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1. Bayesian Estimation Basics
Consider a simple univariate model:

yt = µ + ut

with t = 1, 2, . . . , T and ut ∼ N (0, σ2). Assume that σ2 is known. The objective of an econometrician
is to estimate µ.

1. How do classical and Bayesian analysis differ?

2. Name the key ingredients for Bayesian estimation.

3. What are “conjugate priors” and “natural conjugate priors”?

4. What is the idea of Monte Carlo integration in the context of Bayesian estimation?

Readings

• Greenberg (2008, Part I)

• Koop (2003, Ch.1-2)
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2. Bayesian Estimation of Multivariate Linear Regression Model
Consider a linear regression model with multiple regressors:

Y = Xβ + u

with u ∼ N (0, σ2I).

1. Name the idea and general procedure for estimating this model with Bayesian methods.

2. Provide an expression for the likelihood function p(Y |β, σ2).

3. Assume that σ2 is known and the prior distribution for β is Gaussian with mean β0 and covariance
matrix Σ0. Derive an expression for the conditional posterior distribution p(β|σ2, Y ).

4. Assume that β is known and the prior distribution for the precision 1/σ2 is Gamma with shape
parameter s0 and scale parameter v0. Derive an expression for the conditional posterior
distribution p(1/σ2|β, Y ).

5. Now assume that both β and σ2 are unknown. Since we are able to draw directly from the con-
ditional posterior distributions (direct sampling), we can use the Gibbs sampling algorithm
to get draws from the joint posterior distribution p(β, σ2|Y ). Provide an overview of the
basic steps and algorithm of the Gibbs sampling algorithm.

Readings

• Greenberg (2008, Ch. 7.1)

• Koop (2003, Ch. 3)
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3. Bayesian Estimation of Quarterly Inflation
Perform a Bayesian estimation using the Gibbs sampler of an autoregressive model with two lags of
quarterly US inflation

yt = c + ϕ1yt−1 + ϕ2yt−2 + ut = Yt−1θ + ut

where Yt−1 = (1, yt−1, yt−2), ut ∼ WN(0, σ2
u) and θ = (c, ϕ1, ϕ2)′. To this end, assume a Gamma

distribution for the marginal prior for the precision 1/σ2
u and a normal distribution for the conditional

prior for the coefficients θ given 1/σ2
u.

1. Load the dataset QuarterlyInflation.csv. It contains a series for US quarterly inflation from
1947Q1 to 2012Q3. Plot the data.

2. Create the matrix of regressors and the corresponding vector of endogenous variables for an
AR(2) model with a constant.

3. Set the prior mean for the coefficients to a vector of zeros, θ0 = 0, and the prior covariance
matrix to the identity matrix, Σ0 = I.

4. Set the shape parameter for the variance parameter to s0 = 1 and the scale parameter to v0 = 0.1.

5. Set the total number of Gibbs iterations to R = 50000 with a burn-in phase of B = 40000.

6. Initialize output matrices for the remaining R − B draws of the coefficient estimates and the
variance estimate.

7. Initialize the first draw of 1/σ2
u to its OLS estimate.

8. For j = 1, . . . , R do the following
a) Sample ϕ(j) conditional on 1/σ2

u(j) from N (θ1, Σ1) where

Σ1 = (Σ−1
0 + σ−2

u (j)(X ′X))−1

θ1 = Σ1 · (Σ−1
0 ϕ0 + σ−2

u (j)X ′y)

Optionally: check the stability of the draw to avoid an explosive AR processes.
b) Sample 1/σ2

u(j) conditional on θ(j) from the Gamma distribution G(s1, v1) where

s1 = s0 + T

v1 = v0 +
T∑

t=3
(yt − Yt−1θ(j))2

c) If you passed the burn-in phase (j > B), then save the draws of θ(j) and σ2(j) into the
output matrices.

9. Plot the histograms of the draws in your output matrices.

Hints
• Use mvnrnd(theta1,Sigma1) to draw from a multivariate normal distribution with mean θ1 and

covariance matrix Σ1.

• Use gamrnd(s1,1/v1,1,1) to draw from a Gamma distribution with shape parameter s1 and
scale parameter v1.

