
Concurrent Join Calculus in Scala

Sergei Winitzki

Scala by the Bay 2016

November 11, 2016

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 1 / 28

What is “Join Calculus”?

“Join calculus” is...
...a programming language for concurrent computations...
...largely unknown and unused by the software engineering community

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 2 / 28

Parallelism vs. Asynchrony vs. Concurrency
Parallelism

Parallelism means...
...to use multithreading to speed up a sequential computation

I main problem: to “parallelize” a computation efficiently

parallel collections, map/reduce, Spark
Typical task: count words in 10,000 text files

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 3 / 28

Concurrency vs. Parallelism vs. Asynchrony
Asynchrony

Asynchrony means...
...to optimize sequential computations that may have long wait times

I main problem: to interleave wait times on a single-thread runloop

futures/promises, async/await, streams, FRP, coroutines
Typical task: implement interactive Excel tables with auto-updating cells

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 4 / 28

Concurrency vs. Parallelism vs. Asynchrony
Concurrency

Concurrency means...
...mutually interacting computations, running in unknown order

I main problem: to decide when to start a new process (or to wait)

Thread, synchronized, semaphore
Typical task: simulate “dining philosophers”

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 5 / 28

Dining philosophers
The exemplary problem of concurrency

Five philosophers sit at a round table, taking turns eating and thinking for
random time intervals

Problem: run the process, avoiding deadlock and starvation

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 6 / 28

https://en.wikipedia.org/wiki/Dining_philosophers_problem

Problems with concurrency

Imperative concurrency is difficult to reason about:
callbacks, threads, semaphores, mutexes, shared mutable state...
testing is hard – non-deterministic runtime behavior!

I race conditions, deadlocks, livelocks

We try to avoid concurrency whenever possible!

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 7 / 28

How I learned to forget deadlocks and to love concurrency

In this talk:
Introduction to the “join calculus” style of concurrency
JoinRun -- a new Scala implementation
Examples and demos

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 8 / 28

https://github.com/winitzki/joinrun-scala

Join Calculus: The new hope
...and some new hype

Join Calculus is ...
...a declarative language for general-purpose concurrency
“What if actors were stateless, auto-started, and type-safe”
No threads/semaphores/locks/mutexes/forks, no shared mutable state
Concurrency is data-driven, not scheduled
Easier to use than anything I’ve seen so far!

Metaphor for join calculus:
“chemical reactions”

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 9 / 28

Join Calculus: The genesis
a.k.a. the “Reflexive Chemical Abstract Machine” [Fournet & Gonthier 1996]

Abstract chemistry:
Chemical “soup” contains many “molecules”
A combination of certain molecules starts a “chemical reaction”

“Chemical laws”:
a + b → a

a + c → ∅

A

B

A

C

A

Define molecules a, b, c, ... and arbitrary chemical laws
Emit some molecules into the “soup”
The runtime system evolves the soup concurrently

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 10 / 28

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.3078

Join Calculus in a nutshell
“Better concurrency through chemistry”

Translating the “chemical metaphor” into practice:

Each molecule carries a value
Each reaction computes a
“molecule-valued” expression
that depends on input values
Resulting molecules are emitted
back into the soup
Reactions start concurrently if
input molecules are available

a(x)

b(y) c()

a(x)

print xa(z)compute z(x,y)

site(
go { case a(x) + b(y) =>
val z = compute_z(x,y); a(z) },

go { case a(x) + c(_) =>
println(x) })

When a reaction starts: input molecules disappear, expression is computed,
output molecules are emitted

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 11 / 28

Example: concurrent counter

Chemical laws:
counter(n) + decr() => counter(n-1)

counter(n) + incr() => counter(n+1)

“Data stays on the molecules”

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 12 / 28

Using JoinRun: basic features
Molecule emitters, reaction definitions

Define molecule emitters:
val counter = m[Int]

val decr = m[Unit]
val incr = m[Unit]

Declare some reactions using the known molecules:
val r0 = go { case counter(n) + decr() => counter(n-1) }

val r1 = go { case counter(n) + incr() => counter(n+1) }

Activate a “reaction site” and emit some molecules:
site(r0, r1)

counter(10) // non-blocking side-effect
incr() // ditto; now we have counter(11)
incr() // now we have counter(12)

