forked from WAMAWAMA/WAMA_Modules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Demo_ArXiv2021_MultiLabel_Query2Label.py
278 lines (238 loc) · 11.3 KB
/
Demo_ArXiv2021_MultiLabel_Query2Label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# reference code:https://github.com/SlongLiu/query2labels
# BTW, the Q2L code is modified from DETR
# details:
# 1) in both encoder and decoder, there is NO position embeddings added to Value, but added to key
# 2) ----- in original implement,
# the label embedding is initialized with zero,
# and its position embedding is the true label embedding
# https://github.com/SlongLiu/query2labels/blob/55eb05064f4badbe03423b79e5c9d143da2dff2e/lib/models/transformer.py#L112
# ----- which is the same as:
# the label embedding is initialized with true label embedding,and its position embedding is None
# this script will implement in the @2nd way
# 3) the structure is simple: first the image features f will go through n-layer encoder to generate f~,
# and then f~ and label embeddings will together go through the decoder
import numpy as np
import torch.nn as nn
import torch
from wama_modules.Transformer import TransformerEncoderLayer, TransformerDecoderLayer
from wama_modules.PositionEmbedding import PositionalEncoding_2D_sincos,PositionalEncoding_3D_sincos,PositionalEncoding_1D_sincos
from wama_modules.Encoder import ResNetEncoder
from wama_modules.BaseModule import MakeNorm
from wama_modules.Head import ClassificationHead
from demo.multi_label.generate_multilabel_dataset import label_category_dict, label_name, dataset
class TransformerEncoder(nn.Module):
def __init__(self, token_channels, depth, heads, dim_head, mlp_dim=None, dropout=0.):
"""
:param depth: number of layers
"""
super().__init__()
self.layers = nn.ModuleList([
TransformerEncoderLayer(
token_channels,
heads=heads,
dim_head=dim_head,
channel_mlp=mlp_dim,
dropout=dropout,
AddPosEmb2Value=False,
) for _ in range(depth)])
def forward(self, tokens, pos_emb):
"""
:param tokens: tensor with shape of [batchsize, token_num, token_channels]
:return: tokens, attn_map_list
# demo
token_channels = 512
token_num = 5
batchsize = 3
depth = 3
heads = 8
dim_head = 32
mlp_dim = 64
tokens = torch.ones([batchsize, token_num, token_channels])
pos_emb = torch.ones([batchsize, token_num, token_channels])
encoder = TransformerEncoder(token_channels, depth, heads, dim_head, mlp_dim=mlp_dim, dropout=0.)
tokens_, attn_map_list = encoder(tokens, pos_emb)
print(tokens.shape, tokens_.shape)
_ = [print(i.shape) for i in attn_map_list]
"""
attn_map_list = []
for layer in self.layers:
tokens, attention_maps = layer(tokens, pos_emb)
attn_map_list.append(attention_maps) # from shallow to deep
return tokens, attn_map_list
class TransformerDecoder(nn.Module):
def __init__(self, token_channels, depth, heads, dim_head, mlp_dim=None, dropout=0.):
"""
:param depth: number of layers
"""
super().__init__()
self.layers = nn.ModuleList([
TransformerDecoderLayer(
token_channels,
heads=heads,
dim_head=dim_head,
channel_mlp=mlp_dim,
dropout=dropout,
AddPosEmb2Value=False,
) for _ in range(depth)])
def forward(self, q_tokens, v_tokens, q_pos_embeddings=None, v_pos_embeddings=None):
"""
:param tokens: tensor with shape of [batchsize, token_num, token_channels]
:return: q_tokens, attn_map_list
# demo
token_channels = 512
q_token_num = 5
v_token_num = 10
batchsize = 3
depth = 3
heads = 8
dim_head = 32
mlp_dim = 64
q_tokens = torch.ones([batchsize, q_token_num, token_channels])
v_tokens = torch.ones([batchsize, v_token_num, token_channels])
v_pos_emb = torch.ones([batchsize, v_token_num, token_channels])
decoder = TransformerDecoder(token_channels, depth, heads, dim_head, mlp_dim=mlp_dim, dropout=0.)
