
T U , D O H O A N G

O P E R AT I N G S Y S T E M :
F R O M 0 T O 1

Contents

Preface i

I Preliminary 1

1 Domain documents 3

1.1 Problem domains 3

1.2 Documents for implementing a problem domain 6

1.3 Documents for writing an x86 Operating System. . . . 9

2 From hardware to software: Layers of abstraction . . 11

2.1 The physical implementation of a bit 11

2.2 Beyond transistors: digital logic gates 12

2.3 Beyond Logic Gates: Machine Language 16

2.4 Abstraction 26

3 Computer Architecture 33

3.1 What is a computer? 33

3.2 Computer Architecture 39

3.3 x86 architecture 45

3.4 Intel Q35 Chipset 47

3.5 x86 Execution Environment 48

II tu, do hoang

4 x86 Assembly and C 49

4.1 objdump 50

4.2 Reading the output 51

4.3 Intel manuals 53

4.4 Experiment with assembly code 54

4.5 Anatomy of an Assembly Instruction 56

4.6 Understand an instruction in detail 65

4.7 Example: jmp instruction 68

4.8 Examine compiled data 71

4.9 Examine compiled code 86

5 The Anatomy of a Program 109

5.1 Reference documents: 111

5.2 ELF header 111

5.3 Section header table 116

5.4 Understand Section in-depth 123

5.5 Program header table 144

5.6 Segments vs sections. 147

6 Runtime inspection and debug 155

6.1 A sample program 155

6.2 Static inspection of a program 156

6.3 Runtime inspection of a program 167

6.4 How debuggers work: A brief introduction 183

II Groundwork 195

7 Bootloader 197

7.1 x86 Boot Process 197

7.2 Using BIOS services 198

7.3 Boot process. 199

operating system: from 0 to 1 III

7.4 Example Bootloader 199

7.5 Compile and load 200

7.6 Loading a program from bootloader 206

7.7 Improve productivity with scripts 209

8 Linking and loading on bare metal 221

8.1 Understand relocations with readelf 222

8.2 Crafting ELF binary with linker scripts 231

8.3 C Runtime: Hosted vs Freestanding 252

8.4 Debuggable bootloader on bare metal 253

8.5 Debuggable program on bare metal 255

III Kernel Programming 279

9 x86 Descriptors. 281

9.1 Basic operating system concepts 281

9.2 Drivers 283

9.3 Userspace and kernel space 283

9.4 Memory Segment 284

9.5 Segment Descriptor 284

9.6 Types of Segment Descriptors 284

9.7 Descriptor Scope 284

9.8 Segment Selector 284

9.9 Enhancement: Bootloader with descriptors 284

10 Process . 285

10.1 Concepts 285

10.2 Process 285

10.3 Threads 287

10.4 Task: x86 concept of a process 288

10.5 Task Data Structure 288

IV tu, do hoang

10.6 Process Implementation 289

10.7 Milestone: Code Refactor 289

11 Interrupt 291

12 Memory management 293

13 File System 295

Index . 297

Biblography 299

Preface

Greetings!

You’ve probably asked yourself at least once how an operating system

is^M written from the ground up. You might even have years of

programming experience under your belt, yet your understanding

of operating systems may still be a collection of abstract concepts,

not grounded in actual implementation. To those who’ve never built

one, an operating system may seem like magic: a mysterious thing

that can control hardware while handling a programmer’s requests

via an API of their favorite programming language. Learning how to

build an operating system seems intimidating and difficult; no matter

how much you learn, it never feels like you know enough. You’re

probably reading this book right now to gain a better understanding

of operating systems to be a better software engineer.

If that is the case, this book is for you. By going through this book,

you will be able to find the missing piece that is essential and enable

you to implement your operating system, from scratch! Yes, from

scratch, without going through any existing operating system layer

to comfort yourself that you are an operating system developer. You

may ask, “Isn’t it more practical to learn the internals of Linux?”, you

might ask.

Yes...

and no.

Learning Linux can help your workflow at your day job. However,

if you follow that route, you still won’t achieve the ultimate goal of

writing an actual operating system. By writing your own operating

ii tu, do hoang

system, you will gain knowledge that you will not be able to glean just

from learning Linux.

Here’s a list of some benefits of writing your own OS:

� You will learn how a computer works at the hardware level, and

you will learn to write software to manage that hardware directly.

� You will learn the fundamentals of operating systems, making you

able to adapt to any operating system, not just Linux

� To hack Linux internals profoundly, you’ll need to write at least

one operating system on your own. This is just like applications

programming: to write a large application, you’ll need to start with

simple ones.

� You will open pathways to various low-level programming domains

such as reverse engineering, exploits, building virtual machines,

game console emulators and more. Assembly language will become

one of your indispensable tools for low-level analysis.(but it does

not mean that you have to write your operating system in Assem-

bly!).

� Writing an operating system is fun!

Why another book on Operating System?

There are many books and courses on this topic made by famous pro-

fessors and experts out there already. Who am I to write a book on

such an advanced topic? While it’s true that many quality resources

exist, I find them lacking. Do any of them show you how to compile

your C code and the C runtime library on top of it independent of an

existing operating system? Most books on operating system design

and implementation only discuss the software side; how the opera-

ting system communicates with the hardware is skipped. Important

hardware details are skipped, and it’s difficult for a self-learner to

find relevant resources on the Internet. The aim of this book is to

bridge that gap: not only will you learn how to program hardware

operating system: from 0 to 1 iii

directly, but also how to read official documents from hardware ven-

dors to program it. You no longer have to seek out resources to help

you interpret hardware manuals and documentation: you can do it

yourself. Lastly, I wrote this book from an autodidact’s perspective. I

made this book as self-contained as possible, so you can spend more

time learning and less time guessing or seeking out information on the

Internet.