Calling counter(10) returns Unit and emits a molecule as a side-effect

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 13 / 28

Using JoinRun: more features
Blocking vs. non-blocking molecules

Blocking molecule:
emitter will block until reply is received
implicitly carries a pseudo-emitter “reply”
when the “reply” is emitted, the value will be returned to caller
Example:
f(x, replyToF) + c(y) => val z = ...; replyToF(z)

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 14 / 28

Using JoinRun: more features
Blocking molecules in JoinRun

Implement blocking access to the value x in counter(x)

val getN = b[Unit, Int]

// revise the join definition, appending this reaction:
... val r2 = go { case counter(x) + getN(_, reply) => reply(x) }

site(r0, r1, r2)

// Emit non-blocking molecules...
// Now emit the blocking molecule:
val x = getN() // blocking call, returns Int

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 15 / 28

JoinRun: Examples I
First benchmark: Counting to zero

Concurrent non-blocking counter:

val c = new M[Int]("counter")
val g = new B[Unit, Int]("getValue")
val d = new M[Unit]("decr")
val f = new B[LocalDateTime, Long]("finished")

site(
go { case c(0) + f(t, reply) =>

val elapsed = t.until(LocalDateTime.now, ChronoUnit.MILLIS)
reply(elapsed) },

go { case g(_,reply) + c(n) => c(n) + reply(n) },
go { case c(n) + d(_) if n > 0 => c(n-1) }

)
val initialTime = LocalDateTime.now
c(1000)
(1 to 1000).foreach{ _ => d() }
val result = f(initialTime)

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 16 / 28

JoinRun: Examples II
Options, Futures, and Map/Reduce

Future with blocking poll (“get”):
fut((f,x)) => finished(f(x))

get(_, r) + finished(fx) => r(fx)

Map/Reduce:
{ case res(list) + c(s) => res(s::list) }

{ case get(_, reply) + res(list) => reply(list) }

res(Nil)

Seq(1,2,3).foreach(x => c(x*2))
get() // this returned Seq(4,6,2) in one test

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 17 / 28

JoinRun: Examples III
Five Dining Philosophers

Philosophers 1, 2, 3, 4, 5; forks f12, f23, f34, f45, f51.

// ... some declarations omitted for brevity
site (

go{ case t1(_) => wait(); h1() },
go{ case t2(_) => wait(); h2() },
go{ case t3(_) => wait(); h3() },
go{ case t4(_) => wait(); h4() },
go{ case t5(_) => wait(); h5() },
go{ case h1(_) + f12(_) + f51(_) => wait(); t1() + f12() + f51() },
go{ case h2(_) + f23(_) + f12(_) => wait(); t2() + f23() + f12() },
go{ case h3(_) + f34(_) + f23(_) => wait(); t3() + f34() + f23() },
go{ case h4(_) + f45(_) + f34(_) => wait(); t4() + f45() + f34() },
go{ case h5(_) + f51(_) + f45(_) => wait(); t5() + f51() + f45() }

)
t1() + t2() + t3() + t4() + t5()
f12() + f23() + f34() + f45() + f51()

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 18 / 28

Additional features of JoinRun
More bells and whistles

Per-reaction thread pools:
val tp1 = new FixedPool(threads = 1)

val tp8 = new FixedPool(threads = 8)

site(

go { case a(x) + b(y) => ... } onThreads tp1,

go { case a(x) + c(y) => ... } onThreads tp8

)

Auto-resume failed reactions:
go { case a(x) + b(y) => if (bad) throw new Exception(); ... }

JoinRun will re-emit input molecules if exception is thrown

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 19 / 28

Roadmap for JoinRun
Need still more bells and whistles

Graceful global shutdown
Resilience to failure, restarting reactions automatically
Runtime diagnostics and statistics, health monitoring
Run on a cluster (“Distributed Join Calculus”)

What else is needed for industry-readiness?

