
Quantitative Macroeconomics

Winter 2023/24

Week 1
Willi Mutschler

willi@mutschler.eu

Version: 1.0
Latest version available on: GitHub

https://github.com/wmutschl/Quantitative-Macroeconomics/releases/latest/download/week_1.pdf

Contents
1. What is Quantitative Macroeconomics 1

2. Programming Languages 2

3. Quick Tour: MATLAB 3

4. Quick Tour: git with GitKraken 5

A. Exam template files for LATEX 8

B. Solutions 11

1. What is Quantitative Macroeconomics
Broadly define the scope and research topics of “Quantitative Macroeconomics”, sometimes referred
to as “Macroeconometrics”. What are

• Structural Vector AutoRegressive models?

• Dynamic Stochastic General Equilibrium models?

• the challenges and approaches in estimating SVAR and DSGE models?

Readings

• Cantore et al. (2013)

• Christiano, Eichenbaum, and Trabandt (2018)

• Fernández-Villaverde and Rubio-Ramírez (2010)

• Guerrón-Quintana and Nason (2013)

• Herbst and Schorfheide (2016, Ch. 1)

• Kilian (2013)

• Kilian and Lütkepohl (2017, Ch. 1, Ch. 6)

• Schorfheide (2010)

1

2. Programming Languages
1. Name some popular programming languages in Macroeconomics. Which are general purpose,

which are domain specific?

2. What are the differences between compiled and interpreted languages?

3. What is important when choosing a programming language for scientific computing in Macroe-
conomics? Which programming language(s) would you choose?

Readings

• Aguirre and Danielsson (2020)

• Aruoba and Fernández-Villaverde (2015) (note the Update available at https://www.sas.
upenn.edu/~jesusfv/Update_March_23_2018.pdf)

2

https://www.sas.upenn.edu/~jesusfv/Update_March_23_2018.pdf
https://www.sas.upenn.edu/~jesusfv/Update_March_23_2018.pdf

3. Quick Tour: MATLAB
Install the most recent version of MATLAB with the following Toolboxes: Econometrics Toolbox,
Global Optimization Toolbox, Optimization Toolbox, Parallel Computing Toolbox, Statistics and
Machine Learning Toolbox, Symbolic Math Toolbox. Open a new script and do the following: 1

1. Define the column vectors

x = (−1, 0, 1, 4, 9, 2, 1, 4.5, 1.1, −0.9)′ y = (1, 1, 2, 2, 3, 3, 4, 4, 5, nan)′

2. Check if both vectors have the same length using either length() or size().

3. Perform the following logical operations:

x < y x < 0 x + 3 ≥ 0 y < 0

4. Check if all elements in x satisfy both x + 3 ≥ 0 and y > 0.

5. Check if all elements in x satisfy either x + 3 ≥ 0 or y > 0.

6. Check if at least one element of y is greater than 0.

7. Compute x + y, xy, xy′, x′y, y/x, and x/y.

8. Compute the element-wise product and division of x and y.

9. Compute ln(x) and ex.

10. Use any to check if the vector x contains elements satisfying
√

x ≥ 2.

11. Compute a =
∑10

i=1 xi and b =
∑10

i=1 y2
i . Omit the nan in y when computing the sum.

12. Compute
∑10

i=1 xiy
2
i . Omit the nan in y when computing the sum.

13. Count the number of elements of x > 0.

14. Predict what the following commands will return:
x.^y x.^(1/y) log(exp(y)) y*[-1,1] x+[-1,0,1] sum(y*[-1,1],1,’omitnan’)

15. Define the matrix X =

1 4 7
2 5 8
3 6 9

. Print the transpose, dimensions and determinant of X.

16. Compute the trace of X (i.e. the sum of its diagonal elements).

17. Change the diagonal elements of X to [7,8,9].

18. Compute the eigenvalues of (the new) X. Display a message if X is positive or negative definite.

19. Invert X and compute the eigenvalues of X−1.

20. Define the column vector a = (1, 3, 2)′ and compute a’*X, a’.*X, and X*a.

21. Compute the quadratic form a′Xa.

1If you don’t have any previous programming experience, I would highly recommend to go through Brandimarte
(2006, Appendix A), Miranda and Fackler (2002, Appendix B), and Pfeifer (2017).

3

22. Define the matrices I =

 1 0 0
0 1 0
0 0 1

, Y =

 1 4 7
2 5 8
3 6 9

1 0 0
0 1 0
0 0 1

 and Z =

1 4 7
2 5 8
3 6 9
1 0 0
0 1 0
0 0 1

.

23. Generate the vectors

x1 = (1, 2, 3, . . . , 9) , x2 = (0, 1, 0, 1, 0, 1, 0, 1) , x3 = (1, 1, 1, 1, 1, 1, 1, 1)
x4 = (−1, 1, −1, 1, −1, 1) , x5 = (1980, 1985, 1990, . . . , 2010) , x6 = (0, 0.01, 0.02, . . . , 0.99, 1)

using sequence operator : or repmat.

24. Generate a grid of n = 500 equidistant points on the interval [−π, π] using linspace.

25. Compare 1:10+1, (1:10)+1 and 1:(10+1).

26. Define the following column vectors

x =
(
1 1.1 9 8 1 4 4 1

)
, y =

(
1 2 3 4 4 3 2 NaN

)′

z =
(
true true false false true false false false

)′

27. Predict what the following commands will return (and then check if you are right):
x(2:5), x(4:end-2), x([1 5 8]), x(repmat(1:3,1,4)),
y(z), y(~z), y(x>2), y(x==1),
x(~isnan(y)), y(~isnan(y))

28. Indexing is not only used to read certain elements of a vector but also to change them. Execute
x2 = x to make a copy of x. Change all elements of x2 that have the value 4 to the value −4.
Print x2.

29. Change all elements of x2 that have the value 1 to a missing value (nan). Print x2.

30. Execute x2(z) = []. Print x2.

31. Define the matrix M =

1 5 9 12 8 4
2 6 10 11 7 3
3 7 11 10 6 2
4 8 12 9 5 1

 using the : operator and the reshape command.