One of the core focuses of this book is to guide you through the

process of reading official documentation from vendors to implement

your software. Official documents from hardware vendors like Intel are

critical for implementing an operating system or any other software

that directly controls the hardware. At a minimum, an operating

system developer needs to be able to comprehend these documents

and implement software based on a set of hardware requirements.

Thus, the first chapter is dedicated to discussing relevant documents

and their importance.

Another distinct feature of this book is that it is “Hello World”

centric. Most examples revolve around variants of a“Hello World”

program. Most examples revolve around variants of a “Hello World”

program, which will acquaint you with core concepts. These concepts

must be learned before attempting to write an operating system.

Anything beyond a simple “Hello World” example gets in the way

of teaching the concepts, thus lengthening the time spent on getting

started writing an operating system.

Let’s dive in. With this book, I hope to provide enough foundati-

onal knowledge that will open doors for you to make sense of other

resources. This book is will be especially beneficial to students who’ve

just finished their first C/C++ course. Imagine how cool it would be

to show prospective employers that you’ve already built an operating

system.

Prerequisites

� Basic knowledge of circuits

iv tu, do hoang

– Basic Concepts of Electricity: atoms, electrons, proton, neutron,

current flow.

– Ohm’s law

If you are unfamiliar with these concepts, you can quickly learn

them here: http://www.allaboutcircuits.com/textbook/, by

reading chapter 1 and chapter 2.

� C programming. In particular:

– Variable and function declarations/definitions

– While and for loops

– Pointers and function pointers

– Fundamental algorithms and data structures in C

� Linux basics:

– Know how to navigate directory with the command line

– Know how to invoke a command with options

– Know how to pipe output to another program

� Touch typing. Since we are going to use Linux, touch typing helps.

I know typing speed does not relate to problem-solving, but at least

your typing speed should be fast enough not to let it get it the way

and degrade the learning experience.

In general, I assume that the reader has basic C programming know-

ledge, and can use an IDE to build and run a program.

What you will learn in this book

� How to write an operating system from scratch by reading har-

dware datasheets. In the real world, you will not be able to consult

Google for a quick answer.

� Write code independently. It’s pointless to copy and paste code.

Real learning happens when you solve problems on your own. Some

examples are provided to help kick start your work, but most

http://www.allaboutcircuits.com/textbook/

operating system: from 0 to 1 v

problems are yours to conquer. However, the solutions are available

online for you after giving a good try.

� A big picture of how each layer of a computer related to each other,

from hardware to software.

� How to use Linux as a development environment and common tools

for low-level programming.

� How a program is structured so that an operating system can run.

� How to debug a program running directly on hardware with gdb

and QEMU.

� Linking and loading on bare metal x86_64, with pure C. No stan-

dard library. No runtime overhead.

What this book is not about

� Electrical Engineering: The book discusses some concepts

from electronics and electrical engineering only to the extent of how

software operates on bare metal.

� How to use Linux or any OS types of books: Though

Linux is used as a development environment and as a medium to

demonstrate high-level operating system concepts, it is not the

focus of this book.

� Linux Kernel development: There are already many high-

quality books out there on this subject.

� Operating system books focused on algorithms: This

book focuses more on actual hardware platform - Intel x86_64

- and how to write an OS that utilizes of OS support from the

hardware platform.

The organization of the book

Part 1 provides a foundation for learning operating system.

vi tu, do hoang

� Chapter 1 briefly explains the importance of domain documents.

Documents are crucial for the learning experience, so they de-

serve a chapter.

� Chapter 2 explains the layers of abstractions from hardware

to software. The idea is to provide insight into how code runs

physically.

� Chapter 3 provides the general architecture of a computer, then

introduces a sample computer model that you will use to write

an operating system.

� Chapter 4 introduces the x86 assembly language through the

use of the Intel manuals, along with commonly used instructions.

This chapter gives detailed examples of how high-level syntax

corresponds to low-level assembly, enabling you to read generated

assembly code comfortably. It is necessary to read assembly code

when debugging an operating system.

� Chapter 5 dissects ELF in detail. Only by understanding how

the structure of a program at the binary level, you can build one

that runs on bare metal.

� Chapter 6 introduces gdb debugger with extensive examples for

commonly used commands. After acquainting the reader with

gdb, it then provides insight on how a debugger works. This

knowledge is essential for building a debuggable program on the

bare metal.

Part 2 presents how to write a bootloader to bootstrap a kernel.

Hence the name “Groundwork”. After mastering this part, the

reader can either continue with the next part that is a guide on

writing an operating system. However, if the reader does not like

the presentation, he or she can look elsewhere, such as OSDev Wiki:

http://wiki.osdev.org/.

� Chapter 7 introduces what the bootloader is, how to write one

in assembly, and how to load it on QEMU, a hardware emulator.

This process involves typing repetitive and long commands, so

GNU Make is applied to improve productivity by automating the

http://wiki.osdev.org/

operating system: from 0 to 1 vii

repetitive parts and simplifying the interaction with the project.

This chapter also demonstrates the use of GNU Make in context.

� Chapter 8 introduces linking by explaining the relocation process

when combining object files. In addition to a bootloader and

an operating system written in C, this is the last piece of the

puzzle required for building debuggable programs on bare metal,

including the bootloader written in Assembly and an operating

system written in C.

