-
Notifications
You must be signed in to change notification settings - Fork 28
/
process.py
190 lines (140 loc) · 5.81 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from network import U2NET
import os
from PIL import Image
import cv2
import gdown
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from collections import OrderedDict
from options import opt
def load_checkpoint(model, checkpoint_path):
if not os.path.exists(checkpoint_path):
print("----No checkpoints at given path----")
return
model_state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
new_state_dict = OrderedDict()
for k, v in model_state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
print("----checkpoints loaded from path: {}----".format(checkpoint_path))
return model
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
class Normalize_image(object):
"""Normalize given tensor into given mean and standard dev
Args:
mean (float): Desired mean to substract from tensors
std (float): Desired std to divide from tensors
"""
def __init__(self, mean, std):
assert isinstance(mean, (float))
if isinstance(mean, float):
self.mean = mean
if isinstance(std, float):
self.std = std
self.normalize_1 = transforms.Normalize(self.mean, self.std)
self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3)
self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18)
def __call__(self, image_tensor):
if image_tensor.shape[0] == 1:
return self.normalize_1(image_tensor)
elif image_tensor.shape[0] == 3:
return self.normalize_3(image_tensor)
elif image_tensor.shape[0] == 18:
return self.normalize_18(image_tensor)
else:
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18"
def apply_transform(img):
transforms_list = []
transforms_list += [transforms.ToTensor()]
transforms_list += [Normalize_image(0.5, 0.5)]
transform_rgb = transforms.Compose(transforms_list)
return transform_rgb(img)
def generate_mask(input_image, net, palette, device = 'cpu'):
#img = Image.open(input_image).convert('RGB')
img = input_image
img_size = img.size
img = img.resize((768, 768), Image.BICUBIC)
image_tensor = apply_transform(img)
image_tensor = torch.unsqueeze(image_tensor, 0)
alpha_out_dir = os.path.join(opt.output,'alpha')
cloth_seg_out_dir = os.path.join(opt.output,'cloth_seg')
os.makedirs(alpha_out_dir, exist_ok=True)
os.makedirs(cloth_seg_out_dir, exist_ok=True)
with torch.no_grad():
output_tensor = net(image_tensor.to(device))
output_tensor = F.log_softmax(output_tensor[0], dim=1)
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1]
output_tensor = torch.squeeze(output_tensor, dim=0)
output_arr = output_tensor.cpu().numpy()
classes_to_save = []
# Check which classes are present in the image
for cls in range(1, 4): # Exclude background class (0)
if np.any(output_arr == cls):
classes_to_save.append(cls)
# Save alpha masks
for cls in classes_to_save:
alpha_mask = (output_arr == cls).astype(np.uint8) * 255
alpha_mask = alpha_mask[0] # Selecting the first channel to make it 2D
alpha_mask_img = Image.fromarray(alpha_mask, mode='L')
alpha_mask_img = alpha_mask_img.resize(img_size, Image.BICUBIC)
alpha_mask_img.save(os.path.join(alpha_out_dir, f'{cls}.png'))
# Save final cloth segmentations
cloth_seg = Image.fromarray(output_arr[0].astype(np.uint8), mode='P')
cloth_seg.putpalette(palette)
cloth_seg = cloth_seg.resize(img_size, Image.BICUBIC)
cloth_seg.save(os.path.join(cloth_seg_out_dir, 'final_seg.png'))
return cloth_seg
def check_or_download_model(file_path):
if not os.path.exists(file_path):
os.makedirs(os.path.dirname(file_path), exist_ok=True)
url = "https://drive.google.com/uc?id=11xTBALOeUkyuaK3l60CpkYHLTmv7k3dY"
gdown.download(url, file_path, quiet=False)
print("Model downloaded successfully.")
else:
print("Model already exists.")
def load_seg_model(checkpoint_path, device='cpu'):
net = U2NET(in_ch=3, out_ch=4)
check_or_download_model(checkpoint_path)
net = load_checkpoint(net, checkpoint_path)
net = net.to(device)
net = net.eval()
return net
def main(args):
device = 'cuda:0' if args.cuda else 'cpu'
# Create an instance of your model
model = load_seg_model(args.checkpoint_path, device=device)
palette = get_palette(4)
img = Image.open(args.image).convert('RGB')
cloth_seg = generate_mask(img, net=model, palette=palette, device=device)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Help to set arguments for Cloth Segmentation.')
parser.add_argument('--image', type=str, help='Path to the input image')
parser.add_argument('--cuda', action='store_true', help='Enable CUDA (default: False)')
parser.add_argument('--checkpoint_path', type=str, default='model/cloth_segm.pth', help='Path to the checkpoint file')
args = parser.parse_args()
main(args)