32. Predict what the following commands will return (and then check if you are right):
M(1,3), M(:,5), M(2,:), M(2:3,3:4), M(2:4,4), M(M>5), M(:,M(1,:)<=5), M(M(:,2)>6,:),
M(M(:,2)>6,4:6)

33. Print all rows of M where column 5 is at least three times larger than column 6.

34. Count the number of elements of M that are larger than 7.

35. Count the number of elements of M in row 2 that are smaller than their neighbors in row 1.

36. Count the number of elements of M that are larger than their left neighbor.

Readings

• Brandimarte (2006, Appendix A).

• Miranda and Fackler (2002, Appendix B).

• Pfeifer (2017)

4

4. Quick Tour: git with GitKraken
1. What is git? What is GitKraken? What is GitHub?

2. How does a typical workflow in Quantitative Macroeconomics look like? How can a version
control system like git support this workflow?

3. If you haven’t already, sign up for a free account on GitHub: https://github.com/signup

4. If you haven’t already, sign up for the GitHub Student Developer Pack https://education.
github.com/pack. If you add your university email address, the decision process is very fast
(usually within a day).

5. Install GitKraken for your operating system https://www.gitkraken.com/download and con-
nect it with GitHub. Go to preferences → Integrations → GitHub and click Generate SSH key
and add to GitHub. Checkout the other preferences. For instance, if you are on Windows make
sure that under Editor the End of Line Character is set to LF.2

6. Create a local repository on your computer called Quant-Macro by selecting Start a local
repo in GitKraken.

7. With your favorite text editor open the README.md file inside the folder and add the following:
Repository for Quantitative Macroeconomics
In this repository I will practice estimating SVAR and DSGE models.
The folder contains examples and codes developed in the lecture.
I also don’t get git and find this really cumbersome! Dropbox, iCloud, Nextcloud, and OneDrive is so much better!

Save the file and have a look into GitKraken what happened in your repository.

8. Explain the git model of staging, committing and pushing.

9. Stage and commit all the changes you made so far to the repository.

10. What is a good commit?

11. Soft Reset your current status (so-called HEAD) to the initial commit. Re-commit everything
except the last line in the README.md file without actually changing the file in your text editor.
Put the remaining changes (i.e. the last line into the stash, which is a place for work-in-progress).

12. Push your local repository to GitHub. Visit the website https://github.com/[username]/Quant-
Macro to see what happened.

13. What are git branches? Create a branch called latex-exam-template and checkout the branch.

14. While on your latex-exam-template branch, use your favorite text editor to create the three
files templateExamSolution.tex, templateExamBiblio.bib, and templateMatlabExample.m
given in the Appendix. Typically, when copy and pasting from a pdf you will run into characters
(like minus signs and empty space) not correctly pasted into your text editor, so you will need
to check everything manually. Once you are happy, commit only three files using the message
“Created latex template for exam solutions”.

15. Compile the Latex files using your favorite Latex GUI or via the command line:

2If you are on Windows and working with people who are not (or vice-versa), you’ll probably run into line-ending
issues at some point. This is because Windows uses both a carriage-return character and a linefeed character for newlines
in its files, whereas macOS and Linux systems use only the linefeed character. This is a subtle but incredibly annoying
fact of cross-platform work; many editors on Windows silently replace existing LF-style line endings with CRLF, or insert
both line-ending characters when the user hits the enter key. Therefore, it is advised to tell git to convert CRLF to LF
on commit but not the other way around.

5

https://github.com/signup
https://education.github.com/pack
https://education.github.com/pack
https://www.gitkraken.com/download

pdflatex templateExamSolution
biber templateExamSolution
pdflatex templateExamSolution
pdflatex templateExamSolution

Open the pdf to make sure the file compiled correctly.

16. Like in the previous exercise we often have some auxiliary files created by a program which we
do not care about. We can tell git to ignore individual files or patterns of files. In GitKraken,
simply right-click on the file you want to ignore and select how you want to ignore it. Do so for
the just created auxiliary Latex files, but also for the generated pdf (as it is binary). Have a
look into the newly created .gitignore file and commit it.3

17. Create a Pull Request to GitHub of your develop branch to your main branch. Go to GitHub
and accept this. See what happens in the repository.

18. Switch back to your main branch and pull the merged changes. Then click Pop to add the
changes you had in your stash back on top of the current branch. Either decide to discard the
last line in the README.md file or commit it and schedule a meeting with me to discuss your
issues.

19. Once you got accepted to the GitHub Student Developer Pack, activate GitKraken to get the
free PRO license.

Readings

• https://www.gitkraken.com/learn/git: highly recommended (particularly the videos)

• Chacon (2014): extensive book on git

Useful urls

• https://www.sas.upenn.edu/~jesusfv/Chapter_HPC_5_Git.pdf

• https://github.com/jaredgars/LEAP

• https://luispfonseca.com/files/slides_git.pdf

• https://www.frankpinter.com/notes/git-for-economists-presentation.pdf

• https://github.com/fditraglia/git-for-economists

• https://matteosostero.com/files/slides_git.pdf

3GitHub also has a collection of useful gitignore files for various programming languages at https://github.com/
github/gitignore.

6

https://www.gitkraken.com/learn/git
https://www.sas.upenn.edu/~jesusfv/Chapter_HPC_5_Git.pdf
https://github.com/jaredgars/LEAP
https://luispfonseca.com/files/slides_git.pdf
https://www.frankpinter.com/notes/git-for-economists-presentation.pdf
https://github.com/fditraglia/git-for-economists
https://matteosostero.com/files/slides_git.pdf
https://github.com/github/gitignore
https://github.com/github/gitignore

References
Aguirre, Alvaro and Jon Danielsson (2020). Which Programming Language Is Best for Economic Re-

search: Julia, Matlab, Python or R? Blog. url: https://voxeu.org/article/which-programming-
language-best-economic-research.

Aruoba, S. Borağan and Jesús Fernández-Villaverde (2015). “A Comparison of Programming Lan-
guages in Macroeconomics”. In: Journal of Economic Dynamics and Control 58, pp. 265–273. doi:
10.1016/j.jedc.2015.05.009.

Brandimarte, Paolo (2006). Numerical Methods in Finance and Economics: A MATLAB-based Intro-
duction. 2nd ed. Statistics in Practice. Hoboken, N.J: Wiley Interscience. isbn: 978-0-471-74503-7.

Cantore, Cristiano et al. (2013). “The Science and Art of DSGE Modelling: I – Construction and
Bayesian Estimation”. In: Handbook of Research Methods and Applications in Empirical Macroeco-
nomics. Edward Elgar Publishing, pp. 411–440. isbn: 978-0-85793-102-3. doi: 10.4337/9780857931023.
00026.

