy. So, one
looks inside the national accounts for OECD countries and sets α to 1 minus the share of
labor income over total income. For most OECD countries this implies a range of 0.25 to
0.40.

β subjective intertemporal preference rate of households: it is the value of future utility in
relation to present utility. Usually this parameter takes a value slightly less than unity,
indicating that agents discount the future. For quarterly data, we typically set it around
0.99 and for yearly data 0.96. These values imply a certain steady-state real rental rate.
To see this, re-consider the Euler equation in steady-state: β = 1

r̄k+1−δ where rk = α yk .
Looking at OECD data one usually finds that the average capital productivity k/y is in
the range of 9 to 11.

δ depreciation rate of capital stock. For quarterly data the literature uses values in the range
of 0.02 to 0.03, for yearly data you often find 0.10. Again let’s use a steady-state relationship
to get a reasonable value. That is, δ = Ī

K̄
=

¯I/Y
¯K/Y . For OECD data one usually finds an

average ratio of investment to output, Ī/Ȳ , around 0.25.
γ and ψ households’s preference regarding consumption and leisure. Often a certain interpretation

in terms of elasticities of substitutions is possible. In the RBC mode, we can make use of
the First-Order-Conditions in steady-state, i.e.

ψ

γ
= W̄

(1 − L̄)
C̄

= (1 − α)
(
K̄

L̄

)α (1 − L̄)
C̄

= (1 − α)
(
K̄

L̄

)α 1
L̄

(1 − L̄)
C̄
L̄

Note that C̄/L̄ as well as K̄/L̄ are given in terms of already calibrated parameters (see
steady-state computations). Therefore, one possible way is to normalize one of the pa-
rameters to unity (e.g. γ = 1) and calibrate the other one in terms of steady-state ratios
for which we would only require to set a value for steady-state hours worked L̄. In the
specification of the utility function, we see that labor is normalized to be between 0 and 1.
So, targeting 8 hours a day implies l = 8/24 = 1/3.

ρA and σA parameters of process for total factor productivity. These do not influence the steady-state
values, but the dynamics of the model. Often you can calibrate these by e.g. estimating the
Cobb-Douglas production function with OLS and then compute the Solow residuals. Then
look at the persistence and standard error of the residuals. Typically we find that ρA is
mostly set above 0.9 to reflect persistence of the technological process and σA around 0.6
in the simple RBC model.

7. The function might look like this:

progs/matlab/rbcLogutilSS.m
1 function [SS,PARAMS,error_indicator] = rbcLogutilSS(SS,PARAMS)

2 % [SS,PARAMS,error_indicator] = rbcLogutilSS(SS,PARAMS)

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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4 % computes the steady−state of the RBC model with log utility analytically

5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % INPUTS

7 % − SS : structure with initial steady state values, fieldnames are

variable names (usually empty, but might be useful for initial values)

8 % − params : structure with values for the parameters, fieldnames are

parameter names

9 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 % OUTPUTS

11 % − SS : structure with computed steady state values, fieldnames are

variable names

12 % − params : structure with updated values for the parameters, fieldnames

are parameter names

13 % − error_indicator: 0 if no error when computing the steady−state
14 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 % Willi Mutschler (willi@mutschler.eu)

16 % Version: January 26, 2023

17 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 error_indicator = 0; % initialize no error

19
20 % read−out parameters

21 ALPHA = PARAMS.ALPHA;

22 BETA = PARAMS.BETA;

23 DELTA = PARAMS.DELTA;

24 GAMMA = PARAMS.GAMMA;

25 PSI = PARAMS.PSI;

26 RHOA = PARAMS.RHOA;

27
28 % compute steady−state
29 a = 1;

30 rk = 1/BETA+DELTA−1;
31 k_l = ((ALPHA*a)/rk)^(1/(1−ALPHA));

32 if k_l <= 0

33 error_indicator = 1;

34 end

35 w = (1−ALPHA)*a*k_l^ALPHA;
36 iv_l = DELTA*k_l;

37 y_l = a*k_l^ALPHA;

38 c_l = y_l − iv_l;

39 if c_l <= 0

40 error_indicator = 1;

41 end

42 l = GAMMA/PSI*c_l^(−1)*w/(1+GAMMA/PSI*c_l^(−1)*w); % closed−form expression for l

43
44 c = c_l*l;

45 iv = iv_l*l;

46 k = k_l*l;

47 y = y_l*l;

48 uc = GAMMA*c^(−1);

49 ul = −PSI/(1−l);

50 fl = (1−ALPHA)*a*(k/l)^ALPHA;
51 fk = ALPHA*a*(k/l)^(ALPHA−1);
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52
53 % write to output structure

54 SS.y = y;

55 SS.c = c;

56 SS.k = k;

57 SS.l = l;

58 SS.a = a;

59 SS.rk = rk;

60 SS.w = w;

61 SS.iv = iv;

62 SS.uc = uc;

63 SS.ul = ul;

64 SS.fl = fl;

65 SS.fk = fk;

66
67 end

You can try it out with the following parametrization (same as in the Dynare mod file):

progs/matlab/rbcLogutilSSTest.m
1 % computes the steady−state of the RBC model with log utility

2 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % Willi Mutschler (willi@mutschler.eu)

