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1. Bayesian Estimation of VAR(p)
Consider the following K-variable VAR(p) model:

yt = c + A1yt−1 + · · · + Apyt−p + ut = AZt−1 + ut

where E(ut) = 0, E(utu
′
t) = Σu and E(utu

′
s) = 0 for t ̸= s. Define α = vec(A) and assume that

ut|yt−1, . . . , y1 ∼ N(0, Σ).

1. Explain why Bayesian methods are especially attractive when estimating a VAR(p) model.

2. Assume that the prior for α is normal with mean α0 and covariance matrix V0. Provide an
expression for the posterior conditional on Σu.

3. Assume that the prior for the VAR covariance matrix Σu is Inverse Wishart with degrees of
freedom v0 and scale matrix S0. Provide an expression for the posterior conditional on α.

4. Briefly outline the basic steps of the Gibbs sampling algorithm given the conditional posteriors.

5. Provide intuition behind the “Minnesota prior” and have a look at a possible implementation of
it given the file BVARMinnesotaPrior.m in the appendix.

Hints

• Use mvnrnd(alpha1,V1) to draw from a multivariate normal distribution with mean α1 and
covariance matrix V1. Make sure your covariance matrix is symmetric: V1 = 1

2(V1 + V ′
1).

• Use inv(wishrnd(inv(S1),v1)) to draw from an Inverse Wishart distribution with degrees of
freedom v1 and scale matrix S1.

Readings

• Kilian and Lütkepohl (2017, Ch. 5)

• Koop and Korobilis (2010, Ch. 1-2)
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2. Bayesian Estimation of a VAR model for the US economy including
the Zero-Lower-Bound

Consider a VAR(p) model for the US economy which includes (in this ordering) the federal funds
rate, government bond yield, unemployment and inflation. The sample period consists of 2007m1 to
2010m12. Data is given in the file USZLB.csv.

1. Estimate the parameters of a VAR(2) model with a constant by using Bayesian methods, i.e. a
Gibbs sampling method where you assume a Minnesota prior for the VAR coefficients and an
Inverse Wishart prior for the covariance matrix.
To this end:

• Define a Minnesota prior for the VAR coefficients. The prior mean α0 should reflect the view
that the VAR follows a random walk. Set the hyper-parameters for the prior covariance
matrix V0 such that the tightness parameters on lags of own and other variables are both
equal to 0.5, and the tightness parameter on the constant term is equal to 1.
Hint: You may want to use the BVARMinnesotaPrior.m function in the appendix.

• Define an Inverse Wishart prior for the covariance matrix with degrees of freedoms v0 equal
to the number of variables and the identity matrix as prior scale matrix S0.

• Initialize the first draw of the covariance matrix with OLS values.
• Draw 40000 times from the conditional posteriors

p(vec(A)|Σ, Y ) ∼ N(a1, V1)
p(Σ|vec(A), Y ) ∼ IW (v1, S1)

where

V1 =
(
V −1

0 + ZZ ′ ⊗ Σ−1
)−1

a1 = V1
(
V −1

0 a0 + (Z ⊗ Σ−1)vec(Y )
)

v1 = T + v0

S1 = S0 + (Y − AZ)(Y − AZ)′

and keep the last 10000 draws for inference.
Optionally: check the stability of the draws of the coefficient matrix A, i.e. compute the
eigenvalues of the companion matrix and discard the draw if the modulus of all eigenvalues
of the companion form is larger than one.

2. As the sample period includes the financial crisis, redo the exercise but now use a small prior
variance to reflect the view that monetary policy is at the effective lower bound and hence the
federal funds rate is unlikely to respond to changes in the other variables.