Chacon, Scott (2014). Pro Git. Second edition. The Expert’s Voice in Software Development. New
York, NY: Apress. isbn: 978-1-4842-0077-3.

Christiano, Lawrence J., Martin S. Eichenbaum, and Mathias Trabandt (2018). “On DSGE Models”.
In: Journal of Economic Perspectives 32.3, pp. 113–140. doi: 10.1257/jep.32.3.113.

Fernández-Villaverde, Jesús and Juan F. Rubio-Ramírez (2010). “Structural Vector Autoregressions”.
In: Macroeconometrics and Time Series Analysis. Ed. by Steven N. Durlauf and Lawrence E. Blume.
London: Palgrave Macmillan UK, pp. 303–307. isbn: 978-0-230-23885-5 978-0-230-28083-0. url:
https://doi.org/10.1057/9780230280830_33.

Guerrón-Quintana, Pablo A. and James M. Nason (2013). “Bayesian Estimation of DSGE Models”. In:
Handbook of Research Methods and Applications in Empirical Macroeconomics. Edward Elgar Pub-
lishing, pp. 486–512. isbn: 978-0-85793-102-3. url: https://doi.org/10.4337/9780857931023.
00029.

Herbst, Edward and Frank Schorfheide (2016). Bayesian Estimation of DSGE Models. The Econo-
metric and Tinbergen Institutes Lectures. Princeton University Press. isbn: 978-0-691-16108-2.

Kilian, Lutz (2013). “Structural Vector Autoregressions”. In: Handbook of Research Methods and Appli-
cations in Empirical Macroeconomics. Ed. by Steven N. Hashimzade and Michael Thornton. Edward
Elgar Publishing, pp. 515–554. url: https://doi.org/10.4337/9780857931023.00031.

Kilian, Lutz and Helmut Lütkepohl (2017). Structural Vector Autoregressive Analysis. Themes in Mod-
ern Econometrics. Cambridge: Cambridge University Press. isbn: 978-1-107-19657-5. url: https:
//doi.org/10.1017/9781108164818.

Lucas, Robert E. (Jan. 1976). “Econometric Policy Evaluation: A Critique”. In: Carnegie-Rochester
Conference Series on Public Policy 1, pp. 19–46. doi: 10.1016/S0167-2231(76)80003-6.

Miranda, Mario Javier and Paul L. Fackler (2002). Applied Computational Economics and Finance.
Cambridge, Mass. London: MIT. isbn: 978-0-262-63309-3.

Pfeifer, Johannes (2017). MATLAB Handout. url: https://sites.google.com/site/pfeiferecon/
dynare.

Schorfheide, Frank (2010). “Bayesian Methods in Macroeconometrics”. In: Macroeconometrics and
Time Series Analysis. Ed. by Steven N. Durlauf and Lawrence E. Blume. London: Palgrave Macmil-
lan UK, pp. 28–34. isbn: 978-0-230-23885-5 978-0-230-28083-0. url: https://doi.org/10.1057/
9780230280830_3.

Sims, Christopher A. (Jan. 1980). “Macroeconomics and Reality”. In: Econometrica 48.1, p. 1. doi:
10.2307/1912017.

7

https://voxeu.org/article/which-programming-language-best-economic-research
https://voxeu.org/article/which-programming-language-best-economic-research
https://doi.org/10.1016/j.jedc.2015.05.009
https://doi.org/10.4337/9780857931023.00026
https://doi.org/10.4337/9780857931023.00026
https://doi.org/10.1257/jep.32.3.113
https://doi.org/10.1057/9780230280830_33
https://doi.org/10.4337/9780857931023.00029
https://doi.org/10.4337/9780857931023.00029
https://doi.org/10.4337/9780857931023.00031
https://doi.org/10.1017/9781108164818
https://doi.org/10.1017/9781108164818
https://doi.org/10.1016/S0167-2231(76)80003-6
https://sites.google.com/site/pfeiferecon/dynare
https://sites.google.com/site/pfeiferecon/dynare
https://doi.org/10.1057/9780230280830_3
https://doi.org/10.1057/9780230280830_3
https://doi.org/10.2307/1912017

A. Exam template files for LATEX

progs/latex/templateExamSolution.tex
% !TeX encoding = UTF−8
% !TeX spellcheck = en_US
\documentclass[a4paper]{scrartcl}
\usepackage[T1]{fontenc}
%\usepackage[utf8]{inputenc}
\usepackage[english]{babel} \usepackage[bottom=2.5cm,top=2.0cm,left=2.0cm,right=2.0cm]{geometry}
\usepackage{amssymb,amsmath,amsfonts}
\usepackage{lmodern}
\usepackage{graphicx}
\usepackage{csquotes}
\usepackage[usenames,dvipsnames]{xcolor}
\definecolor{mygreen}{rgb}{0,0.4,0}
\definecolor{mygray}{rgb}{0.2,0.2,0.2}
\usepackage[numbered,framed]{matlab−prettifier}
\usepackage[backend=biber,style=authoryear]{biblatex}
\addbibresource{templateExamBiblio.bib}

\begin{document}
\title{Quantitative Macroeconomics\\Midterm Exam}
\author{Willi Mutschler\\Student ID: 123\\willi@mutschler.eu}
\date{Version: \today}
\maketitle\thispagestyle{empty}

\newpage
\tableofcontents\thispagestyle{empty}\newpage \setcounter{page}{1}

\section{Exercise 1}\label{sec:introduction}
This is a \LaTeX template you might find useful to hand in your exam.