Part 3 provides guidance on how to write an operating system, as you

should implement an operating system on your own and be proud

of your creation. The guidance consists of simpler and coherent

explanations of necessary concepts, from hardware to software,

to implement the features of an operating system. Without such

guidance, you will waste time gathering information spread through

various documents and the Internet. It then provides a plan on how

to map the concepts to code.

Acknowledgments

Thank you, my beloved family. Thank you, the contributors.

Part I

Preliminary

1
Domain documents

1.1 Problem domains

In the real world, software engineering is not only focused on software,

but also the problem domain it is trying to solve.

A problem domain is the part of the world where the computer is to problem domain
produce effects, together with the means available to produce them,
directly or indirectly. (Kovitz, 1999)

A problem domain is anything outside of programming that a soft-

ware engineer needs to understand to produce correct code that can

achieve the desired effects. “Directly” means include anything that

the software can control to produce the desired effects, e.g. keyboards,

printers, monitors, other software... “Indirectly” means anything not

part of the software but relevant to the problem domain e.g. appropri-

ate people to be informed by the software when some event happens,

students that move to correct classrooms according to the schedule

generated by the software. To write a finance application, a software

engineer needs to learn sufficient finance concepts to understand the

requirements of a customer and implement such requirements, cor- requirements

rectly.

Requirements are the effects that the machine is to exert in the
problem domain by virtue of its programming.

4 operating system: from 0 to 1

Programming alone is not too complicated; programming to solve a

problem domain, is 1. Not only a software engineer needs to under- 1 We refer to the concept of “program-
ming” here as someone able to write
code in a language, but not necessary
know any or all software engineering
knowledge.

stand how to implement the software, but also the problem domain

that it tries to solve, which might require in-depth expert know-

ledge. The software engineer must also select the right programming

techniques that are apply to the problem domain he is trying to solve

because many techniques that are effective in one domain might not

be in another. For example, many types of applications do not require

performant written code, but a short time to market. In this case,

interpreted languages are widely popular because it can satisfy such

need. However, for writing huge 3D games or operating system, compi-

led languages are dominant because it can generate the most efficient

code required for such applications.

Often, it is too much for a software engineer to learn non-trivial

domains (that might require a bachelor degree or above to understand

the domains). Also, it is easier for a domain expert to learn enough

programming to break down the problem domain into parts small

enough for the software engineers to implement. Sometimes, domain

experts implement the software themselves.

Software Domain
Non-software

 Domains

Application

Domain

Figure 1.1.1: Problem domains:
Software and Non-software.

One example of such scenario is the domain that is presenting in

this book: operating system. A certain amount of electrical engineering

(EE) knowledge is required to implement an operating system. If a

computer science (CS) curriculum that does not include minimum EE

courses, students in the curriculum have little chance to implement

a working operating system. Even if they can implement one, either

domain documents 5

they need to invest a significant amount of time to study on their own,

or they fill code in a predefined framework just to understand high-

level algorithms. For that reason, EE students have an easier time to

implement an OS, as they only need to study a few core CS courses.

In fact, only “C programming” and “Algorithms and Data Structures”
classes are usually enough to get them start writing code for device

drivers, and later generalize it into an operating system.

Data Structure

and Algorithms

Electrical

Engineering

Operating

System

Figure 1.1.2: Operating System
domain.

One thing to note is that software is its own problem domain.

A problem domain does not necessarily divide between software

and itself. Compilers, 3D graphics, games, cryptography, artificial

intelligence, etc., are parts of software engineering domains (actually

it is more of a computer science domain than a software engineering

domain). In general, a software-exclusive domain creates software

to be used by other software. Operating System is also a domain,

but is overlapped with other domain such as electrical engineering.

To effectively implement an operating system, it is required to learn

enough of the external domain. How much learning is enough for a

software engineer? At the minimum, a software engineer should be

knowledgeable enough to understand the documents prepared by

hardware engineers for using (i.e. programming) their devices.

Learning a programming language, even C or Assembly, does not

mean a software engineer can automatically be good at hardware

programming or any related low-level programming domains. One

can spend 10 years, 20 years or his entire life writing C/C++ code,

and he still cannot write an operating system, simply because of the

6 operating system: from 0 to 1

ignorant of relevant domain knowledge. Just like learning English

does not mean a person automatically becomes good at reading Math

books written in English. Much more than that is needed. Knowing

one or two programming languages is not enough. If a programmer

writes software for a living, he should better be specialized in one or

two problem domains outside of software if he does not want his job

taken by domain experts who learn programming in their spare time.

1.2 Documents for implementing a problem dom-
ain

Documents are essential for learning a problem domain (and actually,

anything) since information can be passed down in a reliable way. It

is evident that this written text has been used for thousands of years

to pass knowledge from generations to generations. Documents are

integral parts of non-trivial projects. Without the documents:

� New people will find it much harder to join a project.

� It is harder to maintain a project because people may forget impor-

tant unresolved bugs or quirks in their system.

� It is challenging for customers to understand the product they are

going to use. However, documents do not need to be written in

book format. It can be anything from HTML format to database

format to be displayed by a graphical user interface. Important

information must be stored somewhere safe, readily accessible.

There are many types of documents. However, to facilitate the un-

derstanding of a problem domain, these two documents need to be

written: software requirement document and software specification.

1.2.1 Software Requirement Document

Software requirement document includes both a list of requirements Software requirement
and a description of the problem domain (Kovitz, 1999).

