forked from EleutherAI/gpt-neox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
merge_mp_partitions.py
293 lines (238 loc) · 10 KB
/
merge_mp_partitions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Copyright (c) 2021, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Merge model parallel partitions."""
import os
import sys
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
)
import torch
from megatron import mpu
from megatron.checkpointing import ensure_directory_exists
from megatron.checkpointing import get_checkpoint_name
from megatron.checkpointing import get_checkpoint_tracker_filename
from megatron.global_vars import rebuild_tokenizer
from megatron.global_vars import _parse_args
def split_into_partitions(tensor, num_partitions, partition_dim, stride):
per_partition_size = mpu.utils.divide(tensor.size(partition_dim), num_partitions)
per_partition_per_stride_size = mpu.utils.divide(per_partition_size, stride)
partitions_list = torch.split(
tensor, per_partition_per_stride_size, dim=partition_dim
)
partitions = []
for i in range(num_partitions):
partition = torch.cat(partitions_list[i::num_partitions], dim=partition_dim)
partitions.append(partition)
return partitions
def merge_partitions(merged, partitions, partition_dim, stride):
# Number and size of each partition.
num_partitions = len(partitions)
per_partition_size = None
for partition in partitions:
if per_partition_size is None:
per_partition_size = partition.size(partition_dim)
else:
assert per_partition_size == partition.size(partition_dim)
def concat_partitions(partitions_):
with torch.no_grad():
if (per_partition_size * num_partitions) == merged.size(partition_dim):
torch.cat(partitions_, dim=partition_dim, out=merged)
else:
print(
" ***WARNING*** sizes do not match. Will cut "
"the merged partitions by {} along dimension {} "
"to reduce the size from {} to {} ...".format(
(per_partition_size * num_partitions)
- merged.size(partition_dim),
partition_dim,
per_partition_size * num_partitions,
merged.size(partition_dim),
)
)
merged_ = torch.cat(partitions_, dim=partition_dim)
merged_split = torch.split(
merged_, merged.size(partition_dim), dim=partition_dim
)
merged_ = merged_split[0]
assert merged_.size(partition_dim) == merged.size(partition_dim)
merged.data.copy_(merged_.data)
# If stride is 1, then do simple concatenation.
if stride == 1:
concat_partitions(partitions)
return
# For none unity strides, first split based on stride and then group.
per_partition_per_stride_size = mpu.utils.divide(per_partition_size, stride)
# Chunk and build a list.
chunks = None
for i, partition in enumerate(partitions):
chunk = torch.split(partition, per_partition_per_stride_size, dim=partition_dim)
if chunks is None:
chunks = [0] * (num_partitions * len(chunk))
chunks[i::num_partitions] = chunk
# Concatinate.
concat_partitions(chunks)
return
def get_model(model_type):
if model_type == "GPT2":
from pretrain_gpt2 import model_provider
else:
raise Exception("unrecognized model type: {}".format(model_type))
model = model_provider()
model = model.half()
return model
def get_parallel_checkpoint_name(path):
tracker_filename = get_checkpoint_tracker_filename(path)
iteration = 0
with open(tracker_filename, "r") as f:
metastring = f.read().strip()
iteration = int(metastring)
assert iteration > 0
checkpoint_name = get_checkpoint_name(path, iteration)
return checkpoint_name, iteration
def test_split_merge():
print("testing split and merge ...")
# [QKV.ROW-COL]
tensor = torch.FloatTensor(
[
[1.11, 1.12, 1.13, 1.14, 1.15],
[1.21, 1.22, 1.23, 1.24, 1.25],
[1.31, 1.32, 1.33, 1.34, 1.35],
[1.41, 1.42, 1.43, 1.44, 1.45],
[2.11, 2.12, 2.13, 2.14, 2.15],
[2.21, 2.22, 2.23, 2.24, 2.25],
[2.31, 2.32, 2.33, 2.34, 2.35],
[2.41, 2.42, 2.43, 2.44, 2.45],
[3.11, 3.12, 3.13, 3.14, 3.15],
[3.21, 3.22, 3.23, 3.24, 3.25],
[3.31, 3.32, 3.33, 3.34, 3.35],
[3.41, 3.42, 3.43, 3.44, 3.45],
]
)
num_partitions = 2
partition_dim = 0
stride = 3
partitions = split_into_partitions(tensor, num_partitions, partition_dim, stride)
merged = torch.zeros_like(tensor)
merge_partitions(merged, partitions, partition_dim, stride)
max_error = (merged - tensor).abs().max()
print(" > max error (should be zero): {}".format(max_error))
def get_mp_merge_args(parser):
"""Provide extra arguments required for merging."""