Readings

• Kilian and Lütkepohl (2017, Ch. 5)

• Koop and Korobilis (2010, Ch. 1-2)
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A. BVARMinnesotaPrior.m

progs/matlab/BVARMinnesotaPrior.m
1 function [alpha_prior, V_prior, inv_V_prior, v_prior, S_prior, inv_S_prior] =

BVARMinnesotaPrior(Y,const,p,hyperparams)

2 % [alpha_prior, V_prior, inv_V_prior, v_prior, S_prior, inv_S_prior] =

BVARMinnesotaPrior(Y,const,p,hyperparams)

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Outputs Minnesota Prior adapting codes by Gary Koop and Dimitris Korobilis for

5 % "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics"

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % INPUTS

8 % − Y : matrix of data. [number of periods (T) x number of variables (

K)]

9 % − const : 0 no constant; 1 constant; 2 constant and linear trend. [

scalar]

10 % − p : number of lags. [scalar]

11 % − hyperparams : tightness parameters for Minnesota prior on

12 % − 1st value: lags of own variable

13 % − 2nd value: lags of cross variables

14 % − 3rd value: exogenous variables, i.e. constant term, trends,

etc

15 % [3x1] vector (optional)

16 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 % OUTPUTS

18 % − alpha_prior : prior mean for VAR coefficients, reflects view that VAR follows a

random walk. [K*(const+K+K*(p−1) x 1]

19 % − V_prior : variance for prior on VAR coefficients. [K*(const+K+K*(p−1) x K*(

const+K+K*(p−1)]
20 % − inv_V_prior : inverse of V_prior. [K*(const+K+K*(p−1) x K*(const+K+K*(p−1)]
21 % − v_prior : prior degrees of freedom for Inverse Wishart distribution for

covariance matrix. [scalar]

22 % − S_prior : prior scale matrix for Inverse Wishart distribution for covariance

matrix. [KxK]

23 % − inv_S_prior : inverse of S_prior. [KxK]

24 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 % Willi Mutschler, January 23 2023

26 % willi@mutschler.eu

27 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28
29 [T,K] = size(Y); % T is number of periods, K number of variables

30
31 % initialize prior for VAR coefficients

32 A_prior = [zeros(K,const) eye(K) zeros(K,K*(p−1))];
33 alpha_prior = A_prior(:);

34
35 % hyper−parameters on the variance of alpha_prior

36 if nargin < 4 % set standard values

37 lambda1 = 0.6;

38 lambda2 = 0.5;

39 lambda3 = 10^2;

40 else % set user−provided values
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41 lambda1 = hyperparams(1);

42 lambda2 = hyperparams(2);

43 lambda3 = hyperparams(3);

44 end

45
46 % get residual variances of univariate p−lag autoregressions with deterministic terms

47 % these will be used to adjuzst for differences in the units the variables are

measured in

48 sigma_sq = zeros(K,1); % initialize vector to store residual variances

49 for i = 1:K

50 Ylag_i = lagmatrix(Y(:,i),1:p); % create lags of dependent variable in i−th
equation

51 if const == 0 % no deterministic terms

52 Z_i = transpose(Ylag_i(p+1:T,:));

53 elseif const == 1 % add constant

54 Z_i = transpose([ones(T−p,1) Ylag_i(p+1:T,:)]);

55 elseif const == 2 % add constant and linear trend

56 Z_i = transpose([ones(T−p,1) (p+1:T)' Ylag_i(p+1:T,:)]);

57 end

58 Y_i = transpose(Y(p+1:T,i)); % dependent variable in i−th equation

59 alpha_i = (Y_i*Z_i')/(Z_i*Z_i'); % OLS estimate of i−th equation

60 u_i = Y_i − alpha_i*Z_i; % OLS residual of i−th equation

61 sigma_sq(i,1) = (1./(size(u_i,2)−p−const))*(u_i*u_i'); % OLS error variance

62 end

63
64 % create V_pr, an array of dimensions K x (const+K*p), which will contain

65 % the diagonal elements of the covariance matrix, in each of the K equations.