Readings
• Chib and Greenberg (1994)

• Greenberg (2008, Ch. 10.1)
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A. Solutions
1 Solution to Bayesian Estimation Basics

1. In Quantitative Macroeconomics and Econometrics we are concerned with using data to learn
about a phenomenon, e.g. the relationship between two macroeconomic variables. That is: we
want to learn about something unknown (the parameter µ) given something known (the data
yt). Let’s use the sample mean as our estimating function: µ̂ = 1/T

∑T
t=1 yt. Due to the law

of large numbers and the central limit theorem we can derive that µ̂ ∼ N(µ, σ2

T ) and conduct
inference such as computing confidence intervals [µ̂ ± 1.96 σ√

T
].

Classical/Frequentist approach: µ is a fixed unknown quantity, that is we think there exists
a true value that is not random. On the other hand, the estimating function, µ̂, is a random
variable and is evaluated via repeated sampling. In a thought experiment, we would be able to
generate a large number of datasets (given the true µ) and our confidence interval will contain the
true value in 95% of cases. The estimator µ̂ is best in the sense of having the highest probability
of being close to the true µ.
Bayesian approach: µ is treated as a random variable; that is, there is NO true unknown value.
Instead our knowledge about the model parameter µ is summarized by a probability distribution.
In more detail, this distribution summarizes two sources of information:

a) prior information: subjective beliefs about how likely different parameter values are (infor-
mation BEFORE seeing the data)

b) sample information: AFTER seeing the data, we update/revise our prior beliefs
In a sense we explicitly make use of (subjective) probabilities to quantify uncertainty about the
parameter.

2. The key ingredients are based on the rules of probability, which imply for two events A and B:
p(A, B) = p(A|B)p(B), where p(A, B) is the joint probability of both events happing simultane-
ously. p(A|B) is the probability of A occurring conditional on B having occurred; and p(B) is the
marginal probability of B. Alternatively, we can reverse A and B to get: p(A, B) = p(B|A)p(A).
Equating the two expressions gives you Bayes’ rule:

p(B|A) = p(A|B)p(B)
p(A)

This rule also holds for continuous variables such as parameters θ and data y:

p(θ|y) = p(y|θ)p(θ)
p(y)

That is, the key object of interest is the posterior p(θ|y) distribution, which is the product of
the likelihood function p(y|θ) and the prior density p(θ), divided by the marginal data
density p(y). In other words, the prior contains our prior (non-data) information, whereas
the likelihood function is the density of the data conditional on the parameters. Note that the
marginal data density p(y) can be ignored as it does not depend on the parameters (it is just
a normalization constant as a probability density integrates to one). Therefore, we can use the
proportional ∝ sign, that is the posterior is proportional to the likelihood times the prior:

p(θ|y) ∝ p(y|θ)p(θ)

The posterior summarizes all we know about θ after seeing the data. It combines both data and
non-data information. The equation can be viewed as an updating rule, where data allows us to
update our prior views about θ.
Note that Bayesians are upfront and rigorous about including non-data information! The idea
is that more information (even if subjective) tends to be better than less.
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3. In principle any distribution can be combined with the likelihood to form the posterior. Some
priors are, however, more convenient than others to make use of analytical results.
Conjugate priors: If a prior is conjugate, then the posterior has the same density as the prior.
This eases analytical derivations.
Natural conjugate priors: A conjugate prior is called a natural conjugate prior, if the pos-
terior and the prior have the same functional form as the likelihood function. That is, the prior
can be interpreted as arising from a fictitious dataset from the same data-generating process.

4. The posterior is typically not analytically available and needs to be approximated unless for
special cases using e.g. natural conjugate priors. But, typically we are not interested in the
exact shape of the posterior, but in certain statistics of the posterior distribution such as:

E[θ|y] =
∫ ∞

−∞
θp(θ|y)dθ

V [θ|y] =
∫ ∞

−∞
θ2p(θ|y)dθ − (E(θ|y))2

So we only need to approximate the integrals using numerical methods such as Monte Carlo
integration. That is, IF we had iid draws from the posterior, we can make use of the law of large
numbers and could approximate the posterior mean and variance as:

E[θ|y] ≈ 1
S

S∑
i=1

θi

V [θ|y] ≈ 1
S

S∑
i=1

θ2
i −

(
1
N

N∑
i=1

θi

)2

Or in general for any function:

E[f(θ)|y] =
∫ ∞

−∞
f(θ)p(θ|y)dθ ≈ 1

S

S∑
s=1

f(θs)

This is the key idea of Monte Carlo integration, i.e. replace the integral by a sum over S draws
from the posterior. The Central Limit Theorem can then be used to asses the accuracy of this
approximation. But there are two challenges:

a) How to draw from the posterior?
b) How to make sure that the draws are iid?