\section{Tables}
Table \ref{tbl:1} is an example of a table.
\begin{table}[h!]
\centering
\begin{tabular}{|l|c|r|}
\hline
\multicolumn{3}{|c|}{Country List} \\
\hline
Country Name or Area Name& ISO ALPHA 2 Code &ISO ALPHA 3 \\ \hline
Albania &AL & ALB \\
Algeria &DZ & DZA \\
American Samoa & AS & ASM \\
Angola & AO & AGO \\
\hline
\end{tabular}
\caption{This is the caption for the example table.} \label{tbl:1}

\end{table}

\section{Figures}
Table \ref{fig:1} is an example of a figure, remove the draft option to actually print it.
\begin{figure}[t!]\centering
\includegraphics[draft,width=0.5\textwidth]{mycoolplot.pdf}
\caption{This is the caption for the example figure.}
\label{fig:1}

\end{figure}

\section{Math}
\begin{equation}
e^{\pi i} + 1 = 0\label{eq:euler}
\end{equation}

The beautiful equation \eqref{eq:euler} is known as the Euler equation. We can also align equations:
\begin{align*}
x&=y & w &=z & a&=b+c\\
2x&=−y & 3w&=\frac{1}{2}z & −4 + 5x&=2+y & w+2&=−1+w &
a&=b\\
ab&=cb
\end{align*}
Inline math works like this $x_t=A x_{t−1}+ \varepsilon_t$ where $\varepsilon_t \overset{iid}\sim \underbrace{N(\

underset{3 \times 1}{\boldsymbol{0}},\boldsymbol{\Sigma})}_{\text{normally distributed}}$.
We can also break long lines:

8

\begin{multline}
p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3
\\
− 12x^2y^4 − 12xy^5 + 2y^6 − a^3b^3 \label{eq:long}
\end{multline}
Equation \eqref{eq:long} is a long equation.
Or group and center lines:
\begin{gather*}
y_t = C x_{t}\\
x_t = A x_{t−1} + Bu_t
\end{gather*}

\section{Displaying code}
Use \texttt{lstlisting} to display code directly:
\begin{lstlisting}[
style = Matlab−editor, basicstyle = \mlttfamily,
]
x = reshape(eye(3,3),3*3,1);
dlyap(A,RHS);
\end{lstlisting}
or load it from a file with \texttt{lstinputlisting}
\lstinputlisting[

style = Matlab−editor,
basicstyle = \mlttfamily,
title=\lstname,

]{templateMatlabExample.m}
Note that the pretty formatting for MATLAB is achieved by loading the package \texttt{matlab−prettifier}.

\section{Citations}\label{sec:citations}
Examples how to do citations:
\begin{itemize}
\item \textcite{Sims_1980_MacroeconomicsReality} shows that SVAR models can be used to study the transmission

channel of monetary policy shocks.
\item The book \textcite{Herbst.Schorfheide_2016_BayesianEstimationDSGE} emphasizes that DSGE models are usually

estimated by Bayesian methods.
\item Identification plays an important role in Quantitative Macroeconomics \parencite{Kilian_2013_

StructuralVectorAutoregressions,Mutschler_2022_QuantitativeMacroeconomics}.
\end{itemize}
Now let’s print the bibliography.
\printbibliography

\end{document}

progs/latex/templateExamBiblio.bib
@book{Herbst.Schorfheide_2016_BayesianEstimationDSGE,
title = {Bayesian {{Estimation}} of {{DSGE Models}}},
author = {Herbst, Edward and Schorfheide, Frank},
year = {2016},
series = {The {{Econometric}} and {{Tinbergen Institutes Lectures}}},
publisher = {{Princeton University Press}},
isbn = {978−0−691−16108−2},

}

@incollection{Kilian_2013_StructuralVectorAutoregressions,
title = {Structural Vector Autoregressions},
booktitle = {Handbook of {{Research Methods}} and {{Applications}} in {{Empirical Macroeconomics}}},
author = {Kilian, Lutz},
editor = {Hashimzade, Steven N. and Thornton, Michael},
year = {2013},
pages = {515−−554},
publisher = {{Edward Elgar Publishing}},
doi = {10.4337/9780857931023.00031},

}

@misc{Mutschler_2022_QuantitativeMacroeconomics, title = {Quantitative Macroeconomics},
author = {Mutschler, Willi},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/wmutschl/Quantitative−Macroeconomics}},
commit = {0cfbd4fa7f002d783dd8eed1616e48042043176e}

}

@article{Sims_1980_MacroeconomicsReality, title = {Macroeconomics and {{Reality}}},

9

author = {Sims, Christopher A.},
year = {1980},
journal = {Econometrica}, volume = {48},
number = {1−−48},
pages = {1},
doi = {10.2307/1912017},

}

progs/matlab/templateMatlabExample.m
1 x = reshape(eye(3,3),3*3,1);
2 dlyap(A,RHS);

10

B. Solutions
1 Solution to What is Quantitative Macroeconomics Quantitative macroeconomics combines
(i) modern theoretical macroeconomics (the study of aggregated variables such as economic growth,
unemployment and inflation by means of structural macroeconomic models) with (ii) state-of-the-art
econometric methods (the application of formal statistical methods in empirical economics). To this
end, we will focus on the two workhorse model frameworks, namely SVAR and DSGE, and develop the
numerical procedures and algorithms required to estimate such models. Very important: this course is
NOT ABOUT HOW TO BUILT structural models, but it is ABOUT HOW TO ESTIMATE
such models using real data.

This enables us to look at abstract macroeconomic concepts, for example:
• Is uncertainty a source of business cycles or an endogenous response to them, and does the

type of uncertainty matter? What are the effects on the real price of oil and on macroeconomic
aggregates of oil supply shocks, shocks to the global demand for all industrial commodities, or
demand shocks that are specific to the crude oil market? That is, we want to understand the
propagation of shocks by means of an impulse response analysis. In other words, we want
to quantify the dynamic effect of identified and economic meaningful shocks over time. For
example:

• How important are monetary policy shocks as opposed to other shocks for movements in ag-
gregate output? That is, we want to identify sources of fluctuations by means of a variance
decomposition. In other words, we want to quantify how important a shock is on explaining
the variation in the endogenous variables on average. For example:

11

Shocks

Monetary Technology Preference Price markup Wage markup
Output growth 4.8% 22.3% 57.1% 8.0% 7.1%
Inflation 27.1% 6.1% 36.3% 13.7% 14.7%
Nominal rate 5.0% 0.4% 72.3% 9.8% 11.8%
Hours 0.4% 0.8% 70.0% 17.6% 9.6%
Wage 0.1% 0.1% 73.6% 12.0% 12.8%

• Has monetary policy changed in the early 1980s? Has it caused the 1982 recession? That is, we
want to study how much a given structural shock explains the historically observed fluctuations
in aggregate variables at every given point in time by means of a historical decomposition.
In other words, we want to quantify how important a shock was in driving the behavior of the
endogenous variables in a specific time period in the past. For example:

• To what extent would the financial crises have deepened if monetary policy had not responded
to the output contraction at all? That is, we want to study counterfactual policies.

• How will inflation, growth and unemployment evolve over the next eight quarters? That is, we
want to predict the values of variables in the future by means of a forecast.