A software solves a business problem. But, which problems to

solve, are requested by a customer. Many of these requests make a

domain documents 7

list of requirements that our software needs to fulfill. However, an

enumerated list of features is seldom useful in delivering software. As

stated in the previous section, the tricky part is not programming

alone but programming according to a problem domain. The bulk of

software design and implementation depends upon the knowledge of

the problem domain. The better understood the domain, the higher

quality software can be. For example, building a house is practiced

over thousands of years and is well understood, and it is easy to build

a high-quality house; software is no difference. Code that is difficult

to understand, usually because of the ignorance of problem domain.

In the context of this book, we sought to understand the low-level

working of various hardware devices.

Because software quality depends upon the understandings of the

problem domain, the amount of software requirement document should

consist of problem domain description.

Be aware that software requirements are not:

What vs How

“what” and “how” are vague terms. What is the “what”? Is it

nouns only? If so, what if a customer requires his software to

perform specific steps of operations, such as purchasing procedure

for a customer on a website. Does it include “verbs” now? However,

isn’t the “how” supposed to be step by step operations? Anything

can be the “what” and anything can be the “how”.

Sketches

Software requirement document is all about the problem domain.

It should not be a high-level description of an implementation.

Some problems might seem straightforward to map directly from

its domain description to the structure of an implementation. For

example:

� Users are given a list of books in a drop-down menu to choose.

� Books are stored in a linked list”.

� ...

8 operating system: from 0 to 1

In the future, instead of a drop-down menu, all books are listed

directly on a page in thumbnails. Books might be reimplemented

as a graph, and each node is a book for finding related books, as a

recommender is going to be added in the next version. The requi-

rement document needs updating again to remove all the outdated

implementation details, thus required additional efforts to maintain

the requirement document, and when the effort for syncing with the

implementation is too much, the developers give up documentation,

and everyone starts ranting how useless documentation is.

More often than not there is no straightforward one-to-one mapping.

For example, a regular computer user expects OS to be something

that runs some program with GUI, or their favorite computer

games. But for such requirements, an operating system is implemen-

ted as multiple layers, each hides the details from the upper layers.

To implement an operating system, a large body of knowledge from

multiple fields are required, especially if the operating system runs

on non-PC devices.

It’s better to put anything related to the problem domain in the re-

quirement document. A good way to test the quality of requirement

document is to hand it to the domain expert for proofreading if he

can understand the material thoroughly. Requirement document is

also useful as a help document later, or for writing one much easier.

1.2.2 Software Specification

Software specification document states rules relating desired behavior Software specification
of the output devices to all possible behavior of the input devices,

as well as any rules that other parts of the problem domain must

obey.Kovitz (1999)

Simply put, software specification is interface design, with con-

straints for the problem domain to follow e.g. the software can accept

certain types of input such as the software is designed to accept Eng-

lish but no other language. For a hardware device, a specification is

always needed, as software depends on its hardwired behaviors. And

in fact, it is mostly the case that hardware specifications are well-

domain documents 9

defined, with the tiniest details in it. It needs to be that way because

once hardware is physically manufactured, there’s no going back, and

if defects exist, it’s a devastating damage to the company on both

finance and reputation.

Note that, similar to a requirement document, a specification

only concerns interface design. If implementation details leak in,

it is a burden to sync between the actual implementation and the

specification, and soon to be abandoned.

Another important remark is that, though a specification document

is important, it does not have to be produced before the implemen-

tation. It can be prepared in any order: before or after a complete

implementation; or at the same time with the implementation, when

some part is done, and the interface is ready to be recorded in the

specification. Regardless of methods, what matter is a complete speci-

fication at the end.

1.3 Documents for writing an x86 Operating Sy-
stem

When problem domain is different from software domain, requirement

document and specification are usually separated. However, if the pro-

blem domain is inside software, specification most often includes both,

and content of both can be mixed with each other. As demonstra-

ted by previous sections the importance of documents, to implement

an OS, we will need to collects relevant documents to gain sufficient

domain knowledge. These documents are as follow:

� Intel® 64 and IA-32 Architectures Software Developer’s Manual

(Volume 1, 2, 3)

� Intel® 3 Series Express Chipset Family Datasheet

� System V Application Binary Interface

Aside from the Intel’s official website, the website of this book also

hosts the documents for convenience2. 2 Intel may change the links to the
documents as they update their
website, so this book doesn’t contain
any link to the documents to avoid
confusion for readers.

10 operating system: from 0 to 1

Intel documents divide the requirement and specification sections

clearly, but call the sections with different names. The corresponding

to the requirement document is a section called “Functional Descrip-
tion”, which consists mostly of domain description; for specification,

“Register Description” section describes all programming interfaces.

Both documents carry no unnecessary implementation details3. Intel 3 As it should be, those details are
trade secret.

documents are also great examples of how to write well requirement-

s/specifications, as explained in this chapter.

Other than the Intel documents, other documents will be introdu-

ced in the relevant chapters.

2
From hardware to software:

Layers of abstraction

This chapter gives an intuition on how hardware and software con-

nected together, and how software is represented physically.

2.1 The physical implementation of a bit

All electronic devices, from simple to complex, manipulate this flow to

achieve desired effects in the real world. Computers are no exception.

When we write software, we indirectly manipulate electrical current at

the physical level, in such a way that the underlying machine produces

desired effects. To understand the process, we consider a simple light

bulb. A light bulb can change two states between on and off with a

switch, periodically: an off means number 0, and an on means 1.

Figure 2.1.1: A lightbulb

However, one problem is that such a switch requires manual in-

tervention from a human. What is required is an automatic switch

based on the voltage level, as described above. To enable automatic

switching of electrical signals, a device called transistor, invented by

William Shockley, John Bardeen and Walter Brattain. This invention

started the whole computer industry.