The first question can be answered by using suitable posterior sampling algorithms such as direct
sampling, importance sampling, Metropolis-Hastings sampling, Gibbs sampling, or Sequential
Monte-Carlo sampling. The second question is more difficult to answer and requires some knowl-
edge about the sampling algorithm and suitable diagnostics.
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2 Solution to Bayesian Estimation of Multivariate Linear Regression Model

1. The parameter vector [β, σ2]′ is a random variable with a probability distribution. A Bayesian
estimation of this distribution combines prior beliefs and information from the data:

a) Prior distribution p(β, σ2)
b) Likelihood p(Y |β, σ2)
c) Bayes’ rule gives the joint posterior distribution

Some useful relationships:
• joint posterior distribution of β and σ2:

p(β, σ2|Y ) = p(Y |β, σ2)p(β, σ2)
p(Y ) ∝ p(Y |β, σ2)p(β, σ2)

• marginal posterior distributions of β and σ2:

p(β|Y ) =
∫ ∞

0
p(β, σ2|Y )dσ2 ∝

∫ ∞

0
p(Y |β, σ2)p(β, σ2)dσ2

p(σ2|Y ) =
∫ ∞

−∞
p(β, σ2|Y )dβ ∝

∫ ∞

−∞
p(Y |β, σ2)p(β, σ2)dβ

• conditional posterior distribution of β given σ2:

p(β|σ2, Y ) = p(β, σ2|Y )
p(σ2|Y ) ∝ p(Y |β, σ2)p(β, σ2)

Lastly, the following relationship is useful for simulations:

p(β, σ2|Y ) = p(β|σ2, Y )p(σ2|Y )

2. Because u is normally distributed, Y is also Gaussian; hence, we can derive the precise form of
the likelihood function:

p(Y |β, σ2) = 1
(2πσ2)T/2 e

{
− 1

2σ2 (Y −Xβ)′(Y −Xβ)
}

3. First, assuming that σ2 is known and the prior for β is Gaussian, we have p(β) ∼ N(β0, Σ0);
that is, the prior density is given by:

p(β) = (2π)−K/2|Σ0|−1/2e{− 1
2 (β−β0)Σ−1

0 (β−β0)}

Note that the prior for β is independent of σ2, so we can also write:

p(β) = p(β|σ2)

Second, conditional on σ2 the likelihood is proportional to:

p(Y |β, σ2) ∝ e
{

− 1
2σ2 (Y −Xβ)′(Y −Xβ)

}
Third, combining prior and likelihood yields:

p(β|σ2, Y ) ∝ e
{

− 1
2 (β−β0)′Σ−1

0 (β−β0)− 1
2σ2 (Y −Xβ)′(Y −Xβ)

}
One can show (see the references), that this is a Gaussian distribution

p(β|σ2, Y ) ∼ N(β1, Σ1)

with

β1 =
(
Σ−1

0 + σ−2(X ′X)
)−1 (

Σ−1
0 β0 + σ−2(X ′Y )

)
Σ1 =

(
Σ−1

0 + σ−2(X ′X)
)−1
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4. Assuming that β is known and the prior for 1/σ2 is Gamma, we have p(1/σ2) = p(1/σ2|β) ∼
Γ(s0, v0); that is, the prior density is given by:

p(1/σ2|β) ∝
( 1

σ2

)s0−1
e

{
− 1

v0σ2

}

Conditional on β the likelihood is proportional to:

p(Y |σ2, β) ∝ (σ2)−T/2
e
{

− 1
2σ2 (Y −Xβ)′(Y −Xβ)

}
Combining prior and likelihood yields (see the readings for the algebra):

p(1/σ2|β, Y ) ∼ Γ(s1, v1)

where

s1 = s0 + T

v1 = v0 + (Y − Xβ)′(Y − Xβ)