66 V_pr = lambda3 * repmat(sigma_sq,1,const); % prior variances for deterministic terms (

if any)

67 V_i = zeros(K,K); % initialize diagonal elements of prior variance for VAR

coefficients

68 for l = 1:p % for each lag

69 for i = 1:K % for each equation

70 for j = 1:K % for each RHS variable

71 if i == j

72 V_i(i,j) = lambda1/(l^2); % tightness/variance on own variable

73 else

74 V_i(i,j) = (lambda2*sigma_sq(i,1)) ./ ((l^2)*sigma_sq(j,1)); %

tightness/variance on cross variables, adjusted for differences

in units

75 end

76 end

77 end

78 V_pr = [V_pr V_i]; % concatenate with variance on deterministic terms

79 end

80 V_prior = diag(V_pr(:)); % now V is a diagonal matrix with diagonal elements

V_i

81 inv_V_prior = diag(1./V_pr(:)); % inverse of a diagonal matrix is just the reciprocate

of the values on the diagonal

82
83 % hyper−parameters on SIGMA ~ invWishart(v_prior,S_prior)

84 v_prior = K; % degrees of freedom equal to number of variables
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85 S_prior = eye(K); % prior scale matrix

86 inv_S_prior = inv(S_prior); % inverse of prior scale matrix

87
88 end
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B. Solutions
1 Solution to Bayesian Estimation of VAR(p)

1. Given the large number of parameters in VARs, estimates of objects of interest (e.g. impulse
responses or forecasts) can become imprecise in large models. The Bayesian paradigm enables one
to incorporate prior information and generally this makes the estimates become more precise.
Moreover, Bayesian methods provide an easy way to characterize estimation uncertainty by
looking at the posterior distribution.

2. Conditional on Σu and assuming a normal prior for α, the conditional posterior is given by (see
the readings for the algebra)

p(α|Σu, Y ) ∼ N(α1, V1)

where

V1 = (V −1
0 + ZZ ′ ⊗ Σ−1)−1

α1 = V1(V −1
0 α0 + (Z ⊗ Σ−1)vec(Y ))

3. Conditional on α and assuming an Inverse Wishart prior distribution for Σu, the conditional
posterior is given by (see the readings for the algebra):

p(Σu|α, Y ) ∼ IW (v1, S1)

where

v1 = T + v0

S1 = S0 + (Y − AZ)(Y − AZ)′

4. Gibbs sampling consists of the following steps:
a) Set priors for the VAR coefficients and the covariance matrix. Set a starting value for Σu,

e.g. to OLS values.
b) Compute the moments of the conditional posterior distribution for the VAR coefficients,

α1 and V1, and take a draw α(j) from N(α1, V1).
c) Draw Σu(j) from its conditional posterior distribution IW (v1, S1).
d) Repeat steps (b) and (c) a large number M of times to generate sequences {α(1), . . . , α(M)}

and {Σu(1), . . . , Σu(M)} and use the last L draws for inference.

5. A variety of priors can be used with VAR models, but 3 issues arise:
a) VAR models are not parsimonious: they have many coefficients to estimate. Ideally our

prior should provide information to improve the precisions of estimates by focusing on the
most important coefficients or using prior information to shrink the parameter space.

b) Some priors (conjugate) are more useful in terms of analytical expressions and closed-form
results. This can hugely reduce the computational burden on sampling algorithms.

c) Prior distributions should be flexible, meaning that specific information or uncertainty can
be easily added.

With this in mind, there is a literature trying to come up with structured prior distribu-
tions that are able to (a) shrink the parameter space, (b) imply closed-form expressions for
conditional posteriors, and (c) are flexible enough to easily adjust your prior when you change
the specification or variables in the model.
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To this end, researchers from the University of Minnesota and the Federal Reserve Bank of
Minneapolis have proposed a prior which is now known as the Minnesota Prior and has
become the default for many applications. The idea is to put forward an automatic way to
structure the prior for α which is based on just a few hyper-parameters that have the same
meaning across any model size or specification.
Consider the following example:(

y1
t

y2
t

)
=
(

c1
c2

)
+
(

A1
11 A1

12
A1

21 A1
22

)(
y1

t−1
y2

t−1

)
+
(

A2
11 A2

12
A2

21 A2
22

)(
y1

t−2
y2

t−2

)
+
(

u1
t

u2
t

)

Now the Minnesota prior imposes three things:
a) The individual variables y1

t and y2
t follow a Random Walk. We implement this by setting

the prior mean α0 to zero except for the elements corresponding to A1
11 and A1

22. This is
the way we implement shrinkage.
Side-note: You might need to manually adjust this. For instance, growth rates typically
show little persistence, so we could also set A1