4 % Version: January 26, 2023

5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6
7 % calibration

8 PARAMS.ALPHA = 0.35;

9 PARAMS.BETA = 0.9901;

10 PARAMS.DELTA = 0.025;

11 PARAMS.GAMMA = 1;

12 PARAMS.PSI = 1.7333;

13 PARAMS.RHOA = 0.9;

14 SS = []; % no need for initial values

15
16 % compute steady−state
17 [SS,PARAMS,error_indicator] = rbcLogutilSS(SS,PARAMS);

18 if ~error_indicator

19 disp(SS);

20 else

21 error('steady−state could not be computed')

22 end

8. The mod file might look like this:

progs/dynare/rbcLogutil.mod
1 %% Declare Variables and Parameters

2 var y c k l a rk w iv uc ul fl fk;

3 varexo eps_a;

4 parameters ALPHA BETA DELTA GAMMA PSI RHOA;

5
6 %% Calibration of parameters (simple)

7 % ALPHA = 0.35;
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8 % BETA = 0.9901;

9 % DELTA = 0.025;

10 % GAMMA = 1;

11 % PSI = 1.7333;

12 % RHOA = 0.9;

13
14 %% Calibration of parameters (advanced) for OECD countries

15
16 % target values

17 kss_yss = 10; % average capital productivity found in long−run averages of

data

18 ivss_yss = 0.25; % average investment to ouput ratio found in long−run
averages of data

19 wsslss_yss = 0.65; % average share of labor income to total income

20 lss = 1/3; % 8h/24h working time

21
22 % flip steady−state relationships to get parameters in terms of the target values

23 ALPHA = 1−wsslss_yss; % labor demand in steady−state combined with Cobb−
Douglas production function

24 DELTA = ivss_yss / kss_yss; % capital accumulation in steady−state
25 rkss = ALPHA/kss_yss; % capital demand in steady−state combined with Cobb

−Douglas production function

26 BETA = 1/(rkss − DELTA + 1); % Euler equation in steady−state
27 % normalize GAMMA and calibrate PSI to get targeted lss

28 GAMMA = 1; % normalize

29 ass = 1; % tfp in steady−state
30 kss_lss = ((ALPHA*ass)/rkss)^(1/(1−ALPHA));

31 kss = kss_lss*lss;

32 yss = kss/kss_yss;

33 ivss = DELTA*kss;

34 wss = (1−ALPHA)*ass*kss_lss^ALPHA;
35 css = yss−ivss;
36 PSI = GAMMA*(css/lss)^(−1)*wss*(lss/(1−lss))^(−1); % flipped steady−state labor

equation

37
38 RHOA = 0.9; % does not affect the steady−state
39
40 %% Model Equations

41 model;

42 uc = GAMMA*c^(−1);

43 ul = −PSI/(1−l);

44 fl = (1−ALPHA)*a*(k(−1)/l)^ALPHA;

45 fk = ALPHA*a*(k(−1)/l)^(ALPHA−1);
46
47 uc = BETA*uc(+1)*(1−DELTA+rk(+1));

48 w = − ul/uc;

49 w = fl;

50 rk = fk;

51 y = a*k(−1)^ALPHA*l^(1−ALPHA);

52 k = (1−DELTA)*k(−1) + iv;

53 y = c + iv;

54 log(a) = RHOA*log(a(−1)) + eps_a;
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55 end;

56
57 %% Steady State

58 steady_state_model;

59 a = 1;

60 rk = 1/BETA+DELTA−1;
61 K_L = ((ALPHA*a)/rk)^(1/(1−ALPHA));

62 w = (1−ALPHA)*a*K_L^ALPHA;
63 I_L = DELTA*K_L;

64 Y_L = a*K_L^ALPHA;

65 C_L = Y_L − I_L;

66 l = GAMMA/PSI*C_L^(−1)*w/(1+GAMMA/PSI*C_L^(−1)*w);

67 c = C_L*l;

68 iv = I_L*l;

69 k = K_L*l;

70 y = Y_L*l;

71 uc = GAMMA*c^(−1);

72 ul = −PSI/(1−l);

73 fl = (1−ALPHA)*a*(k/l)^ALPHA;
74 fk = ALPHA*a*(k/l)^(ALPHA−1);
75 end;

76
77 steady;

78
79 shocks;

80 var eps_a = 1;

81 end;

82
83 stoch_simul(order=1,irf=30,periods=400) y c k l rk w iv a;

84
85 figure('name','Simulated Data')

86 subplot(3,3,1); plot(oo_.endo_simul(ismember(M_.endo_names,'a'),300:end)); title(

'productivity');

87 subplot(3,3,2); plot(oo_.endo_simul(ismember(M_.endo_names,'y'),300:end)); title(

'output');

88 subplot(3,3,3); plot(oo_.endo_simul(ismember(M_.endo_names,'c'),300:end)); title(

'consumption');

89 subplot(3,3,4); plot(oo_.endo_simul(ismember(M_.endo_names,'k'),300:end)); title(

'capital');

90 subplot(3,3,5); plot(oo_.endo_simul(ismember(M_.endo_names,'iv'),300:end)); title

('investment');

91 subplot(3,3,6); plot(oo_.endo_simul(ismember(M_.endo_names,'rk'),300:end)); title

('rental rate');

92 subplot(3,3,7); plot(oo_.endo_simul(ismember(M_.endo_names,'l'),300:end)); title(

'labor');

93 subplot(3,3,8); plot(oo_.endo_simul(ismember(M_.endo_names,'w'),300:end)); title(

'wage');

Obviously, the results are the same.