5. In the previous exercises we have derived the conditional posteriors in closed-form. When both β
and σ2 are unknown, we can specify the joint prior distribution for these parameters assuming a
Gamma distribution for the marginal prior for 1/σ2 and a normal distribution for the conditional
prior for β|1/σ2. That is, the joint prior is then p(β, 1/σ2) ∝ p(β|1/σ2)p(1/σ2). It can then be
shown that the joint posterior density is:

p(β, 1/σ2|Y ) = p(β|1/σ2, Y )p(1/σ2|Y )

To make inference on β, we need to know the marginal posterior

p(β|Y ) =
∫ ∞

0
p(β, 1/σ2|Y )d(1/σ2)

This integration is very hard, but we can make use of a numerical Monte Carlo integration
approach: Gibbs sampling.
The idea of Gibbs sampling is to repeatedly sample from the conditional posterior distributions
to get an approximation of the marginal and joint posterior distributions of the parameters.
Basic steps of the Gibbs sampling algorithm:

• Set priors and initial guess for σ2

• Sample β conditional on 1/σ2

• Sample 1/σ2 conditional on β

• Repeat (2) and (3) a large number of times R and keep the last L draws.
• Use the L draws to make inference on β and σ.
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3 Solution to Bayesian Estimation of Quarterly Inflation

progs/matlab/BayesianQuarterlyInflation.m
1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Bayesian estimation of an AR(2) model of quarterly inflation

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Willi Mutschler, January 23, 2024

5 % willi@mutschler.eu

6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7
8 clearvars; clc;close all;

9
10 %% data handling

11 QuarterlyInflation = importdata('../../data/QuarterlyInflation.csv'); % Load data

12 data = QuarterlyInflation.data;

13 T = size(data,1); % determine sample length, i.e. how many

quarters

14 X = [ones(T,1) lagmatrix(data,1:2)]; % matrix of regressors, i.e. c, y(t−1) and y(t

−2) for AR(2) model with constant

15 X = X(3:end,:); % remove the first 2 observations in regressors

16 y = data(3:end,1); % remove the first 2 observations in dependent

variable

17 T = size(y,1); % sample length after adjustment

18
19 %% plot data

20 % create x axis with dates

21 sampl = datetime('1947−Q4','InputFormat','yyyy−QQQ'):calquarters(1):datetime('2012−Q3'

,'InputFormat','yyyy−QQQ');
22 figure('name','US Quarterly Inflation')

23 plot(sampl,y,'LineWidth',2);

24 title('Quarterly US Inflation');

25
26 %% set priors

27 % priors for theta ~ N(theta0,Sigma0)

28 theta0 = zeros(3,1); % prior mean for coefficients

29 Sigma0 = eye(3); % prior variance for coefficients

30 invSigma0 = inv(Sigma0); % as we need the inverse of Sigma0 later on

31 % priors for precision (1/sigma_u^2) ~ G(s0,v0):

32 s0 = 1; % prior shape parameter

33 v0 = 0.1; % prior scale parameter

34
35 %% options for Gibbs sampler

36 R = 5000; % total number of Gibbs iterations

37 B = 4000; % number of burn−in iterations

38
39 %% initialize output matrices

40 out1 = zeros(3,R−B); % coefficient draws

41 out2 = zeros(1,R−B); % precision draws

42 sigmau2_j = 1; % initialize first draw of sigma_u^2

43
44 %% Gibbs sampling

45 count = 1;

46 for j = 1:R
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47 % sample theta conditional on (1/sigma_u^2) from N(theta1,Sigma1)

48 Sigma1 = inv(invSigma0 + (1/sigmau2_j)*(X'*X)); % conditional posterior

variance of theta

49 theta1 = Sigma1*(invSigma0*theta0 + (1/sigmau2_j)*(X'*y)); % conditional posterior

mean of theta

50 % check stability of draw (to avoid explosive AR process)

51 is_stable = 0;