12 operating system: from 0 to 1

At the core, a transistor is just a resistor whose values can vary transistor
based on an input voltage value

Figure 2.1.2: Modern transistor

1 32

. With this property, a transistor can be used as a current amplifier

(more voltage, less resistance) or switch electrical signals off and

on (block and unblock an electron flow) based on a voltage level.

At 0 v, no current can pass through a transistor, thus it acts like a

circuit with an open switch (light bulb off) because the resistor value

is enough to block the electrical flow. Similarly, at +3.5 v, current

can flow through a transistor because the resistor value is lessened,

effectively enables electron flow, thus acts like a circuit with a closed

switch. If you want a deeper expla-

nation of transistors e.g. how

electrons move, you should look

at the video “How semiconduc-

tors work” on Youtube, by Ben

Eater.

A bit has two states: 0 and 1, which is the building block of all

digital systems and software. Similar to a light bulb that can be

turned on and off, bits are made out of this electrical stream from the

power source: Bit 0 are represented with 0 v (no electron flow), and

bit 1 is +3.5 v to +5 v (electron flow). Transistor implements a bit

correctly, as it can regulate the electron flow based on voltage level.

2.1.1 MOSFET transistors

The classic transistors invented open a whole new world of micro di-

gital devices. Prior to the invention, vacuum tubes - which are just

fancier light bulbs - were used to present 0 and 1, and required human

to turn it on and off. MOSFET, or Metal–Oxide–Semiconductor MOSFET
Field-Effect Transistor, invented in 1959 by Dawon Kahng and Mar-

tin M. (John) Atalla at Bell Labs, is an improved version of classic

transistors that is more suitable for digital devices, as it requires shor-

ter switching time between two states 0 and 1, more stable, consumes

less power and easier to produce.

There are also two types of MOSFETs analogous to two types

of transistors: n-MOSFET and p-MOSFET. n-MOSFET and p-

MOSFET are also called NMOS and PMOS transistors for short.

2.2 Beyond transistors: digital logic gates

All digital devices are designed with logic gates. A logic gate is a logic gate

from hardware to software: layers of abstraction 13

device that implements a boolean function. Each logic gate includes

a number of inputs and an output. All computer operations are built

from the combinations of logic gates, which are just combinations of

boolean functions.

Figure 2.2.1: Example: NAND
gate

A
B

out
2.2.1 The theory behind logic gates

Logic gates accept only binary inputs1 and produce binary outputs. 1 Input that is either a 0 or 1.

In other words, logic gates are functions that transform binary va-

lues. Fortunately, a branch of math that deals exclusively with bi-

nary values already existed, called Boolean Algebra, developed in the

19thcentury by George Boole. With a sound mathematical theory as a

foundation logic gates were created. As logic gates implement Boolean

functions, a set of Boolean functions is functionally complete, if this functionally complete
set can construct all other Boolean functions can be constructed from.

Later, Charles Sanders Peirce (during 1880 – 1881) proved that either

Boolean function of NOR or NAND alone is enough to create all other

Boolean logic functions. Thus NOR and NAND gates are functionally

complete Peirce (1933). Gates are simply the implementations of

Boolean logic functions, therefore NAND or NOR gate is enough to

implement all other logic gates. The simplest gates CMOS circuit

can implement are inverters (NOT gates) and from the inverters, co-

mes NAND gates. With NAND gates, we are confident to implement

everything else. This is why the inventions of transistors, then CMOS

circuit revolutionized computer industry. If you want to understand

why and how from NAND

gate we can create all Bool-

ean functions and a computer,

I suggest the course Build a
Modern Computer from First
Principles: From Nand to Te-
tris available on Coursera:

https://www.coursera.org/

learn/build-a-computer. Go

even further, after the course,

you should take the series Com-
putational Structures on Edx.

We should realize and appreciate how powerful boolean functions

are available in all programming languages.

2.2.2 Logic Gate implementation: CMOS circuit

Underlying every logic gate is a circuit called CMOS - Complementary

CMOS

MOSFET. CMOS consists of two complementary transistors, NMOS
and PMOS. The simplest CMOS circuit is an inverter or a NOT gate:

https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer

14 operating system: from 0 to 1

(a) When input is low (b) When input is high

Figure 2.2.2: Electron flows of an
inverter. Input is on the left side
and output on the right side. The
upper component is a PMOS and
the lower component is a NMOS,
both connect to the input and out-
put. (Source: Created with http:
//www.falstad.com/circuit/)

From NOT gate, a NAND gate can be created:

(a) Input = 00, Ouput = 1 (b) Input = 01, Ouput = 1

(c) Input = 10, Output = 1 (d) Input = 11, Output = 0

Figure 2.2.3: Electron flows of a
NAND gate.

From NAND gate, we have all other gates. As demonstrated, such a

simple circuitry performs the logical operators in day-to-day program

languages e.g. NOT operator ~ is executed directly by an inverter

circuit, and operator & is executed by an AND circuit and so on. Code

does not run on magic a black box. In contrast, code execution is

precise and transparent, often as simple as running some hardwired

http://www.falstad.com/circuit/
http://www.falstad.com/circuit/

from hardware to software: layers of abstraction 15

circuit. When we write software, we simply manipulate electrical

current at the physical level to run appropriate circuits to produce

desired outcomes. However, this whole process somehow does not

relate to any thought involving electrical current. That is the real

magic and will be explained soon.