19



9. a) For the first-order conditions of the household we know use

Uc,t = γc−ηc
t

Ul,t = −ψ(1 − lt)−ηl

The steady-state for labor changes to

wγ

(
c

l

)−ηc

= ψ(1 − l)−ηlLηc

This cannot be solved for l in closed-form. Rather, we need to condition on the values of
the parameters and use a numerical optimizer to solve for l.

b) The function might look like this:

progs/matlab/rbcSS.m
1 function [SS,PARAMS,error_indicator] = rbcSS(SS,PARAMS)

2 % [SS,PARAMS,error_indicator] = rbcSS(SS,PARAMS)

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % computes the steady−state of the RBC model with CES utility using a

5 % numerical optimizer to compute steady−state labor

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % INPUTS

8 % − SS : structure with initial steady state values, fieldnames are

variable names

9 % − params : structure with values for the parameters, fieldnames are

parameter names

10 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 % OUTPUTS

12 % − SS : structure with computed steady state values, fieldnames are

variable names

13 % − params : structure with updated values for the parameters,

fieldnames are parameter names

14 % − error_indicator: 0 if no error when computing the steady−state
15 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 % Willi Mutschler (willi@mutschler.eu)

17 % Version: January 26, 2023

18 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19
20 error_indicator = 0; % initialize no error

21
22 % read−out parameters

23 ALPHA = PARAMS.ALPHA;

24 BETA = PARAMS.BETA;

25 DELTA = PARAMS.DELTA;

26 GAMMA = PARAMS.GAMMA;

27 PSI = PARAMS.PSI;

28 RHOA = PARAMS.RHOA;

29 ETAC = PARAMS.ETAC;

30 ETAL = PARAMS.ETAL;

31
32 % compute steady−state
33 a = 1;

34 rk = 1/BETA+DELTA−1;
35 k_l = ((ALPHA*a)/rk)^(1/(1−ALPHA));

20



36 if k_l <= 0

37 error_indicator = 1;

38 end

39 w = (1−ALPHA)*a*k_l^ALPHA;
40 iv_l = DELTA*k_l;

41 y_l = a*k_l^ALPHA;

42 c_l = y_l − iv_l;

43 if c_l <= 0

44 error_indicator = 1;

45 end

46 if (ETAC == 1 && ETAL == 1)

47 % closed−form expression for l

48 l = GAMMA/PSI*c_l^(−1)*w/(1+GAMMA/PSI*c_l^(−1)*w);

49 else

50 % no closed−form solution and we therefore use a fixed−point algorithm

51 if error_indicator == 0

52 l0 = SS.l;

53 [l,~,exitflag] = fsolve(@findL,l0,optimset('Display','off','TolX',1e

−12,'TolFun',1e−12));
54 if exitflag <= 0

55 error_indicator = 1;

56 end

57 else

58 l = NaN;

59 end

60 end

61 c = c_l*l;

62 iv = iv_l*l;

63 k = k_l*l;

64 y = y_l*l;

65 uc = GAMMA*c^(−1);

66 ul = −PSI/(1−l);

67 fl = (1−ALPHA)*a*(k/l)^ALPHA;
68 fk = ALPHA*a*(k/l)^(ALPHA−1);
69
70 % write to output structure

71 SS.y = y;

72 SS.c = c;

73 SS.k = k;

74 SS.l = l;

75 SS.a = a;

76 SS.rk = rk;

77 SS.w = w;

78 SS.iv = iv;

79 SS.uc = uc;

80 SS.ul = ul;

81 SS.fl = fl;

82 SS.fk = fk;

83
84 %% Auxiliary function used in optimization

85 % note that some variables are not explicitly declared as input arguments but

get their value from above,
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86 % i.e. the scope of some variables spans multiple functions

87 function error = findL(L)

88 error = w*GAMMA*c_l^(−ETAC) − PSI*(1−L)^(−ETAL)*L^ETAC;
89 end

90
91 end

You can try it out with the following parametrization (same as in the Dynare mod file):

progs/matlab/rbcSSTest.m
1 % computes the steady−state of the RBC model with CES utility

2 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % Willi Mutschler (willi@mutschler.eu)

4 % Version: January 26, 2023

5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6
7 % calibration

8 PARAMS.ALPHA = 0.35;

9 PARAMS.BETA = 0.9901;

10 PARAMS.DELTA = 0.025;

11 PARAMS.GAMMA = 1;

12 PARAMS.PSI = 1.7333;

13 PARAMS.RHOA = 0.9;

14 PARAMS.ETAC = 2;

15 PARAMS.ETAL = 1.5;

16 SS.l = 1/3; % initial guess for labor

17
18 % compute steady−state
19 [SS,PARAMS,error_indicator] = rbcSS(SS,PARAMS);

20 if ~error_indicator

21 disp(SS);

22 else

23 error('steady−state could not be computed')

24 end

c) In Dynare we could use the following mod file:

progs/dynare/rbcCES.mod
1 %% Declare Variables and Parameters

2 var y c k l a rk w iv uc ul fl fk;

3 varexo eps_a;

4 parameters ALPHA BETA DELTA GAMMA PSI RHOA ETAC ETAL;

5
6 %% Calibration of parameters (simple)

