forked from meta-math/MetaMath
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_mistral.sh
33 lines (32 loc) · 1.24 KB
/
run_mistral.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
export MODEL_PATH='mistralai/Mistral-7B-v0.1'
export SAVE_PATH='path/to/save'
export MASTER_ADDR="localhost"
export MASTER_PORT="1231"
export GLOO_SOCKET_IFNAME="lo"
export NCCL_SOCKET_IFNAME="lo"
export WANDB_DISABLED=true
export HF_TOKEN="token of your huggingface"
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m torch.distributed.launch --master_addr ${MASTER_ADDR} --master_port ${MASTER_PORT} --nproc_per_node=8 --use_env train_math.py \
--model_name_or_path $MODEL_PATH \
--data_path MetaMathQA-395K.json \
--data_length 10000000 \
--bf16 True \
--output_dir $SAVE_PATH \
--num_train_epochs 3 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 100000 \
--save_total_limit 0 \
--learning_rate 5e-6 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'MistralDecoderLayer' \
--tf32 True
python eval_gsm8k.py --model $SAVE_PATH --data_path ./data/test/GSM8K_test.jsonl
python eval_math.py --model $SAVE_PATH --data_path ./data/test/MATH_test.jsonl