One interesting property of CMOS is that a k-input gate uses
k PMOS and k NMOS transistors (Wakerly, 1999). All logic

gates are built by pairs of NMOS and PMOS transistors, and gates

are the building blocks of all digital devices from simple to complex,

including any computer. Thanks to this pattern, it is possible to

separate between the actual physical circuit implementation and

logical implementation. Digital designs are done by designing with

logic gates then later be “compiled” into physical circuits. In fact,

later we will see that logic gates become a language that describes how

circuits operate. Understanding how CMOS works is important to

understand how a computer is designed, and as a consequence, how a

computer works2. 2 Again, if you want to understand
how logic gates make a computer,
consider the suggested courses on
Coursera and Edx earlier.

Finally, an implemented circuit with its wires and transistors is

stored physically in a package called a chip. A chip is a substrate that

an integrated circuit is etched onto. However, a chip also refers to a

completely packaged integrated circuit in consumer market. Depends

on the context, it is understood differently.

Figure 2.2.4: 74HC00 chip physi-
cal view

Example 2.2.1. 74HC00 is a chip with four 2-input NAND gates. The

chip comes with 8 input pins and 4 output pins, 1 pin for connecting

to a voltage source and 1 pin for connecting to the ground. This

device is the physical implementation of NAND gates that we can

physically touch and use. But instead of just a single gate, the chip

comes with 4 gates that can be combined. Each combination enables

a different logic function, effective creating other logic gates. This

feature is what make the chip popular.

Each of the gates above is just a simple NAND circuit with the

electron flows, as demonstrated earlier. Yet, many these NAND-gates

chips combined can build a simple computer. Software, at the physical

16 operating system: from 0 to 1

(a) Logic diagram of 74HC00 (b) Logic diagram of one NAND gate

Figure 2.2.5: 74HC00 logic dia-
grams (Source: 74HC00 datasheet,
http://www.nxp.com/documents/
data_sheet/74HC_HCT00.pdf)

level, is just electron flows.

A

A
Y

(a) NOT gate

A

B
Y

(b) AND gate

A

A

B

B

Y

(c) OR gate

A

A

B

B

Y

(d) NOR gate

Figure 2.2.6: Some logic gates
built from NAND gates. EAch
accepts 2 input signals and gene-
rate 1 output signal.

How can the above gates can be created with 74HC00? It is simple:

as every gate has 2 input pins and 1 output pin, we can write the

output of 1 NAND gate to an input of another NAND gate, thus

chaining NAND gates together to produce the diagrams as above.

2.3 Beyond Logic Gates: Machine Language

http://www.nxp.com/documents/data_sheet/74HC_HCT00.pdf
http://www.nxp.com/documents/data_sheet/74HC_HCT00.pdf

from hardware to software: layers of abstraction 17

2.3.1 Machine language

Being built upon gates, as gates only accept a series of 0 and 1, a har-

dware device only understands 0 and 1. However, a device only takes 0

and 1 in a systematic way. Machine language is a collection of unique Machine language
bit patterns that a device can identify and perform a corresponding

action. A machine instruction is a unique bit pattern that a device

can identify. In a computer system, a device with its language is called

CPU - Central Processing Unit, which controls all activities going

inside a computer. For example, in the x86 architecture, the pattern

10100000 means telling a CPU to add two numbers, or 000000101 to

halt a computer. In the early days of computers, people had to write

completely in binary.

Why does such a bit pattern cause a device to do something?

The reason is that underlying each instruction is a small circuit that

implements the instruction. Similar to how a function/subroutine in

a computer program is called by its name, a bit pattern is a name of

a little function inside a CPU that got executed when the CPU finds

one.

Note that CPU is not the only device with its language. CPU is

just a name to indicate a hardware device that controls a computer sy-

stem. A hardware device may not be a CPU but still has its language.

A device with its own machine language is a programmable device,
since a user can use the language to command the device to perform

different actions. For example, a printer has its set of commands for

instructing it how to prints a page.

Example 2.3.1. A user can use 74HC00 chip without knowing its

internal, but only the interface for using the device. First, we need to

know its layout:

18 operating system: from 0 to 1

1A
1B
1Y
2A
2B
2Y
GND

Vcc
4B
4A
4Y
3B
3A
3Y

1
2
3
4
5
6
7

14
13
12
11
10
9
8

Figure 2.3.1: 74HC00 Pin La-
yout (Source: 74HC00 datasheet,
http://www.nxp.com/documents/
data_sheet/74HC_HCT00.pdf)

Then, the functionality of each pin:

Symbol Pin Description
1A to 4A 1, 4, 9, 12 data input
1B to 4B 2, 5, 10, 13 data input
1Y to 4Y 3, 6, 8, 11 data output
GND 7 ground (0V)
Vcc 14 supply voltage

Table 2.3.1: Pin Description
(Source: 74HC00 datasheet,
http://www.nxp.com/documents/
data_sheet/74HC_HCT00.pdf)

Finally, how to use the pins:

Input Output
nA nB nY
L X H
X L H
H H L

Table 2.3.2: Functional Descrip-
tion

� n is a number, either 1, 2, 3,

or 4

� H = HIGH voltage level; L =

LOW voltage level; X = don’t

care.

The functional description provides a truth table with all possible

pin inputs and outputs, which also describes the usage of all pins in

the device. A user needs not to know the implementation, but on such

a table to use the device. We can say that the truth table above is

the machine language of the device. Since the device is digital, its

language is a collection of binary strings:

� The device has 8 input pins, and this means it accepts binary

strings of 8 bits.

� The device has 4 output pins, and this means it produces binary

strings of 4 bits from the 8-bit inputs.