7 ALPHA = 0.35;

8 BETA = 0.9901;

9 DELTA = 0.025;

10 GAMMA = 1;

11 PSI = 1.7333;

12 RHOA = 0.9;

13 ETAC = 2;

14 ETAL = 1.5;

15
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16
17 %% Model Equations

18 model;

19 uc = GAMMA*c^(−ETAC);
20 ul = −PSI*(1−l)^(−ETAL);
21 fl = (1−ALPHA)*a*(k(−1)/l)^ALPHA;

22 fk = ALPHA*a*(k(−1)/l)^(ALPHA−1);
23
24 uc = BETA*uc(+1)*(1−DELTA+rk(+1));

25 w = − ul/uc;

26 w = fl;

27 rk = fk;

28 y = a*k(−1)^ALPHA*l^(1−ALPHA);

29 k = (1−DELTA)*k(−1) + iv;

30 y = c + iv;

31 log(a) = RHOA*log(a(−1)) + eps_a;

32 end;

33
34 %% Steady State

35 steady_state_model;

36 a = 1;

37 rk = 1/BETA+DELTA−1;
38 k_l = ((ALPHA*a)/rk)^(1/(1−ALPHA));

39 w = (1−ALPHA)*a*k_l^ALPHA;
40 iv_l = DELTA*k_l;

41 y_l = a*k_l^ALPHA;

42 c_l = y_l − iv_l;

43 l0 = 1/3; % initial guess

44 l = rbcCEShelper(l0,PSI,ETAL,ETAC,GAMMA,c_l,w);

45 c = c_l*l;

46 iv = iv_l*l;

47 k = k_l*l;

48 y = y_l*l;

49 uc = GAMMA*c^(−ETAC);
50 ul = −PSI*(1−l)^(−ETAL);
51 fl = (1−ALPHA)*a*(k_l)^ALPHA;
52 fk = ALPHA*a*(k_l)^(ALPHA−1);
53 end;

54
55 steady;

and the following helper function:

progs/dynare/rbcCEShelper.m
1 function l = rbcCEShelper(l0,PSI,ETAL,ETAC,GAMMA,c_l,w)

2 if ETAC == 1 && ETAL == 1

3 % close−form expression

4 l = GAMMA/PSI*c_l^(−1)*w/(1+GAMMA/PSI*c_l^(−1)*w);

5 else

6 % use numerical optimizer

7 l = fsolve(@(L) w*GAMMA*c_l^(−ETAC) − PSI*(1−L)^(−ETAL)*L^ETAC ,...

8 l0, optimset('Display','Final','TolX',1e−12,'TolFun',1e

−12));
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9 end

10 end

Obviously, the results are the same.
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3 Solution to The Algebra of New Keynesian Models

1. Equation (2) captures that bond prices are inversely related to interest rates. When the interest
rate goes up, the price of bonds falls. Intuitively, this makes sense because if you are paying less
for a fixed nominal return (at par), your expected return should be higher. More specifically to
our model, we consider so-called zero-coupon bonds or discount bonds. These bonds don’t pay
any interest but derive their value from the difference between the purchase price and the par
value (or the face value) paid at maturity. On maturity the bondholder receives the face value
of his investment. So instead of interest payments, you get a large discount on the face value of
the bond; that is the price is lower than the face value. In other words, investors profit from the
difference between the buying price and the face value, contrary to the usual interest income.
In our model, we consider zero-coupon bonds with a face value of 1. So suppose that you buy
such a bond at a price of 0.8, then although the bond pays no interest, your compensation is the
difference between the initial price and the face value. Let Rt denote the gross yield to maturity
of a zero-coupon bond, that is the discount rate that sets the present value of the promised bond
payments equal to the current market price of the bond. So the price of a Zero-Coupon bond is
equal to

Qt = 1
Rt

In our example this would imply Rt = 1.25. As there are no other investment opportunities in
this model Rt is also equal to the nominal interest rate in the economy.
Equation (3) is the so-called Fisherian equation which states that the gross real return on a
bond rt is equivalent to the gross nominal interest rate divided by the expected gross inflation
rate. Inflation expectations are responsible for the difference between nominal and real interest
rates, showing that future expectations matter for the economy.

2. In equilibrium, bond-holding is always zero in all periods: Bt = 0. This is due to the fact that in
this model we have a representative agent and only private bonds. If all agents were borrowing,
there would be nobody they could be borrowing from. If all were lenders, nobody would like to
borrow from them. In sum the price of bonds (or more specifically the nominal interest rate)
adjusts such that bonds across all agents are in zero net supply as markets need to clear in
equilibrium. Note, though, that this bond market clearing condition is imposed after you derive
the households optimality conditions as household savings behavior in equilibrium still needs to
be consistent with the bond market clearing.