52 while is_stable == 0

53 theta_j = transpose(mvnrnd(theta1,Sigma1)); % take a draw from multivariate

normal

54 Acomp = [theta_j(2) theta_j(3); 1 0]; % companion matrix

55 if max(abs(eig(Acomp))) < 1

56 is_stable = 1; % AR model is stable if all the eigenvalues are less than

or equal to 1 in absolute value

57 end

58 end

59
60 % sample (1/sigma_u^2) conditional on theta from G(s1,v1)

61 u = y−X*theta_j; % residuals conditional on theta(j)

62 s1 = s0 + T; % conditional posterior shape parameter

63 v1 = v0 + u'*u; % conditional posterior scale matrix

64 sigma2inv_j = gamrnd(s1,1/v1,1,1); % take a draw from gamma distribution

65 sigmau2_j = 1/sigma2inv_j; % we'll store the variance instead of the precision

66
67 % save draws for inference if burn−in phase is passed

68 if j > B

69 out1(:,count) = theta_j;

70 out2(:,count)= sigmau2_j;

71 count = count+1;

72 end

73 end

74
75 %% plot priors, histograms and kernel density estimate of marginal posteriors

76 x1 = −3:.1:3;

77 x2 = 0:.01:1;

78 c_prior = normpdf(x1,theta0(1),Sigma0(1,1));

79 theta1_prior = normpdf(x1,theta0(2),Sigma0(2,2));

80 theta2_prior = normpdf(x1,theta0(3),Sigma0(3,3));

81 sigmau2_prior = 1./gampdf(x2,s0,1/v0);

82
83 figure('name','Marginal Posterior Distributions','units','normalized','outerposition'

,[0 0.1 1 0.9]);

84
85 % Constant (c)

86 subplot(2,2,1)

87 histogram(out1(1,:),50,'Normalization','pdf', 'FaceColor', '#AEC7E8');

88 hold on;

89 [f, xi] = ksdensity(out1(1,:));

90 plot(xi, f, 'LineWidth', 2, 'Color', '#1F77B4'); % Kernel density estimate

91 plot(x1, c_prior, 'LineWidth', 2, 'Color', 'r');

92 axis tight

93 title('Constant (c)')
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94 legend('Posterior Histogram', 'Posterior KDE', 'Prior', 'Location', 'Best')

95
96 % AR(1) coefficient (\phi_1)

97 subplot(2,2,2)

98 histogram(out1(2,:),50,'Normalization','pdf', 'FaceColor', '#AEC7E8');

99 hold on;

100 [f, xi] = ksdensity(out1(2,:));

101 plot(xi, f, 'LineWidth', 2, 'Color', '#1F77B4'); % Kernel density estimate

102 plot(x1, theta1_prior, 'LineWidth', 2, 'Color', 'r');

103 axis tight

104 title('AR(1) coefficient (\phi_1)')

105 legend('Posterior Histogram', 'Posterior KDE', 'Prior', 'Location', 'Best')

106
107 % AR(2) coefficient (\phi_2)

108 subplot(2,2,3)

109 histogram(out1(3,:),50,'Normalization','pdf', 'FaceColor', '#AEC7E8');

110 hold on;

111 [f, xi] = ksdensity(out1(3,:));

112 plot(xi, f, 'LineWidth', 2, 'Color', '#1F77B4'); % Kernel density estimate

113 plot(x1, theta2_prior, 'LineWidth', 2, 'Color', 'r');

114 axis tight

115 title('AR(2) coefficient (\phi_2)')

116 legend('Posterior Histogram', 'Posterior KDE', 'Prior', 'Location', 'Best')

117
118 % Error variance (\sigma_u^2)

119 subplot(2,2,4)

120 histogram(out2(1,:),50,'Normalization','pdf', 'FaceColor', '#AEC7E8');

121 hold on;

122 [f, xi] = ksdensity(out2(1,:), 'Support', 'positive');

123 plot(xi, f, 'LineWidth', 2, 'Color', '#1F77B4'); % Kernel density estimate

124 plot(x2, sigmau2_prior, 'LineWidth', 2, 'Color', 'r');

125 axis tight

126 title('Error variance (\sigma_u^2)')

127 legend('Posterior Histogram', 'Posterior KDE', 'Prior', 'Location', 'Best')

128
129 % Adjustments for overall figure aesthetics

130 set(gcf, 'Color', 'w'); % Set figure background to white
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