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 20 / 28

JoinRun: Examples IV
Concurrent merge-sort: chemistry

The mergesort molecule is “recursive”:
receives the upper-level “sortedResult” molecule
defines its own “sorted” molecules in local scope
emits upper-level “sortedResult” when done
mergesort((arr, sortedResult)) =>

val (part1, part2) = arr.splitAt(arr.length/2)
sorted1(x) + sorted2(y) => sortedResult(arrayMerge(x,y))

// Emit lower-level mergesort molecules:
mergesort(part1, sorted1) + mergesort(part2, sorted2)

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 21 / 28

JoinRun: Examples IV
Concurrent merge-sort: JoinRun code

val mergesort = m[(Array[T], M[Array[T]])]
site(

go { case mergesort((arr, sortedResult)) =>
if (arr.length <= 1) sortedResult(arr)

else {
val sorted1 = m[Array[T]]
val sorted2 = m[Array[T]]
site(

go { case sorted1(x) + sorted2(y) => sortedResult(arrayMerge(x,y)) }
)
val (part1, part2) = arr.splitAt(arr.length/2)
// Emit lower-level mergesort molecules:
mergesort(part1, sorted1) + mergesort(part2, sorted2)

}
})

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 22 / 28

Join Calculus in the wild

Previous implementations:
I Funnel [M. Odersky et al., 2000]
I Join Java [von Itzstein et al., 2001-2005]
I JOCaml (jocaml.inria.fr) [Fournet et al. 2003]
I “Join in Scala” compiler patch [V. Cremet 2003]
I Joins library for .NET [P. Crusso 2006]
I ScalaJoins [P. Haller 2008]
I Joinads (F#, Haskell) [Petricek and Syme 2011]
I ScalaJoin [J. He 2011]
I CocoaJoin (iOS), AndroJoin (Android) [S.W. 2013]

JoinRun -- a new JC prototype in Scala (this talk)
I Better syntax, more checks of code sanity
I (Some) automatic fault tolerance
I Fair scheduling of reactions
I Can use thread pools or Akka event-driven actor pools

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 23 / 28

http://lampwww.epfl.ch/funnel/
http://www.vonitzstein.com/Project_JoinJava.html
http://jocaml.inria.fr
http://research.microsoft.com/en-us/um/people/fournet/papers/jocaml-afp4-summer-school-02.pdf
http://lampwww.epfl.ch/~cremet/misc/join_in_scala/index.html
http://research.microsoft.com/en-us/um/people/crusso/joins/
http://lampwww.epfl.ch/~phaller/joins/index.html
https://www.microsoft.com/en-us/research/publication/joinads-a-retargetable-control-flow-construct-for-reactive-parallel-and-concurrent-programming/
https://github.com/Jiansen/ScalaJoin
https://github.com/winitzki/CocoaJoin
https://github.com/winitzki/AndroJoin
https://github.com/winitzki/joinrun-scala

Other approaches to concurrency

STM
Erlang’s message-passing ≈ Akka’s “actors”
CSP / Go language
π-calculus, join calculus (academic so far)

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 24 / 28

Comparison: Join Calculus vs. Actor model

Reaction ≈ actor Emitted molecule ≈ message to actor
Actors:

need to be created and managed explicitly
will process one message at a time
typically hold mutable state

Reactions:
autostart when required input molecules are available
many reactions can start at once, automatically concurrent
immutable, stateless, and type-safe
all reactions are defined statically, but locally scoped

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 25 / 28

And I thought “actors” were easy...

Akka’s documentation for the Actor class:

Actor, ActorSystem, Props (but note the 4 edge cases and 2 warnings)
Actor’s companion object; ActorRef
inbox, self, sender, context, supervisorStrategy, watch
Actor lifecycle, Actor selection
send, receive, receive timeout, forward
Future, pipeTo
exceptions, exceptions vs. Future callbacks, andThen
stop, gracefulStop, PoisonPill, Kill
become, unbecome, upgrade, stash

This was item 1 in the Actors documentation.
There are 14 further items...

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 26 / 28

http://doc.akka.io/docs/akka/current/scala/actors.html

Everything you need to know about JC...
... but were afraid to ask

Most descriptions of JC use the “message/channel” metaphor...

“Chemistry” JC terminology JoinRun
molecule message on channel a(123) // side effect

emitter channel (port) name val a : M[Int]

blocking emitter blocking channel val q : B[Unit, Int]

reaction process go { case a(x) + ... }

emitting a molecule sending a message a(123) // side effect

reaction site join definition site(r1, r2, ...)

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 27 / 28

Conclusions and outlook

Join Calculus = declarative, purely functional concurrency
Similar to “Actors”, but far easier and “more purely functional”
Very little known, and very little used in practice
Existing literature is not suitable as introduction to practical use
A new Scala implementation, JoinRun, is in the works

Sergei Winitzki (Workday, Inc.) Concurrent Join Calculus in Scala November 11, 2016 28 / 28

https://github.com/winitzki/joinrun-scala