3. The No-Ponzi-Game or solvency condition is an external constraint imposed on the individual by
the market or other participants. You forbid your agent from acquiring infinite debt that is never
repaid, a so-called Ponzi-scheme. That is, the individual is restricted from financing consump-
tion by raising debt and then raising debt again to repay the previous debt and finance again
consumption and so on. The individual would very much like to violate it, though, so we need
to impose this constraint. In short: the solvency condition prevents that households consume
more than they earn and refinance their additional consumption with excessive borrowing.
The transversality condition is an optimality condition that states that it is not optimal to start
accumulating assets and never consume them, i.e. limT→∞Et

{
Λt,T BT

PT

}
≤ 0. But with respect to

optimality you would still want to run a Ponzi-scheme if allowed one. limT→∞Et
{

Λt,T BT
PT

}
≤ 0

combined with limT→∞Et
{

Λt,T BT
PT

}
≥ 0 yields limT→∞Et

{
Λt,T BT

PT

}
= 0. This condition must

be satisfied in order for the individual to maximize intertemporal utility implying that at the
limit wealth should be zero. In other words, if at the limit wealth is positive it means that the
household could have increased its consumption without necessarily needing to work more hours;
thus implying that consumption was not maximized and therefore contradicting the fact that
the household behaves optimally. In short: transversality conditions make sure that households
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do no have any leftover savings (in terms of bonds or capital) as this does not correspond to an
optimal path of utility-enhancing consumption.
We never need to actually include this condition into our codes, but implicitly we use it to pick a
certain steady state or trajectory. For instance in the RBC model we have three possible steady
states (kt = 0, ct = 0), kt > 0, ct = 0 or kt > 0, ct > 0. We do not consider the first one because
in this case the economy does not exist. All the trajectories leading to the second one violate
the transversality condition, so finally we select the third steady state as the good one and this
is exactly the one that is most interesting from an economic point of view.
Coming back to our model, both the solvency and transversality condition are actually full-filled
already as bond-holding is always zero in all periods including the hypothetical asymptotic end
of life: Bt = 0 for all t. So these conditions are rather trivial in this model setting, but are
important in more sophisticated models.

4. The household minimizes consumption expenditures
∫ 1

0 Pt(h)ct(h)dh by choosing ct(h) and tak-
ing the aggregation technology into account. That is, the Lagrangian is given by:

£c =
∫ 1

0
Pt(h)ct(h)dh+ Pt

(
ct −

[∫ 1

0
(ct(h))

ϵ−1
ϵ dh

] ϵ
ϵ−1
)

where Pt denotes the Lagrange multiplier, i.e. the cost of an additional unit in the index ct.
Setting the derivative with respect to ct(h) equal to zero yields:

∂£c

∂ct(h) = Pt(h) − Pt

(
ϵ

ϵ− 1

)[∫ 1

0
(ct(h))

ϵ−1
ϵ dh

] ϵ
ϵ−1 −1

︸ ︷︷ ︸
c

1/ϵ
t

(
ϵ− 1
ϵ

)
(ct(h))

ϵ−1
ϵ

−1 = 0

which can be simplified to:

ct(h) =
(
Pt(h)
Pt

)−ϵ
ct

Note that this is the demand function for each consumption good ct(h). Accordingly, ϵ is the
(constant) demand elasticity.
Plugging this expression into the aggregation technology yields:

c
ϵ−1

ϵ
t =

∫ 1

0
(ct(h))

ϵ−1
ϵ dh =

∫ 1

0

((
Pt(h)
Pt

)−ϵ
ct

) ϵ−1
ϵ

dh = c
ϵ−1

ϵ
t P ϵ−1

t

∫ 1

0
(Pt(h))1−ϵdh

⇔Pt =
[∫ 1

0
(Pt(h))1−ϵdh

] 1
1−ϵ

⇔1 =
∫ 1

0

(
Pt(h)
Pt

)1−ϵ
dh (14)

Similar to the aggregation technology for the consumption index ct, Pt can be interpreted as the
aggregation technology for the different prices Pt(h).
In the budget constraint, we can now get rid of one integral

∫ 1
0 ct(h)Pt(h)dh = Ptct, because:∫ 1

0
ct(h)Pt(h)dh =

∫ 1

0

(
Pt(h)
Pt

)−ϵ
ctPt(h)dh = Ptct

∫ 1

0

(
Pt(h)
Pt

)1−ϵ
dh︸ ︷︷ ︸

(14)
=1

= Ptct

That is, conditional on optimal behavior of households, total consumption expenditures can be
rewritten as the product of the aggregate price index times the aggregate consumption quantity
index.
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5. Due to our assumptions, the solvency and transversality conditions as well as the concave op-
timization problem, we can rule out corner solutions and neglect the non-negativity constraints
in the variables and the budget constraint; hence, we only need to focus on the first-order
conditions. The Lagrangian for the household’s problem is:

£HH = Et

∞∑
j=0

βj {U (ct+j , lt+j , zt+j)}

+ βjλt+j


∫ 1

0
divt+j(f)df + wt+jlt+j + Bt−1+j

Pt−1+j︸ ︷︷ ︸
bt−1+j

Pt−1+j
Pt+j︸ ︷︷ ︸
Π−1

t+j

−Qt+j
Bt+j
Pt+j︸ ︷︷ ︸
bt+j

−ct+j


where βjλt+j are the Lagrange multipliers corresponding to period t+j’s real budget constraint
(be aware of the difference between nominal and real variables and constraints; for instance,
bt = Bt/Pt is real debt). The problem is not to choose {ct, lt, bt}∞

t=0 all at once in an open-loop
policy, but to choose these variables sequentially given the information at time t in a closed-loop
policy, i.e. at period t decision rules for {ct, lt, bt} given the information set at period t; at period
t+ 1 decision rules for {ct+1, lt+1, bt+1} given the information set at period t+ 1, etc.