The number of input strings is what the device understand, and the

number of output strings is what the device can speak. Together, they

http://www.nxp.com/documents/data_sheet/74HC_HCT00.pdf
http://www.nxp.com/documents/data_sheet/74HC_HCT00.pdf
http://www.nxp.com/documents/data_sheet/74HC_HCT00.pdf
http://www.nxp.com/documents/data_sheet/74HC_HCT00.pdf

from hardware to software: layers of abstraction 19

make the language of the device. Even though this device is simple,

yet the language it can accept contains quite many binary strings:

28 + 24 = 272. However, the number is a tiny fraction of a complex

device like a CPU, with hundreds of pins.

When leaving as is, 74HC00 is simply a NAND device with two

4-bit inputs3. 3 Or simply 4-bit NAND gate, as it
can only accept 4 bits of input at the
maximum.Input Output

Pin 1A 1B 2A 2B 3A 3B 4A 4B 1Y 2Y 3Y 4Y

Value 1 1 0 0 1 1 0 0 0 1 0 1

The inputs and outputs as visually presented:

1A
1B
1Y
2A
2B
2Y
GND

Vcc
4B
4A
4Y
3B
3A
3Y

1
1
0
0
0
1

0
0
1
1
1
0

Figure 2.3.2: Pins when receiving
digital signals that correspond to
a binary string. Green signals are
inputs; blue signals are outputs.

On the other hand, if OR gate is implemented, we can only build

a 2-input OR gate from 74HC00, as it requires 3 NAND gates: 2

input NAND gates and 1 output NAND gate. Each input NAND gate

represents only a 1-bit input of the OR gate. In the following figure,

the pins of each input NAND gates are always set to the same values

(either both inputs are A or both inputs are B) to represent a single

bit input for the final OR gate:

A B C D Y
0 0 1 1 0
0 1 1 0 1
1 0 0 1 1
1 1 0 0 1

Table 2.3.3: Truth table of OR
logic diagram.

20 operating system: from 0 to 1

A

B

Y

NAND2

NAND1

NAND3

C

D

(a) 2-bit OR gate logic diagram, built from 3 NAND
gates with 4 pins just for 2 bits of input.

1A
1B
1Y
2A
2B
2Y
GND

Vcc
4B
4A
4Y
3B
3A
3Y

A
A
C
B
B
D

C
D
Y

(b) Pin layout; pin 3A and 3B take the values from 1Y
and 2Y.

Figure 2.3.3: 2-bit OR gate
implementationTo implement a 4-bit OR gate, we need a total of four of 74HC00

chips configured as OR gates, packaged as a single chip as in figure

2.3.4.

1A
1B
1Y
2A
2B
2Y
GND

Vcc
4B
4A
4Y
3B
3A
3Y

A1
A2
C1
B1
B1
D1

C1
D1
Y1

1A
1B
1Y
2A
2B
2Y
GND

Vcc
4B
4A
4Y
3B
3A
3Y

A2
A2
C2
B2
B2
D2

C2
D2
Y2

1A
1B
1Y
2A
2B
2Y
GND

Vcc
4B
4A
4Y
3B
3A
3Y

A3
A3
C3
B3
B3
D3

C3
D3
Y3

1A
1B
1Y
2A
2B
2Y
GND

Vcc
4B
4A
4Y
3B
3A
3Y

A4
A4
C4
B4
B4
D4

C4
D4
Y4

Figure 2.3.4: 4-bit OR chip made
from four 74HC00 devices

2.3.2 Assembly Language

Assembly language is the symbolic representation of binary machine

code, by giving bit patterns mnemonic names. It was a vast impro-

from hardware to software: layers of abstraction 21

vement when programmers had to write 0 and 1. For example, instead

of writing 000000101, a programmer simply write hlt to stop a com-

puter. Such an abstraction makes instructions executed by a CPU

easier to remember, and thus more instructions could be memorized,

less time spent looking up CPU manual to find instructions in bit

forms and as a result, code was written faster.

Understand assembly language is crucial for low-level programming

domains, even to this day. The more instructions a programmer want

to understand, the deeper understanding of machine architecture is

required.

Example 2.3.2. We can build a device with 2 assembly instructions:

or <op1>, <op2>

nand <op1>, <op2>

� or accepts two 4-bit operands. This corresponds to a 4-input OR

gate device built from 4 74HC00 chips.

� nand accepts two 4-bit operands. This corresponds to a single

74HC00 chips, leave as is.

Essentially, the gates in the example 2.3.1 implements the instructi-

ons. Up to this point, we only specify input and output and manually

feed it to a device. That is, to perform an operation:

� Pick a device by hands.

� Manually put electrical signals into pins.

First, we want to automate the process of device selection. That

is, we want to simply write assembly instruction and the device that

implements the instruction is selected correctly. Solving this problem

is easy:

� Give each instruction an index in binary code, called operation code
or opcode for short, and embed it as part of input. The value for

each instruction is specified as in table 2.3.4.

Table 2.3.4: Instruction-Opcode
mapping.

Instruction Binary Code

nand 00

or 01
Each input now contains additional data at the beginning: an

opcode. For example, the instruction:

22 operating system: from 0 to 1

nand 1100, 1100

corresponds to the binary string: 0011001100. The first two bits 00

encodes a nand instruction, as listed in the table above.

� Add another device to select a device, based on a binary code

peculiar to an instruction.

Such a device is called a decoder, an important component in a

CPU that decides which circuit to use. In the above example, when

feeding 0011001100 to the decoder, because the opcode is 00, data are

sent to NAND device for computing.