Traditional Cowles Commission approach The prevailing econometric framework was initiated and
developed in the 1950s to 1970s by the Cowles Commission by inventing many things such as indirect
least squares, instrumental variable methods, the full and the limited information maximum likelihood
methods. Broadly speaking they developed the theory and toolkits (based on linear regressions) for
estimating large-scale system of equations that have a certain structure that enables one to estimate
these simultaneous equations one-by-one. The IS-LM or AS-AD models are examples of such systems,
where we have some underlying ad-hoc assumptions (e.g. consumption is always equal to a fraction
of current output) that give us a reduced-form from which we can compute things like fiscal policy
multipliers. This reduced-form also enables us to estimate these parameters. Of course, these models
are useful for gaining intuition, but are quite limited for actual quantitative policy advise and analysis
of how the whole economy responds to particular shocks or policies. Nevertheless, these models were
(and still are4) empirically somewhat successful when measured in terms of forecast quality. However,
as the ultimate goal in macroeconomics is to gain policy insight and to actually understand the

4More elaborated versions of such models are still in use at central banks and policy institutions under the label of
semi-structural models.

12

transmission channels, this approach came under heavy attack in the mid 1970s by (i) Lucas (1976)
and (ii) Sims (1980):

• Sims critique: many restrictions that are used to identify behavioral equations in these models
are inconsistent with dynamic macroeconomic theories → (structural) vector autoregressions
((S)VAR)

• Lucas critique: models are unreliable for policy analysis because they are unable to predict
effects of policy regime changes on the expectation formation of economic agents in a coherent
manner → development of micro-founded structural models is necessary

SVAR approach Pioneered by Christopher Sims (1980). The basic idea is to model all endogenous
variables JOINTLY rather than one equation at a time. This breaks with the traditional so-called
Cowles Commission approach that relies on ad-hoc assumptions to do equation-by-equation estima-
tion, which in essence generates implausible exogeneity assumptions (think about estimating the IS-LM
model). The underlying statistical framework is the vector autoregressive model, i.e. we do multivari-
ate linear regressions of a vector of observables on its own lags and (possibly) other variables such as
a constant, trends or exogenous variables. Importantly, we have cross-equation constraints that are
jointly modeled and estimated. This is the VAR framework.

Now adding the S to VAR means to add structure on the cross-equation restrictions, in order to
differentiate between correlation and causation. The basic idea is to decompose the forecast errors (i.e.
the residuals) into so-called structural shocks that are mutually uncorrelated and have an economic in-
terpretation (supply shocks, demand shocks, risk shocks, monetary policy shocks, rare disaster shocks,
etc.). More precisely, instead of given every parameter in the VAR model a behavioral interpretation,
we make explicit identifying assumptions to isolate estimates of policy and/or private agent’s behavior
and its effects on the economy while keeping the model free of many additional restrictive assump-
tions. In principle, this enables us to analyze the causal effects of these structural shocks on the model
variables by all kinds of objectives. But of course, it all depends on the validity of the identifying
assumptions. Typically, these stem from institutional knowledge, economic theory or other extraneous
constraints on the model responses. Most of the recent literature is primarily concerned with finding
new and more compelling identifying assumptions (or methods), in order to consolidate or challenge
known results. The upside of the SVAR approach is that ideally, with very few assumptions about
the structure of the economy, we get meaningful and, above all, data-based results.

DSGE approach DSGE models use modern macroeconomic theory to explain and predict co-movements
of aggregate time series. DSGE models start from what we call the micro-foundations of macroeco-
nomics (i.e. to be consistent with the underlying behavior of economic agents), with a heart based
on the rational expectation forward-looking economic behavior of agents. The dynamic equilibrium is
the result from the combination of economic decisions taken by all economic agents. For example the
following agents or sectors are commonly included:

• Households: benefit from private consumption, leisure and possibly other things like money
holdings or state services; subject to a budget constraint in which they finance their expenditures
via (utility-reducing) work, renting capital and buying (government) bonds ↪→ maximization of
utility

• Firms produce a variety of products with the help of rented equipment (capital) and labor. They
(possibly) have market power over their product and are responsible for the design, manufacture
and price of their products. ↪→ cost minimization or profit maximization

• Monetary policy follows a feedback rule, so-called Taylor rule, for instance: nominal interest
rate reacts to deviations of the current (or lagged) inflation rate from its target and of current
output from potential output

13

• Fiscal policy (the government) collects taxes from households and companies in order to fi-
nance government expenditures (possibly utility-enhancing) and government investment (possi-
bly productivity-enhancing). In addition, the government can issue debt securities and might
face a probability of sovereign default.

• There is no limitation, i.e. you can also add other sectors (financial, trade, R&D, etc).

We then mathematically solve these problems under uncertainty, because we add stochastic processes
to the system of equations.

• General Equilibrium (GE): equations must always hold.
Short-run: decisions, quantities and prices adjust such that equations are full-filled.
Long-run: steady-state, i.e. a condition or situation where variables do not change their value
(e.g. balanced-growth path where the rate of growth is constant).

• Stochastic (S): disturbances (or shocks) make the system deviate from its steady-state, we get
business cycles or, more general, a data-generating process

• Dynamic (D): Agents are forward-looking and solve intertemporal optimization problems. When
a disturbance hits the economy, macroeconomic variables do not return to equilibrium instan-
taneously, but change very slowly over time, producing complex reactions. Furthermore, some
decisions like investment or saving only make sense in a dynamic context. We can analyze and
quantify the effects after (i) a temporary shock: how does the economy return to its steady-state,
or (ii) a permanent shock: how does the economy move to a new steady-state.

DSGE models are intensively used in policy making e.g. by central banks they play a central role in
providing an analytical foundation for the decision making. They have become the standard modelling
framework in modern macroeconomic research. They often serve as a macroeconomic laboratory that
allows to analyze how economic agents respond to changes in their environment as all variables are
determined simultaneously and endogenously given a sound micro-founded theoretical setting. Real
business cycle (RBC) models, New Keynesian models, and asset pricing models all belong to this very
general modelling class.

Estimating such models is a very challenging task as one has to first find a reduced-form suitable
for estimation. The upside, however, is that ideally, with suitable solution and estimation techniques,
we have a clear theoretical foundation for our empirical results that enable clear understanding of
transmissions channels and policy advise.