11 and A1
22 to zero. Alternatively, for level

variables with high persistence, we could set A1
11 and A1

22 to high values slightly below 1.
Nevertheless, the Random Walk is a good candidate and default in most implementations
of the Minnesota prior.

b) The prior covariance matrix V0 is set to reflect uncertainty about our Random Walk prior
mean. That is, we want to express how certain we are that (1) all coefficients on lags
higher than 1 are zero and (2) coefficients other than on own lags are zero.
We implement this by a set of hyper-parameters that control the tightness of this prior.
Formally, this is implemented by specifying the covariance matrix V0 as a diagonal matrix,
where the diagonal elements are set in a structured way. Let V i

0 denote the block of V0
associated with coefficients in equation i, then the diagonal elements of V i

0 are set according
to:

V i
0,jj =


λ1
l2 for coefficients on own lag l = 1, . . . , p

λ2
l2

σii
σjj

for coefficients on lag l = 1, . . . , p of variables j ̸= i

λ3σii for coefficients on exogenous variables


This specification implies that as the lag l = 1, . . . , p increases the coefficients are shrunk
towards zero. Moreover, by specifying λ1 < λ2 we make own lags more likely to be important
than lags of other variables. Whereas setting λ1 close to zero puts greater weight towards
the Random Walk assumption. Note that the term σii

σjj
adjusts for differences in the units

the variables are measured in. Typically, we set σii to the OLS estimate of the standard
error of the reduced-form innovations from univariate AR regressions of equation i.
The common practice is then to use the typical natural conjugate priors, i.e. the prior for
Σu follows an Inverse Wishart prior and the prior for the coefficients vec(A) conditional on
Σu is normal. Thus, we can make use of the Gibbs sampler by making use of the analytical
expressions for the conditional posteriors.
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2 Solution to Bayesian Estimation of a VAR model for the US economy including the
Zero-Lower-Bound

progs/matlab/BVARZLB_run.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Run script to do a Bayesian Estimation of a VAR(2) model for US data on

3 % Federal Funds Rate, Government Bond Yield, Unemployment and Inflation

4 % from 2007m1 2010m12.

5 % The prior variance is adjusted to reflect the view that monetary policy

6 % is at the effective lower bound.

7 % Results are stored in log files with different names such that one can

8 % easily use MATLAB's "Compare Selected Files" tool to see differences

9 % between results.

10 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 % Willi Mutschler, January 23, 2024

12 % willi@mutschler.eu

13 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 BVARZLB(0); % no adjustment

15 BVARZLB(1); % with adjustment for effective lower bound

Run the main script by setting the option to false for the first part and to true for the second part.
The main script might look like this:

progs/matlab/BVARZLB.m
1 function BVARZLB(prior_adjust_for_ZLB)

2 % BVARZLB(prior_adjust_for_ZLB)

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Bayesian Estimation of a VAR(2) model for US data on Federal Funds Rate,

5 % Government Bond Yield, Unemployment and Inflation from 2007m1 2010m12.

6 % Bayesian estimation with Gibbs Sampling using a Minnesota Prior for the

7 % VAR coefficients and an Inverse Wishart Prior for the covariance matrix.

8 % Optionally, the prior variance is adjusted to reflect the view that

9 % monetary policy is at the effective lower bound (i.e. the federal funds

10 % rate is unlikely to respond to changes in other variables).

11 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 % INPUTS

13 % − prior_adjust_for_ZLB : boolean, 1: adjust prior variance to reflect

14 % the view that monetary policy is

15 % at the zero lower bound

16 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 % OUTPUTS

18 % stores results into log files with different names such that one can easily

19 % use MATLAB's "Compare Selected Files" tool to see differences between results

20 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 % Willi Mutschler, January 23, 2024

22 % willi@mutschler.eu

23 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24
25 %% PRELIMINARIES

26 if nargin < 1

27 prior_adjust_for_ZLB = false; % if no input argument was provided

28 end

29
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30 % specification of the VAR model