q_tokens_, self_attn_map_list, cross_attn_map_list = decoder(q_tokens, v_tokens, None, v_pos_emb)
print(q_tokens.shape, q_tokens_.shape)
_ = [print(i.shape) for i in self_attn_map_list]
_ = [print(i.shape) for i in cross_attn_map_list]
"""
self_attn_map_list = []
cross_attn_map_list = []
for layer in self.layers:
q_tokens, self_attn_map, cross_attn_map = layer(q_tokens, v_tokens, q_pos_embeddings, v_pos_embeddings)
self_attn_map_list.append(self_attn_map) # from shallow to deep
cross_attn_map_list.append(cross_attn_map) # from shallow to deep
return q_tokens, self_attn_map_list, cross_attn_map_list
class Q2L(nn.Module):
def __init__(self,
label_category_dict,
in_channel=1,
position_embedding=True, # default is False, see https://github.com/QData/C-Tran/issues/12
encoder_transformer_depth=1, # default is 1
decoder_transformer_depth=2, # default is 2
transformer_heads=4, # default is 4
dim=2):
super().__init__()
# self = tmp_class()
self.dim = dim
self.label_category_dict = label_category_dict
self.label_name = list(label_category_dict.keys())
# Image Embeddings
f_channel_list = [64, 128, 256, 6*128]
self.img_embed = ResNetEncoder(
in_channel,
stage_output_channels=f_channel_list,
stage_middle_channels=f_channel_list,
blocks=[1, 2, 3, 4],
type='131',
downsample_ration=[0.5, 0.5, 0.5, 0.8],
dim=dim)
self.position_embedding = position_embedding
# Label Embeddings
self.num_labels = len(label_name)
self.label_input = torch.Tensor(np.arange(self.num_labels)).view(1, -1).long()
self.label_embed = torch.nn.Embedding(self.num_labels, f_channel_list[-1], padding_idx=None)
# self.label_embed(torch.tensor([2,2,2,2,2]))
# Normalization for tokens
self.norm = MakeNorm(dim, f_channel_list[-1], norm='ln')
# Transformer Encoder
self.transEncoder = TransformerEncoder(
token_channels=f_channel_list[-1],
depth=encoder_transformer_depth,
heads=transformer_heads,
dim_head=f_channel_list[-1],
mlp_dim=f_channel_list[-1],
)
# Transformer Decoder
self.transDecoder = TransformerDecoder(
token_channels=f_channel_list[-1],
depth=decoder_transformer_depth,
heads=transformer_heads,
dim_head=f_channel_list[-1],
mlp_dim=f_channel_list[-1],
)
# cls head
self.cls_head = ClassificationHead(label_category_dict, f_channel_list[-1], bias=True)
def forward(self, image):
"""
in inference phase, the label_value_dict and label_known_dict could be set None
:param image: [bz, channel, *shape]
:param label_value_dict: see demo format
"""
batchsize = image.shape[0]
# extract image embeddings
image_tokens = self.img_embed(image)[-1]
if self.position_embedding:
print('add position embeddings')
if self.dim == 1:
pos_emb = PositionalEncoding_1D_sincos(embedding_dim=image_tokens.shape[1], token_num=image_tokens.shape[2])
elif self.dim == 2:
pos_emb = PositionalEncoding_2D_sincos(embedding_dim=image_tokens.shape[1], token_shape=image_tokens.shape[2:])
elif self.dim == 3:
pos_emb = PositionalEncoding_3D_sincos(embedding_dim=image_tokens.shape[1], token_shape=image_tokens.shape[2:])
pos_emb = pos_emb.view(1, image_tokens.size(1), -1).permute(0, 2, 1)
else:
pos_emb = None
image_tokens = image_tokens.view(image_tokens.size(0), image_tokens.size(1), -1).permute(0, 2, 1) # [bz, token_num, channel]
# extract label embeddings
label_tokens = self.label_embed(self.label_input).repeat(batchsize, 1, 1)
# Encoder Transformer forward
image_tokens, _ = self.transEncoder(self.norm(image_tokens), pos_emb)
# Decoder Transformer forward
label_tokens, self_attn_map_list, cross_attn_map_list = self.transDecoder(
label_tokens, image_tokens, q_pos_embeddings=None, v_pos_embeddings=pos_emb)
# Cls head forward
output_label_tokens = label_tokens
output_label_tokens = torch.chunk(output_label_tokens, output_label_tokens.shape[1], 1)
output_label_tokens = [i.view(i.shape[0], i.shape[-1]) for i in output_label_tokens]
predict_logits_dict = self.cls_head(output_label_tokens)
return predict_logits_dict, self_attn_map_list, cross_attn_map_list
if __name__ == '__main__':
image_1D_tensor = (torch.tensor(np.stack([case['img_1D'].astype(np.float32) for case in dataset], 0))).permute(0, 2, 1)
image_2D_tensor = (torch.tensor(np.stack([case['img_2D'].astype(np.float32) for case in dataset], 0))).permute(0, 3, 1, 2)
image_3D_tensor = (torch.tensor(np.stack([case['img_3D'].astype(np.float32) for case in dataset], 0))).permute(0, 4, 1, 2, 3)
# 1D Q2L model
input = image_1D_tensor
print('-' * 22, 'build 1D model', '-'*18)
print('input image batch shape:', input.shape)
model = Q2L(
label_category_dict,
in_channel=input.shape[1],
position_embedding=True, # default is True, see https://github.com/SlongLiu/query2labels/blob/main/main_mlc.py#L142
encoder_transformer_depth=1, # default is 1
decoder_transformer_depth=2, # default is 2
transformer_heads=4, # default is 4
dim=1
)
pre_logits_dict, self_attn_map_list, cross_attn_map_list = model(input)
_ = [print('logits of ', key, ':', pre_logits_dict[key].shape) for key in pre_logits_dict.keys()]
# 2D Q2L model
input = image_2D_tensor
print('-' * 22, 'build 2D model', '-'*18)
print('input image batch shape:', input.shape)
model = Q2L(
label_category_dict,
in_channel=input.shape[1],
position_embedding=True, # default is True, see https://github.com/SlongLiu/query2labels/blob/main/main_mlc.py#L142
encoder_transformer_depth=1, # default is 1
decoder_transformer_depth=2, # default is 2
transformer_heads=4, # default is 4
dim=2
)
pre_logits_dict, self_attn_map_list, cross_attn_map_list = model(input)
_ = [print('logits of ', key, ':', pre_logits_dict[key].shape) for key in pre_logits_dict.keys()]
# 3D Q2L model
input = image_3D_tensor
print('-' * 22, 'build 3D model', '-'*18)
print('input image batch shape:', input.shape)
model = Q2L(
label_category_dict,
in_channel=input.shape[1],
position_embedding=True, # default is True, see https://github.com/SlongLiu/query2labels/blob/main/main_mlc.py#L142
encoder_transformer_depth=1, # default is 1
decoder_transformer_depth=2, # default is 2
transformer_heads=4, # default is 4
dim=3
)
pre_logits_dict, self_attn_map_list, cross_attn_map_list = model(input)
_ = [print('logits of ', key, ':', pre_logits_dict[key].shape) for key in pre_logits_dict.keys()]