Challenges in Quantitative Macroeconomics

• Macroeconomic time series are indicative of nonlinearities, non-Gaussianity and time-varying
volatility.

• Model specification: How to select the “right” model, how to cope with misspecification?

• SVAR
– many free parameters to estimate, need plausible identifying restrictions
– sensitive to the identification restrictions used
– risk of specification search: researchers look for reasonable answers or puzzles under the

cloak of formal statistical inference

• DSGE
– trade-off between theoretical coherence and empirical fit
– heavily aggregated and stylized, require a lot of modelling assumptions
– solving DSGE models requires knowledge in computational eocnomics

14

• computational implementation is in both cases often cumbersome and challenging

Despite the challenges and current developments, SVAR and DSGE models continue to be the funda-
mental tools in current macroeconomic analysis. Be warned: there is quite the investment one needs
to undergo to study quantitative macroeconomics and there is a huge component of self-teaching in-
volved, because most of us lack the required background in econometrics, mathematics, numerics and
statistics. In fact, most macroeconomists doing research in this area are more or less self-taught (I
can attest to this for myself), or come from a related field.

15

2 Solution to Programming Languages:
1. General purpose: C/C++, Fortran, Python, Excel. Domain-specific: MATLAB, Julia, R, Math-

ematica, EViews.

2. Every program is a set of instructions, say to add two numbers. Compilers and interpreters
take human-readable code and convert it to computer-readable machine code. In a compiled
language, the target machine directly translates the program. In an interpreted language, the
source code is not directly translated by the target machine. Instead, a different program, aka
the interpreter, reads and executes the code. Some modern languages like Python can have both
compiled and interpreted implementations, but for simplicity’s sake it is useful to keep in mind
the distinction.
Compiled languages like Fortran, C or C++ are usually fastest, more efficient and more powerful,
but they are harder to learn and harder to code in. They also require a build step, i.e. they
need to be compiled. Interpreted languages like Python, R, Mathematica, MATLAB, R or Julia
are slower, but easier to learn and faster to code in. Interpreters run through a program line by
line and execute each command. Interpreted languages tend to be very similar in the syntax,
but differ in best practices and concepts.
Interpreted languages were once significantly slower than compiled languages. But, with the
development of just-in-time (JiT) compilation, that gap is shrinking. MATLAB and Julia are
two very prominent examples that make use of JiT compilation, that is they combine both
worlds.
You can also make use of e.g. Fortran or C++ code in MATLAB, R, Python or Julia; that is,
write very CPU-intensive tasks in a compiled language and use them in an interpreted language.

3. Learning a programming language is a huge investment; however, once one has knowledge of
one, learning another one tends to be easier as they are based on similar principles. Try to stick
with popular choices as the choice of learning resources and communities that help you learn
this language are wider spread, i.e. googling for help is much easier for Python than for Fortran.
Often the project you are working on dictates which programming language you should use. The
general purpose languages can be used in many non-scientific applications, so your investment
might payoff in very different fields in the end.
In scientific computing, particularly in Macroeconomics, we are often faced with CPU intensive
problems and need to prototype models and methods quickly. An interpreted language like
MATLAB or Julia that does just-in-time compilation is therefore best suited for such tasks.
Moreover, having some basic knowledge in C++ is advisable to write computational intensive
tasks in a compiled language and reuse this as e.g. so-called MEX files in MATLAB. However,
the main determining factor is by looking at legacy code of the last 20-30 years of research done
in quantitative and computational Macroeconomics, we see that most was and still is conducted
in MATLAB, whereas highly intensive tasks were programmed in Fortran. So keep in mind,
that you need to understand this legacy codebase. In the last couple of years, researchers in
Macroeconomics are really pushing Julia. New developments like Machine Learning require you
to invest in Python. For writing scientific reports and papers you should get familiar with Latex
and Markdown.
Another issue to consider is the license, cost and support of the language maintainers. Most
programming languages are free and open-source, others like MATLAB are proprietary and are
quite expensive (free and open-source clones like Octave tend to be very slow unfortunately).
Regardless of the license, having a good governance structure, i.e. a board, cooperation or
company driving the development of the language, is very important for the sustainability of the
language and for your investment in a computer language.
Lastly, and very importantly, have a look at the toolset available for the languages. Which
Integrated Development Environment (IDE) do you like best? Which code editor do you pre-
fer? How good are the debugging capabilities of your chosen environment. Things like syntax

16

highlighting, smart indentation, code linting, comparison tools, handling of workspace, etc. are
very important. Some languages like MATLAB bring their own IDE in one big package and
it works very well. Others like Julia, Python or C++ can be neatly integrated in a variety of
environments; in fact Visual Studio Code has become the leading editor and environment for
many languages, but of course there are many other great choices depending on your needs and
preferences.
So which computer languages should you devote your time into, if you are interested in compu-
tational or quantitative macroeconomics?
Here is my opinionated advice:

• Default languages (excellent knowledge): Julia and MATLAB
• Data analysis and Machine Learning (advanced knowledge): R and Python
• Heavy tasks (basic knowledge): C++ and Fortran
• Scientific writing (advanced knowledge): Latex and Markdown

17

3 Solution to Quick Tour: MATLAB

progs/matlab/quickTourMatlab.m
1 % −−−
2 % Illustration of MATLAB's basic matrix operations, logical operators, and

3 % indexing.

4 % −−−
5 % Willi Mutschler (willi@mutschler.eu)

6 % Version: October 19, 2023

7 % −−−
8
9 % 1)

10 x = [−1; 0; 1; 4; 9; 2; 1; 4.5; 1.1; −0.9];

11 y = [1, 1, 2, 2, 3, 3, 4, 4, 5, nan]';

12
13 % 2

14 length(x)==length(y)

15 size(x,1)==size(y,1)

16
17 % 3

18 x < y

19 x < 0

20 x+3 >= 0

21 y < 0

22
23 % 4

24 all(x+3>=0) && all(y>0)

25
26 % 5

27 all(x+3>=0) || all(y>0)

28
29 % 6

30 any(y>0)

31
32 % 7

33 x+y

34 try

35 x*y

36 catch

37 disp(lasterr)

38 end

39 x*y'

40 x'*y

41 y/x

42 x/y

43
44 % 8

45 x.*y

46 y./x

47
48 % 9

49 log(x)

50 exp(x)

18

51
52 % 10

53 any(sqrt(x)>=2)