31 const = 1; % 0: no constant, 1: constant, 2: constant and linear trend

32 p = 2; % number of lags on dependent variables

33
34 % hyper−parameters for Minnesota prior for BVAR model

35 hyperparams(1) = 0.5; % tightness parameter for Minnesota prior on lags of own

variable

36 hyperparams(2) = 0.5; % tightness parameter for Minnesota prior on lags of other

variables

37 hyperparams(3) = 1; % tightness parameter for Minnesota prior on exogenous variables

(constant, trends, etc)

38
39 % settings for Gibbs sampler

40 nsave = 10000; % final number of draws to keep

41 nburn = 30000; % draws to discard (burn−in)
42 ntot = nsave+nburn; % total number of draws

43
44 %% DATA HANDLING

45 % load monthly US data on FFR, govt bond yield, unemployment and inflation

46 USZLB = importdata('../../data/USZLB.csv');

47 Yraw = USZLB.data; % Yraw is a matrix with T rows by K columns

48 [Traw,K] = size(Yraw); % initial dimensions of dependent variable

49 Ylag = lagmatrix(Yraw,1:p); % generate lagged Y matrix which will be part of the Z

matrix

50 % define matrix Z which has all the right−hand−side variables and also get rid of NA

observations

51 if const == 0

52 Z = transpose(Ylag(p+1:Traw,:));

53 elseif const == 1

54 Z = transpose([ones(Traw−p,1) Ylag(p+1:Traw,:)]);

55 elseif const == 2

56 Z = transpose([ones(Traw−p,1) transpose((p+1):Traw) Ylag(p+1:Traw,:)]);

57 end

58 Y = transpose(Yraw(p+1:Traw,:)); % dependent variable in each equation, get rid of NA

observations

59 [totcoeff,T] = size(Z); % get size of final matrix Z

60 ZZt = Z*Z'; % auxiliary matrix product

61
62 %% PRIOR SPECIFICATION

63 % get standard specification of Minnesota Normal−Inverse−Wishard Prior

64 [alpha_prior, V_prior, inv_V_prior, v_prior, S_prior, inv_S_prior] =

BVARMinnesotaPrior(Yraw,const,p,hyperparams);

65 if prior_adjust_for_ZLB

66 % manually adjust for zero−lower bound on nominal interest rates.

67 % The interest rate is the first variable and it is reasonable to assume that

68 % as monetary policy is constrained at the effective lower bound, other variables

69 % do not have an effect on the nominal interest rate. Therefore, we need to focus

70 % on coefficients A1_12, A1_13, A1_14, A2_12, A2_13, A2_14.

71 % The prior mean already sets these equal to 0, but we additionally want

72 % to use a very small prior variance to reflect the view that we are

73 % quite sure that these parameters are very close to zero.

74
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75 % find position of A1_12, A1_13, A1_14, A2_12, A2_13, A2_14

76 tmp = zeros(K,K); tmp(1,2:K) = 1;

77 Atmp = [zeros(K,1) tmp tmp];

78 idx = find(Atmp==1);

79 for j = idx

80 V_prior(j,j) = 1e−9; % set to small number

81 end

82 inv_V_prior = diag(1./diag(V_prior));

83 end

84 fprintf('prior for coefficient matrix A:\n')

85 disp(reshape(alpha_prior,K,1+2*K));

86 fprintf('prior variance for coefficient matrix A (i.e. only diagonal elements of

V_prior ordered in same way as coefficient matrix A):\n')

87 disp(reshape(diag(V_prior),K,1+2*K));

88
89 %% GIBBS SAMPLER: INITIALIZATION

90 A_draws = zeros(K,totcoeff,nsave); % storage for posterior draws of A = [c A_1 A_2]

91 SIGMAU_draws = zeros(K,K,nsave); % storage for posterior draws of SIGMAU

92 % initialize first draw of SIGMAU with OLS values

93 A_OLS = (Y*Z')/ZZt; % get OLS estimates

94 resid_OLS = Y − A_OLS*Z; % compute OLS residuals

95 SIGMAU_OLS = (resid_OLS*resid_OLS')./(T−K*p−const); % OLS estimate of error covariance

matrix

96 SIGMAU_j = SIGMAU_OLS; % first draw for Gibbs sampler

97
98 %% GIBBS SAMPLER: ALGORITHM

99 tic; % start timer

100 waitb = waitbar(0,'Number of iterations'); % open a GUI waitbar

101 for j = 1:ntot

102 if mod(j,1000) == 0

103 waitbar(j/ntot); % update waitbar every 1000th step

104 end

105
106 % posterior of (alpha|SIGMAU,Y) ~ N(alpha_post,V_post)