First-order condition with respect to ct

λt = ∂U(ct, lt, zt)
∂ct

= ztc
−σ
t (15)

This is the marginal consumption utility function, i.e. the benefit (shadow price) of an additional
unit of revenue (e.g. dividends or labor income) in the budget constraint.

First-order condition with respect to lt

wt = −∂U(ct, lt, zt)/∂lt
λt

= − ∂U(ct, lt, zt)/∂lt
∂U(ct, lt, zt)/∂ct

= lφt c
σ
t (16)

This is the intratemporal optimality condition or, in other words, the labor supply curve of
the household. Note that the preference shifter zt has no effect on this intratemporal decision.

First-order condition with respect to bt

λtQt = βEt
[
λt+1Π−1

t+1

]
(17)

Combined with (2) and (3) this yields the so-called Euler equation, i.e. the intratemporal
choice between consumption and saving:

∂U(ct, lt, zt)
∂ct

= βEt

[
∂U(ct+1, lt+1, zt+1)

∂ct+1
RtΠ−1

t+1

]
(18)

ztc
−σ
t = βEt

[
zt+1c

−σ
t+1

]
rt (19)

In words, intertemporal optimality is characterized by an indifference condition: An additional
unit of consumption yields either marginal utility today in the amount of ∂U(ct,lt,zt)

∂ct
(left-hand

side). Or, alternatively, this unit of consumption can be saved given the real interest rate rt.
This saved consumption unit has a present marginal utility value of βEt

[
zt+1c

−σ
t+1

]
rt (right-hand

side). An optimal allocation equates these two choices.
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6. The output packers maximize profits Ptyt −
∫ 1

0 Pt(f)yt(f)df subject to (4). The Lagrangian is

£p = Ptyt −
∫ 1

0
Pt(f)yt(f)df + Λpt


 1∫

0

(yt(f))
ϵ−1

ϵ df


ϵ

ϵ−1

− yt


where Λpt is the Lagrange multiplier corresponding to the aggregation technology. The first-order
condition w.r.t yt is

Pt = Λpt (20)

Λpt is the gain of an additional output unit; hence, equal to the aggregate price index Pt.
The first-order condition w.r.t yt(f) yields:

∂£p

∂yt(f) = −Pt(f) + Λpt
ϵ

ϵ− 1

[∫ 1

0
yt(f)

ϵ−1
ϵ df

] ϵ
ϵ−1 −1 ϵ− 1

ϵ
(yt(f))

ϵ−1
ϵ

−1 = 0 (21)

Note that
[∫ 1

0 (yt(f))
ϵ−1

ϵ df
]

= y
ϵ−1

ϵ
t and Λpt = Pt. Therefore:

Pt(f) = Pt

[
y

ϵ−1
ϵ

t

] ϵ−ϵ+1
ϵ−1

(yt(f))
ϵ−1−ϵ

ϵ = Pt

(
yt(f)
yt

)−1
ϵ

(22)

Reordering yields

yt(f) =
(
Pt(f)
Pt

)−ϵ
yt (23)

This is the demand curve for intermediate good yt(f). Again we see that ϵ is the constant
demand elasticity.
The aggregate price index is implicitly determined by inserting the demand curve (23) into the
aggregator (4)

yt =

 1∫
0

((
Pt(f)
Pt

)−ϵ
yt

) ϵ−1
ϵ

df


ϵ

ϵ−1

(24)

⇔ Pt =
[∫ 1

0
(Pt(f))1−ϵdf

] 1
1−ϵ

(25)

7. As the firms are owned by the households, the nominal stochastic discount factor, Λt,t+j , between
t and t + j is derived from the Euler equation (19) of the households λt = βEt

[
λt+1RtΠ−1

t+1

]
which implies for the stochastic discount factor:

EtΛt,t+j = Et1/Rt+j = Etβ
j λt+j
λt

Pt
Pt+j

From here, we can establish the following relationships:

Λt,t = 1 (26)

Λt+1,t+1+j = βj
λt+1+j
λt+1

Pt+1
Pt+1+j

(27)

Λt,t+1+j = βj+1λt+1+j
λt

Pt
Pt+1+j

= β
λt+1
λt

Pt
Pt+1

βj
λt+1+j
λt+1

Pt+1
Pt+1+j

= β
λt+1
λt

Π−1
t+1Λt+1,t+1+j (28)

We will need this later to derive the recursive nonlinear price setting equations.
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8. The Lagrangian of the intermediate firm is

£f = Et

∞∑
j=0

Λt,t+jPt+j

[
Pt+j(f)
Pt+j

yt+j(f) − wt+j ld,t+j(f) +mct+j(f) (at+j ld,t+j(f) − yt+j(f))
]

mct(f) denotes the Lagrange multiplier which is the shadow price of producing an additional
output unit in the optimum; obviously, this is our understanding of real marginal costs. Taking
the derivative wrt ld,t(f) actually boils down to a static problem (as we only need to evaluate
for j = 0) and yields:

wt = mct(f)at = mct(f) yt(f)
ld,t(f) (29)

where we substituted the production function (5) for at. This is the labor demand function,
which implies that the labor-to-output ratio is the same across firms and equal to at. Note that
all firms face the same factor prices and all have access to the same production technology at;
hence, from the above equation it is evident that marginal costs are identical across firms

mct(f) = wt
at

(30)