54
55 % 11

56 a = sum(x)

57 b = sum(y.^2,'omitnan')

58
59 % 12

60 sum(x.*y.^2,'omitnan')

61
62 % 13

63 sum(x>0)

64
65 % 14

66 x.^y

67 x.^(1/y)

68 log(exp(y))

69 y*[−1,1]

70 x+[−1,0,1]

71 sum(y*[−1,1],1,'omitnan')

72
73 % 15

74 X = [1 4 7;

75 2 5 8;

76 3 6 9];

77
78 transpose(X)

79 X'

80 size(X)

81 det(X)

82
83 % 16

84 trace(X)

85 sum(diag(X))

86
87 % 17

88 X

89 X([1 5 9])=[7 8 9]

90 X

91
92 % 18

93 eigvalX = eig(X);

94 if all(eigvalX>0)

95 fprintf('X is positive definite\n')

96 elseif all(eigvalX>=0)

97 fprintf('X is positive semi−definite\n')
98 elseif all(eigvalX<0)

99 fprintf('X is negative definite\n')

100 elseif all(eigvalX<=0)

101 fprintf('X is negative semi−definite\n')
102 else

19

103 fprintf('X is neither positive nor negative (semi−)definite\n')
104 end

105
106 % 19

107 invX = inv(X);

108 eig(invX)

109 1./eigvalX % these are the same eigenvalues

110
111 % 20

112 a = [1;3;2];

113 a'*X

114 a'.*X

115 X*a

116
117 % 21

118 a'*X*a

119
120 % 22

121 I = eye(3);

122 X = reshape(1:9,3,3);

123 Y = [X I]

124 Z = [X;I]

125
126 % 23

127 x1 = 1:9

128 x2 = repmat([0 1],1,4)

129 x3 = repmat(1,1,8)

130 x4 = repmat([−1 1],1,3)

131 x5 = 1980:5:2010

132 x6 = 0:0.01:1

133
134 % 24

135 linspace(−pi,pi,500)
136
137 % 25

138 1:10+1

139 (1:10)+1

140 1:(10+1)

141
142 % 26

143 x = [1 1.1 9 7 1 4 4 1]';

144 y = [1 2 3 4 4 3 2 nan]';

145 z = [true true false false true false false false];

146
147 % 27

148 x(2:5)

149 x(4:end−2)
150 x([1 5 8])

151 x(repmat(1:3,1,4))

152 y(z)

153 y(~z)

154 y(x>2)

20

155 y(x==1)

156 x(~isnan(y))

157 y(~isnan(y))

158
159 % 28

160 x2 = x;

161 x2(x2==4) = −4;
162 x2

163
164 % 29

165 x2(x2==1) = nan;

166 x2

167
168 % 30

169 x2(z) = [];

170 x2

171
172 % 31

173 M = reshape([1:12 12:−1:1],4,6);

174
175 % 32

176 M(1,3)

177 M(:,5)

178 M(2,:)

179 M(2:3,3:4)

180 M(2:4,4)

181 M(M>5)

182 M(:,M(1,:)<=5)

183 M(M(:,2)>6,:)

184 M(M(:,2)>6,4:6)

185
186 % 33

187 find(M(:,5)>3*M(:,6))

188
189 % 34

190 sum(M>7,'all')

191
192 % 35

193 sum(M(2,:) < M(1,:))

194
195 % 36

196 sum(M(:,2:end) > M(:,1:end−1) ,'all')

21

4 Solution to Quick Tour: git with GitKraken

1. git is a version control system, i.e. a way to track changes to code, text, documents, data etc.
It let’s you go back and forth between many different versions of the same file, and see a list
of the differences. Collaboration becomes (technically) very easy and straightforward as people
can work on different files or different versions of the same file simultaneously and afterwards
merge their changes.
git is the most popular version control system invented in 2005 to track the development of the
worldwide largest open-source project: the Linux Kernel. It is a command line tool, and at
some point you should learn the commands on the Command Line Interface (CLI). However,
there are many graphical user interface (GUI) programs that make getting started with Git much
easier and integrate seamlessly with online collaboration platforms such as GitHub or GitLab.
Therefore, in this exercise I will focus on such a tool called GitKraken, which I use daily and
highly recommend.5 GitKraken offers a free trial of their paid license, but also offers a free
version for use on publicly-hosted repositories (which is fine for our purposes as we will mostly do
stuff locally anyway). Additionally, GitKraken also offers the Pro license FREE to students and
teachers through the GitHub Student Developer Pack (https://education.github.com/pack).
While git and GitKraken are tools that you install on your computer, GitHub is an online
platform that provides a nice visual interface to help you manage your version-controlled projects
remotely. It is the largest git repository hosting service and has become by far the largest
open-source collaboration site. Another important online platform is Gitlab as you can also
host that on your computer or server. For individuals gitea offers yet another way to host a
stripped down version of GitHub or Gitlab. I personally have accounts on GitHub (https://
github.com/wmutschl) and Gitlab (https://gitlab.com/wmutschl), but also use self-hosted
versions of Gitlab (https://git.dynare.org/wmutschl) and gitea (https://git.mutschler.
eu) to mirror my projects.

2. A typical workflow looks like this:
• retrieve data and prepare it for estimation purposes
• select a model framework, decide on certain hyperparameters and modeling choices and

then run an estimation
• prepare tables, graphs and reports

All of these tasks heavily rely on coding, i.e. putting text into some files that are then evaluated
by software that actually performs the tasks. Moreover, we will see that estimating macroeco-
nomic models requires a lot of trial and error and accordingly those files constantly change and
need to be adapted. git enables you to track these changes as it gives you an organized revision
history. So you can experiment with your codes, make changes to a project and always keep
the ability to go back and fourth between changes. So stop naming files like 2022-10-17-master-
thesis-v2-final-now-really-final.tex and let git do its magic for you by simply tracking the file
thesis.tex with all of its revision history.

3. Follow the instructions provided in the links or get in touch if you are struggling with the
installation.

4. Follow the instructions provided in the links or get in touch if you are struggling with the
installation.

5. Follow the instructions provided in the links or get in touch if you are struggling with the
installation.

5Other GUI programs work very similarly, see https://en.wikipedia.org/wiki/Comparison_of_Git_GUIs for a
comparison of features. I also recommend the built-in git functionality of Visual Studio Code.