group = parser.add_argument_group(title="mp merge")
group.add_argument(
"--model-type",
type=str,
required=True,
choices=["BERT", "GPT2", "RACE", "MNLI", "QQP"],
help="Type of the model.",
)
return parser
def main():
# Args
args = _parse_args(extra_args_provider=get_mp_merge_args)
model_type = args.model_type
orig_model_parallel_size = args.model_parallel_size
args.model_parallel_size = 1
tokenizer = rebuild_tokenizer(args)
print("\n merging model parallel partitions ...")
print(" > number of partitions: {}".format(orig_model_parallel_size))
print(" > checkpoint path: {}".format(args.load))
print(" > model parameters:")
print(" number of tokens ................ {} ".format(tokenizer.vocab_size))
print(" number of layers ................ {}".format(args.num_layers))
print(" hidden size ..................... {}".format(args.hidden_size))
print(" number of attention heads ....... {}".format(args.num_attention_heads))
print(
" maximum position embeddings ..... {}".format(args.max_position_embeddings)
)
# Full model.
print("> building the full model ...")
mpu.initialize.set_model_parallel_world_size(1)
mpu.initialize.set_model_parallel_rank(0)
merged_model = get_model(model_type)
# Build and load partitions.
partitions = []
iteration = 0
args.model_parallel_size = orig_model_parallel_size
tokenizer = rebuild_tokenizer(args)
mpu.initialize.set_model_parallel_world_size(args.model_parallel_size)
for rank in range(args.model_parallel_size):
mpu.initialize.set_model_parallel_rank(rank)
checkpoint_name, iteration = get_parallel_checkpoint_name(args.load)
print("> loading {} ...".format(checkpoint_name))
model_ = get_model(model_type)
sd = torch.load(checkpoint_name, map_location="cpu")
model_.load_state_dict(sd["model"])
partitions.append(model_)
# Parameter generators so we can loop through them semiltaneouly.
merged_params_gen = merged_model.named_parameters()
partitions_params_gen = [partition.named_parameters() for partition in partitions]
while True:
try:
# Get the params and check names.
name, merged_param = next(merged_params_gen)
print(" > working on {} ...".format(name))
print(
" merged type: {}, size: {}".format(
merged_param.dtype, list(merged_param.size())
)
)
partitions_param = []
for rank, partition_params_gen in enumerate(partitions_params_gen):
partition_name, partition_param = next(partition_params_gen)
assert partition_name == name
partitions_param.append(partition_param)
print(
" partition {} type: {}, size: {}".format(
rank, partition_param.dtype, list(partition_param.size())
)
)
# For the non-parallel parameters, simply copy the rank 0 values.
if not hasattr(merged_param, "model_parallel"):
print(" none-parallel parameter, simple copy from rank 0")
with torch.no_grad():
merged_param.data.copy_(partitions_param[0].data)
# For parallel parameters, merge the values
else:
print(
" parallel parameter merge with stride {} along "
"dimension {}".format(
merged_param.stride, merged_param.partition_dim
)
)
merge_partitions(
merged_param,
partitions_param,
merged_param.partition_dim,
merged_param.stride,
)
except StopIteration:
break
# Save the model.
args.model_parallel_size = 1
mpu.initialize.set_model_parallel_rank(0)
sd = {}
sd["model"] = merged_model.state_dict()
sd["iteration"] = iteration
merged_path = os.path.join(args.load, "merged")
checkpoint_name = get_checkpoint_name(merged_path, iteration)
ensure_directory_exists(checkpoint_name)
print("> saving merged model to {}".format(checkpoint_name))
torch.save(sd, checkpoint_name)
print("done :-)")
if __name__ == "__main__":
main()