This means that aggregate marginal costs are also equal to the ratio between the real wage and
technology:

mct =
∫ 1

0
mct(f)df = wt

at

9. The Lagrangian of the intermediate firm is

£f = Et

∞∑
j=0

Λt,t+jPt+j

[(
Pt+j(f)
Pt+j

)1−ϵ

yt+j − wt+j ld,t+j(f) +mct+j(f)

(
at+j ld,t+j(f) −

(
Pt+j(f)
Pt+j

)−ϵ

yt+j

)]
(31)

where (compared to above) we used the demand curve (23) to substitute for yt(f). When firms
decide how to set their price they need to take into account that due to the Calvo mechanism
they might get stuck at P̃t(f) for a number of periods j = 1, 2, . . . before they can re-optimize
again. The probability of such a situation is θj . Therefore, when firms are able to change prices
in period t, they take this into account and the above Lagrangian of the expected discounted
sum of nominal profits becomes:

£fc = Et

∞∑
j=0

θjΛt,t+jPt+j

( P̃t(f)
Pt+j

)1−ϵ

yt+j − wt+jld,t+j(f) +mct+j

at+jld,t+j(f) −
(
P̃t(f)
Pt+j

)−ϵ

yt+j


(32)

= Et

∞∑
j=0

θjΛt,t+jP ϵt+jyt+j
[
P̃t(f)1−ϵ − Pt+j ·mct+j · P̃t(f)−ϵ

]
+ . . . (33)

where in the second line we focus only on relevant parts for the optimization wrt to P̃t(f).
Moreover, we took into account that mct(f) = mct.
The first-order condition of maximizing £fc wrt to P̃t(f) is

0 = Et

∞∑
j=0

θjΛt,t+jP ϵt+jyt+j
[
(1 − ϵ) · P̃t(f)−ϵ + ϵ · Pt+j ·mct+jP̃t(f)−ϵ−1

]
(34)

As P̃t(f) > 0 does not depend on j, we multiply by P̃t(f)ϵ+1:

0 = Et

∞∑
j=0

θjΛt,t+jP ϵt+jyt+j
[
(1 − ϵ) · P̃t(f) + ϵ · Pt+j ·mct+j

]
(35)
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Rearranging

P̃t(f) · Et
∞∑
j=0

θjΛt,t+jP ϵt+jyt+j = ϵ

ϵ− 1 · Et
∞∑
j=0

θjΛt,t+jP ϵ+1
t+j yt+jmct+j (36)

Dividing both sides by P ϵ+1
t

P̃t(f)
Pt︸ ︷︷ ︸
p̃t

·Et
∞∑
j=0

θjΛt,t+j
(
Pt+j
Pt

)ϵ
yt+j︸ ︷︷ ︸

S1,t

= ϵ

ϵ− 1 · Et
∞∑
j=0

θjΛt,t+j
(
Pt+j
Pt

)ϵ+1
yt+jmct+j︸ ︷︷ ︸

S2,t

(37)

Note that all firms that reset prices face the same problem and therefore set the same price,
P̃t(f) = P̃t. This is also evident by looking at the infinite sums, S1,t and S2,t, because these do
not depend on f . Therefore, we can drop the f in P̃t(f) and define p̃t := P̃t

Pt
. The first-order

condition can thus be written compactly:

p̃t · S1,t = ϵ

ϵ− 1 · S2,t (38)

Moreover, the two infinite sums can be written recursively. For this we make use of the relation-
ships for the stochastic discount factor (26) and (28). The first recursive sum can be written
as:

S1,t = Et

∞∑
j=0

θjΛt,t+j
(
Pt+j
Pt

)ϵ
yt+j

= yt + Et

∞∑
j=1

θjΛt,t+j
(
Pt+j
Pt

)ϵ
yt+j

= yt + Et

∞∑
j=0

θj+1Λt,t+j+1

(
Pt+j+1
Pt

)ϵ
yt+j+1

= yt + Et

∞∑
j=0

θj+1Λt,t+j+1

(
Pt+j+1
Pt+1

Pt+1
Pt

)ϵ
yt+j+1

= yt + Et

∞∑
j=0

θj+1β
λt+1
λt

Π−1
t+1Λt+1,t+1+j

(
Pt+j+1
Pt+1

Πt+1

)ϵ
yt+j+1

= yt + θβEt
λt+1
λt

Πϵ−1
t+1 Et

∞∑
j=0

θjΛt+1,t+1+j

(
Pt+j+1
Pt+1

)ϵ
yt+j+1︸ ︷︷ ︸

=S1,t+1
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The second recursive sum can be written as

S2,t = Et

∞∑
j=0

θjΛt,t+j
(
Pt+j
Pt

)ϵ+1
yt+jmct+j

= ytmct + Et

∞∑
j=1

θjΛt,t+j
(
Pt+j
Pt

)ϵ+1
yt+jmct+j

= ytmct + Et

∞∑
j=0

θj+1Λt,t+j+1

(
Pt+j+1
Pt

)ϵ+1
yt+j+1mct+j+1

= ytmct + Et

∞∑
j=0

θj+1Λt,t+j+1

(
Pt+j+1
Pt+1

Pt+1
Pt

)ϵ+1
yt+j+1mct+j+1

= ytmct + Et

∞∑
j=0

θj+1β
λt+1
λt

Π−1
t+1Λt+1,t+1+j

(
Pt+j+1
Pt+1

Πt+1

)ϵ+1
yt+j+1mct+j+1

= ytmct + θβEt
λt+1
λt

Πϵ
t+1Et

∞∑
j=0

θjΛt+1,t+1+j

(
Pt+j+1
Pt+1

)ϵ+1
yt+j+1mct+j+1︸ ︷︷ ︸

=S2,t+1

To sum up:

