Smart Domain Architecture
Pattern

Re-engineering DDD

Xu Hao



Smart Domain

* Object-Oriented Approach (No service)

 Model as fully connected object graph (Not disconnected aggregation)
* Directly map to RESTful APl(with HATEOAS)

* Act as an abstraction layer to hide implementation details

* Consistent between conceptual model/model/api



Smart Domain

* Entity is not about value, but
about identity and association Identity




Smart Domain

e Entity Is not about value, but
about identity and association

Identity

 Can be mapped easily as a
lossless representation model

URI: /entities/{entity-id}

{
" links": {
"self": {
“"href": "httpy/example.com/api/book/hal-cookbook"
}
}

"id": "hal-cookbook",
“"name": "HAL Cookbook"

}



Smart Domain

e Entity Is not about value, but
about identity and association

 Can be mapped easily as a
lossless representation model

e Association Is an abstraction
mechanism for connections

Identity

URI: /entities/{entity-id}

{

}

" links": {
"self": {
"href": "http://example.com/api/book/hal-cookbook"
+
H
" embedded": {
"author": {
" links": {
"self": {
“"href": "http://example.com/api/author/shahadat"
}
H
"id": "shahadat",
"name": '"Shahadat Hossain Khan",
"homepage": "http://author-example.com"
}

by

"id": "hal-cookbook",
“"name": "HAL Cookbook"



Smart Domain

* Entity is not about value, but
about identity and association Identity

 Can be mapped easily as a
lossless representation model

URI: /entities/{entity-id}

e Association Is an abstraction "_Links": {

"self": {

mechanism for connections s

’
"next": {

“"href": "http://example.com/api/book/hal-case-study"
}

e Association is an abstraction "prev": {

“href": "http://example.com/api/book/json-and-beyond"

mechanism for lifecycle Hirstr: 1

“"href": "http://example.com/api/book/catalog"

}
"last": {
“"href": "http://example.com/api/book/upcoming—books"
}
}



Smart Domain

e Smart domain providers an
abstraction for API




Smart Domain

/customers/{id}

orders

-\ o
Enti

e Smart domain providers an
abstraction for API: navigation of
the graph

* Root entity as Root payments
Resource(JAX-RS)

e Association as Sub-Resource

 Connected Entity as Sub-
Resource of association

{payment-id}



Smart Domain

/customers/{id}

orders

-\ {order-id}
 Smart domain provides an payments
abstraction for lifecycle
nti /yments

e Smart domain providers an
abstraction for API: navigation of
the graph

{payment-id}



Smart Domain

e Smart domain providers an
abstraction for API: navigation of
the graph

 Smart domain provides an
abstraction for lifecycle

e Different implementations of
association

 Aggregation is an
Implementation detail

From API

In Memory




Smart Domain

* [wo layers architecture

 Domain layers: define the
entities and the associations
between entities




Smart Domain

* [wo layers architecture

 Domain layers: define the
entities and the associations
between entities

* API layers: provides APl based
on the graph navigation
defined in domain layer




Smart Domain

* [wo layers architecture

 Domain layers: define the
entities and the associations
between entities

* |Integration layers: provides
implementation of
associations

* API layers: provides API based
on the graph navigation defined
INn domain layer

h_______________



Accounting Domain Model

1 1.7
1 1
1

\4

v *
1.
Source Evidence Transaction

A\

Sales Settlement



Accounting Domain Model - Association

Sales Settlement



Accounting Domain Model - API

/customers {customer-id} accounts {account-id}

source-evidences transactions

{transaction-id}

transactions

Sales Settlement




Accounting Domain Model - Lifecycle

{account-id}

Customers Customer CustomerAccounts Account

CustomerSourceEvidences AccountTransactions

SourceEvidenceTransactions

Transaction

Database

Sales Settlement




Demo project

* https://github.com/Re-engineering-Domain-Driven-Design/Accounting