22

https://education.github.com/pack
https://github.com/wmutschl
https://github.com/wmutschl
https://gitlab.com/wmutschl
https://git.dynare.org/wmutschl
https://git.mutschler.eu
https://git.mutschler.eu
https://en.wikipedia.org/wiki/Comparison_of_Git_GUIs

6. In GitKraken: Open a new Tab, click Start a local repo, then on the Init register select Local
Only and fill out the details. Note that GitKraken automatically creates a first commit with a
README.md file. Inside every repository there is a hidden folder .git. It contains everything done
by git, so all the changes you will ever do. Never delete this folder! Also putting a repository on
a cloud storage folder might damage this folder, so best practice is to use a local folder on the
disk. We will cover how to push the repository to a so-called remote which works basically like
syncing, but much more robust and git-ier.

7. Now the benefits of using a GUI like GitKraken become evident, as our changes are displayed in
the Unstaged Files area and by clicking on the file we get a really pretty side-by-side comparison
of all the changes. We can now decide which lines we want to stage and commit.

8. The git model looks like the following diagram:

File changes in
working directory
(Unstaged Files)

Staged files Local repository

Remote repos-
itory (GitHub,

GitLab)
[optional]

stage changes
git add

commit changes
git commit

push changes
git push

You do your work in your working directory. On the stage you collect all the changes that
you want to save. This is very powerful because sometimes it is just individual lines of code or
text that you want to keep track of and not the whole file. Once you’ve tracked all the changes
that you want to combine, it is time to collect these changes into a commit. A commit is a
permanent snapshot of the files that git tracks stored in the .git directory. It is associated with
a unique identifier (hash). In other words, a commit is like a snapshot in time; you can always
revert back to this and see what changes were made compared to any other commit. On your
local repository (i.e. on your local machine) you now have a nice versioned history. However, if
you want to collaborate with others or sync your repository to a specialized cloud provider you
need to push these changes to a so-called remote repository, typically on GitHub, GitLab, but
any folder that you can access via remotely might serve as a remote repository.

9. Click on the file and select Stage File or add each line by clicking on the plus or minus signs
left to each line. Once you are happy with the file, click on the X to close the file-comparison
window. We now don’t see any unstaged files and can proceed to write a commit message and
then click on the big green button.

10. A good commit typically does one discrete task or change only. For example, you added a
variable to the regression specification in the code, in the output and in the report. Or you
changed the name of a variable and treat it properly across multiple scripts. This enables you
to make meaningful commit messages like Add year dummies to regression specification and you
thus end up with a well organized repository. This workflow needs some practice and everyone is
slightly different with regards to this. Nevertheless, try to combine changes to certain meaningful
smaller tasks and provide good commit messages. In my experience, having ten tiny commits is
always preferable to one large commit. Your future self and collaborators will thank you!
The question to what you should include in your commits, is also a matter of choice and pref-
erence. Definitely your script files of codes, latex and text files. Data is also sometimes given

23

as csv files which are basically just text files. Binary files (like Excel sheets, Word documents,
Power Point slides) are a bit tricky to handle, as you can’t see the differences between versions
in git. It depends on the specific needs whether one should commit these files as well (e.g. for
Excel files with data this obviously makes sense), but I usually don’t do this. Note that GitHub
doesn’t allow files larger than 100 MB or projects with total size larger than 1 GB. There is also
a way to deal with large binary files called Git Large File Storage (LFS), but we won’t need
this.

11. Right click on the initial commit and select Reset main to this commit - Soft. Click on the file
in the staged files section and remove the last line from the stage. Re-commit your stage by
providing a meaningful commit message and hitting the green button. Click on Stash to put the
remaining changes into the stash.

12. Simply click on Push and add the remote. On the left Panel click on REMOTE to see the current
remote (usually named origin). Note that you can add several remotes (say from different people)
and compare the commits. Remotes are also a nice backup of your codes.

13. Branches are arguably the most powerful part of git. By default you have a main branch, but
what if you want to do some experiments, re-write an estimation function from scratch, work
on a new feature, etc? You could copy the whole folder and start working there or you use
git and create a branch and make the changes there. You can switch between branches, make
commits to any branch, move them around, etc. If your experiment doesn’t work out, simply
delete the branch. If your experiments work out, commit them and merge them into the main
branch. Sometimes there will be conflicts which one needs to sort out, but using GUI tools
like GitKraken makes this very easy as you have a pretty side-by-side comparison of changes.
Branches are arguably the most powerful part of git especially for our purposes as research is
a highly nonlinear process, and this way of doing version control is much more similar to how
we actually work than the very linear way that other cloud storage providers do version control.
Branches are also extremely powerful for collaboration as different people can work on the same
thing at the same time.
Select a so-called parent commit, where you want to create a new branch. Note that this doesn’t
have to be the latest commit. Click on the button Branch and name it according to the exercise.
On the left panel, click on LOCAL to see an overview of all your branches.

14. Create, copy and paste the three files into your repository. Check for pasting errors and then
Stage all changes and commit them.

15. Run the commands and solve any errors you might get from latex.

16. Follow the instructions in the exercise. Note that there is a difference between “Ignore” and
“Ignore and Stop Tracking”. “Ignore” simply adds the file(type) to the .gitignore file so that
new files with that name/type/whatever are not tracked. To “Ignore and Stop Tracking” means
to remove the file(s) from git version control: they will no longer be in the repo (as of the commit
that performs the "stop tracking"). Basically, use “Ignore and Stop Tracking” if the file(s) you
are ignoring never should have been in the repo in the first place.

17. Make sure you are on the correct branch latex-exam-template and push this branch to GitHub.
Either right click on the commit or go to the left panel, click on PULL REQUESTS and on the
green plus sign that appears. Select the latex-exam-template as the FROM REPO branch and
main as the TO REPO branch. Enter a Title and Description and click on the green button.
Have a look in GitHub ar the pull request. As there are no conflicts merge it and go back to
GitKraken to see what happens in your repository. You might need to “fetch origin” by right
clicking on the origin remote.

24

18. Double click on your local main branch and then click on pull, which fast forwards your repo to
the merged changes. Then click on Pop to get the WIP codes which were stored on main. Right
click on the README.md file in the Unstaged Files area and select Discard changes.

25

	What is Quantitative Macroeconomics
	Programming Languages
	Quick Tour: MATLAB
	Quick Tour: git with GitKraken
	Exam template files for LaTeX
	Solutions