S1,t = yt + θβEt
λt+1
λt

Πϵ−1
t+1S1,t+1 (39)

S2,t = ytmct + θβEt
λt+1
λt

Πϵ
t+1S2,t+1 (40)

10. The law of motion for p̃t = P̃t
Pt

is given by the aggregate price index (25) which can be re-arranged
to

1 =
∫ 1

0

(
Pt(f)
Pt

)1−ϵ
df (41)

Due to the Calvo mechanism we get that (1 − θ) firms can re-set their price to P̃t, whereas the
remaining θ firms cannot and set their price equal to Pt−1. Therefore:

1 =
∫
optimizers

(
Pt(f)
Pt

)1−ϵ
df +

∫
non−optimizers

(
Pt(f)
Pt

)1−ϵ
df (42)

1 = (1 − θ)
(
P̃t
Pt

)1−ϵ

+ θ

∫ 1

0

(
Pt−1(f)
Pt

Pt−1
Pt−1

)1−ϵ
df (43)

1 = (1 − θ)p̃1−ϵ
t + θ

(
Pt−1
Pt

)1−ϵ ∫ 1

0

(
Pt−1(f)
Pt−1

)1−ϵ
df (44)

1 = (1 − θ)p̃1−ϵ
t + θΠ1−ϵ

t

∫ 1

0

(
Pt−1(f)
Pt−1

)1−ϵ
df︸ ︷︷ ︸

(41)
= 1

(45)

1 = (1 − θ)p̃1−ϵ
t + θΠϵ−1

t (46)

11. Private bonds Bt are in zero net supply on the budget constraint. Note that this condition can
only be imposed after taking first order conditions. It would be invalid to eliminate bonds already
in the budget constraint of the household. Even if bonds are in zero net supply, households
savings behavior in equilibrium still needs to be consistent with the bond market clearing.
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12. In an equilibrium, labor demand from the intermediate firms needs to be equal to the labor
supply of the households; hence: ∫ 1

0
ld,t(f)df = lt (47)

so lt denotes equilibrium hours worked (both supplied and demanded).

13. Given the demand for good yt(f) and the Dixit-Stiglitz aggregation technology, we get:∫ 1

0
yt(f)Pt(f)df =

∫ 1

0

(
Pt(f)
Pt

)−ϵ
ytPt(f)df = Ptyt

∫ 1

0

(
Pt(f)
Pt

)1−ϵ
df︸ ︷︷ ︸

(14)
=1

= Ptyt

Moreover, from the labor market we have lt =
∫ 1

0 ld,t(f)df . Plugging both expressions into
aggregate real profits:

divt =
∫ 1

0
divt(f)df =

∫ 1

0

Pt(f)
Pt

yt(f)df −
∫ 1

0
wtld,t(f)df = yt − wtlt

14. Revisit the budget constraint in real terms:∫ 1

0

Pt(h)
Pt

ct(h)dh+Qtbt ≤ bt−1Π−1
t + wtlt +

∫ 1

0
divt(f)df

which becomes

ct = wtlt + (yt − wtlt) = yt

in an optimal allocation with cleared markets. This is the aggregate demand equation.

15. Define ysumt =
∫ 1

0 yt(f)df . Using the production function (5) and labor market clearing we get:

ysumt =
∫ 1

0
atld,t(f)df = atlt (48)

Furthermore, due to the demand for intermediate good yt(f) in (23) we get:

ysumt = yt

∫ 1

0

(
Pt(f)
Pt

)−ϵ
df︸ ︷︷ ︸

=p∗
t

(49)

Equating both yields:

p∗
t yt = atlt (50)

This is the aggregate supply equation. Price frictions, however, imply that resources will not
be efficiently allocated as prices are too high because not all firms can re-optimize their price in
every period. This inefficiency is measured by p∗

t < 1.
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16. The law of motion for the efficiency distortion p∗
t is given due to the Calvo price mechanism, i.e.:

p∗
t =

∫ 1

0

(
Pt(f)
Pt

)−ϵ
df

p∗
t =

∫
optimizers

(
Pt(f)
Pt

)−ϵ
df +

∫
non−optimizers

(
Pt(f)
Pt

)−ϵ
df

p∗
t = (1 − θ)p̃−ϵ

t + θ

∫ 1

0

(
Pt−1(f)
Pt

)−ϵ
df

p∗
t = (1 − θ)p̃−ϵ

t + θ

∫ 1

0

(
Pt−1(f)
Pt

Pt−1
Pt−1

)−ϵ
df

p∗
t = (1 − θ)p̃−ϵ

t + θ

(
Pt−1
Pt

)−ϵ ∫ 1

0

(
Pt−1(f)
Pt−1

)−ϵ
df

p∗
t = (1 − θ)p̃−ϵ

t + θΠϵ
t

∫ 1

0

(
Pt−1(f)
Pt−1

)−ϵ
df︸ ︷︷ ︸

=p∗
t−1

p∗
t = (1 − θ)p̃−ϵ

t + θΠϵ
tp

∗
t−1
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