
Structured Learning for 
Temporal Relation Extraction        
from Clinical Records

Artuur Leeuwenberg and Marie-Francine Moens
Department of Computer Science, KU Leuven

7th of April, 2017 (EACL)



A. Leeuwenberg and M.-F. Moens

Temporal Information
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• Find all patients that:

o Used to smoke, but now stopped… 

o Used a particular medication in the past

o Showed certain symptoms for more than a year
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Task Description
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Classical Approach
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• Local Learning
• Independent Predictions
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• Local Learning
• Independent Predictions

What if we make one wrong prediction?

We will set−up an appointment with Medical Oncology  in four to six−weeks.
            AFTER         AFTER 
          

before

Classical Approach

before

contains



A. Leeuwenberg and M.-F. Moens21

• Local Learning
• Independent Predictions

before

Classical Approach

before

contains

We will set−up an appointment with Medical Oncology  in four to six−weeks.
            AFTER        BEFORE 
          



A. Leeuwenberg and M.-F. Moens22

• Local Learning
• Independent Predictions

Problem: Timeline construction from inconsistent relations

before
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1. Document Level Learning

2. Global Constraints on Predictions

3. Learning Output Structure through Global Features

Proposed Model
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• Scoring Label Assignments
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Document-Level Learning
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• Scoring Label Assignments

• Structured Perceptron Training [Collins, 2002]

o Averaging [Freund and Schapire, 1999]

o Loss augmented sub-sampling
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Document-Level Learning
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• Joint Local Features
o E.g. Tokens, POS, Dependency Path

• Global Features
o E.g. DCTR label n-grams
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Document-Level Features



A. Leeuwenberg and M.-F. Moens

• Prediction

• Integer Linear Programming (Gurobi, 2015)
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Prediction with Constraints
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• Label dependencies as Constraints on decision variables
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• Label dependencies as Constraints on decision variables
o E.g. Transitivity of  BEFORETLINK

o E.g. Connecting BEFORETLINK and AFTERDCTR
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Example Revisited
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Experiments
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• Dataset
o THYME corpus [Styler IV et al., 2014]

• 440 documents for training, and 151 for testing

• Preprocessing
o Ground-truth events and temporal expressions
o Tokenization, POS Tagging (cTAKES), Dependency 

Parsing (cTAKES)

• Local Candidate Generation
o DCTR: all events
o TLINKS: pairs within each paragraph

• Parameter tuning on development set
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Baselines
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• DCTR:

o Local Perceptron

o CRF (Khalifa et al., 2016)

• TLINKS:

o Local Perceptron

o SVM (Lin et al., 2016)
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Structured Perceptron (SP)
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(Local) Perceptron 

39



A. Leeuwenberg and M.-F. Moens

SP + Constraints (C*) 
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SP + Global Features (Φg) 
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Current State-of-the-Art (SoA)
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Recap
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• Document level learning and prediction

• Modeling label dependencies / output structure

o Hard Dependencies as Constraints

o Soft Dependencies as Global Features

• Improve state-of-the-art results for temporal relations
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Thank you for your attention!
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Questions?

Code: https://github.com/tuur/SPTempRels 
Project: www.accumulate.be 