107 invSIGMAU_j = inv(SIGMAU_j);

108 V_post = inv(inv_V_prior + kron(ZZt,invSIGMAU_j));

109 alpha_post = V_post*(inv_V_prior*alpha_prior + kron(Z,invSIGMAU_j)*Y(:));

110 % check for stability of the VAR coefficients

111 is_stable = false;

112 while ~is_stable

113 V_post = (V_post + V_post.')/2; % make sure V_post is symmetric, i.e. get rid

of numerical inefficiencies due to inverses

114 alpha_j = mvnrnd(alpha_post,V_post); % draw of alpha_j

115 A_j = reshape(alpha_j,K,const+K*p); % reshape to get A_j

116 Acomp = [A_j(:,2:end); eye(K*(p−1)) zeros(K*(p−1),K)]; % companion matrix

117 if (max(abs(eig(Acomp)))>1)==0 % check Eigenvalues of

companion matrix

118 is_stable = true; % keep stable draw

otherwise re−draw
119 end

120 end

121
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122 % posterior of (SIGMAU|alpha,Y) ~ invWishard(inv(S_post),v_post)

123 v_post = T + v_prior;

124 S_post = S_prior + (Y − A_j*Z)*transpose(Y − A_j*Z);

125 SIGMAU_j = inv(wishrnd(inv(S_post),v_post));

126
127 % store results if burn−in phase is passed

128 if j > nburn

129 A_draws(:,:,j−nburn) = A_j;

130 SIGMAU_draws(:,:,j−nburn) = SIGMAU_j;

131 end

132 end

133 close(waitb); % close GUI waitbar

134 toc; % stop and display timer

135
136 %% INFERENCE ON POSTERIOR DRAWS AND COMPARISON WITH OLS

137 VAR_OLS = VARReducedForm(Yraw,p);

138 [VAR_OLS.eq1.beta VAR_OLS.eq2.beta VAR_OLS.eq3.beta VAR_OLS.eq4.beta]'

139 if prior_adjust_for_ZLB

140 diary('BVARZLB_results_withZLB.log'); % open log file to save results into a text

file

141 else

142 diary('BVARZLB_results_noZLB.log');

143 end

144 fprintf('OLS estimate of A:\n')

145 A_OLS

146 fprintf('OLS estimate of SIGMAU:\n')

147 SIGMAU_OLS

148
149 fprintf('Posterior mean of A:\n')

150 A_mean = mean(A_draws,3)

151 fprintf('Posterior mean of SIGMAU:\n')

152 SIGMA_mean = mean(SIGMAU_draws,3)

153
154 fprintf('OLS standard error of A:\n')

155 [VAR_OLS.eq1.bstd VAR_OLS.eq2.bstd VAR_OLS.eq3.bstd VAR_OLS.eq4.bstd]'

156 fprintf('Posterior standard deviation of A:\n')

157 se_A = std(A_draws,0,3)

158
159 fprintf('OLS lower 5th confidence interval of A:\n')

160 [VAR_OLS.eq1.bint(:,1) VAR_OLS.eq2.bint(:,1) VAR_OLS.eq3.bint(:,1) VAR_OLS.eq4.bint

(:,1)]'

161 fprintf('Posterior lower 5th percentile of A:\n')

162 LOWER_A = prctile(A_draws,5,3)

163
164 fprintf('OLS upper 95th confidence interval of A:\n')

165 [VAR_OLS.eq1.bint(:,2) VAR_OLS.eq2.bint(:,2) VAR_OLS.eq3.bint(:,2) VAR_OLS.eq4.bint

(:,2)]'

166 fprintf('Posterior upper 95th percentile of A:\n')

167 UPPER_A = prctile(A_draws,95,3)

168
169 diary off; % close log file
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