Finally, writing assembly code is just an easier way to write binary

strings that a device can understand. When we write assembly code

and save in a text file, a program called an assembler translates the assembler
text file into binary strings that a device can understand. So, how can

an assembler exist in the first place? Assume this is the first assembler

in the world, then it is written in binary code. In the next version,

life is easier: the programmers write the assembler in the assembly

code, then use the first version to compile itself. These binary strings

are then stored in another device that later can be retrieved and

sent to a decoder. A storage device is the device that stores machine storage device
instructions, which is an array of circuits for saving 0 and 1 states.

A decoder is built out of logic gates similar to other digital devices.

However, a storage device can be anything that can store 0 and 1 and

is retrievable. A storage device can be a magnetized device that uses

magnetism to store information, or it can be made out of electrical

circuits using. Regardless of the technology used, as long as the device

can store data and is accessible to retrieve data, it suffices. Indeed, the

modern devices are so complex that it is impossible and unnecessary

to understand every implementation detail. Instead, we only need to

learn the interfaces, e.g. the pins, that the devices expose.

from hardware to software: layers of abstraction 23

1A
1B
1Y
2A
2B
2Y
GND

Vcc
4B
4A
4Y
3B
3A
3Y

A1
A2
C1
B1
B1
D1

C1
D1
Y1

1A
1B
1Y
2A
2B
2Y
GND

Vcc
4B
4A
4Y
3B
3A
3Y

A2
A2
C2
B2
B2
D2

C2
D2
Y2

1A
1B
1Y
2A
2B
2Y
GND

Vcc
4B
4A
4Y
3B
3A
3Y

A3
A3
C3
B3
B3
D3

C3
D3
Y3

1A
1B
1Y
2A
2B
2Y
GND

Vcc
4B
4A
4Y
3B
3A
3Y

A4
A4
C4
B4
B4
D4

C4
D4
Y4

1A
1B
1Y
2A
2B
2Y
GND

Vcc
4B
4A
4Y
3B
3A
3Y

1
1
0
0
0
1

0
0
1
1
1
0

4-bit NAND

4-bit OR

Decoder

send data

Storage

0011001100
0111111111
0111101100
0010101110
....................
....................
....................

retrieve data

current instruction

Figure 2.3.5: A decoder retrieves
the current instruction pointed
by the arrow and selects the
NAND device to execute the nand
instruction.

A computer essentially implements this process:

� Fetch an instruction from a storage device.

� Decode the instruction.

� Execute the instruction.

Or in short, a fetch – decode – execute cycle. The above device is

extremely rudimentary, but it already represents a computer with a fe-
tch – decode – execute cycle. More instructions can be implemented by

adding more devices and allocating more opcodes for the instructions,

then update the decoder accordingly. The Apollo Guidance Computer,

a digital computer produced for the Apollo space program from 1961 –

1972, was built entirely with NOR gates - the other choice to NAND

24 operating system: from 0 to 1

gate for creating other logic gates. Similarly, if we keep improving our

hypothetical device, it eventually becomes a full-fledge computer.

2.3.3 Programming Languages

Assembly language is a step up from writing 0 and 1. As time goes

by, people realized that many pieces of assembly code had repeating

patterns of usages. It would be nice if instead of writing all the repea-

ting blocks of code all over again in all places, we simply refer to such

blocks of code with easier to use text forms. For example, a block of

assembly code checks whether one variable is greater than another and

if so, execute a block of code, else execute another block of code; in C,

such block of assembly code is represented by an if statement that is

close to human language.

.................

.................

.................

source2.asm

source1.asm

source<n>.asm

if (...) {

} else {

}

Figure 2.3.6: Repeated assembly
patterns are generalized into a new
language.

People created text forms to represent common blocks of assembly

code, such as the if syntax above, then write a program to translate

the text forms into assembly code. The program that translates such

text forms to machine code is called a compiler : compiler

from hardware to software: layers of abstraction 25

if (argc) {
 i = 1;
} else {
 i = 0;
}

Compiler

cmp DWORD PTR [ebp+0x8],0x0
je 80483f7 <main+0x1c>
mov DWORD PTR [ebp-0x4],0x1
jmp 80483fe <main+0x23>
mov DWORD PTR [ebp-0x4],0x0

Figure 2.3.7: From high-level lan-
guage back to low-level language.

Any software logic a programming language can implement, har-

dware can also implement. The reverse is also true: any hardware

logic that is implemented in a circuit can be reimplemented in a pro-

gramming language. The simple reason is that programming langua-

ges, or assembly languages, or machine languages, or logic gates are

just languages to express computations. It is impossible for software to

implement something hardware is incapable of because programming

language is just a simpler way to use the underlying hardware. At

the end of the day, programming languages are translated to machine

instructions that are valid to a CPU. Otherwise, code is not runnable,

thus a useless software. In reverse, software can do everything har-

dware (that run the software) can, as programming languages are just

an easier way to use the hardware.

In reality, even though all languages are equivalent in power, not all

of them are capable of express programs of each other. Programming

languages vary between two ends of a spectrum: high level and low

level.

The higher level a programming language is, the distant it beco-

mes with hardware. In some high-level programming languages, such

as Python, a programmer cannot manipulate underlying hardware,

despite being able to deliver the same computations as low-level pro-

gramming languages. The reason is that high-level languages want to

hide hardware details to free programmers from dealing with irrelevant

details not related to current problem domains. Such convenience,

however, is not free: it requires software to carry an extra code for

managing hardware details (e.g. memory) thus making the code run

slower, and it makes hardware programming difficult or impossible.

The more abstractions a programming language imposes, the more

26 operating system: from 0 to 1

difficult it is for writing low-level software, such as hardware drivers or

an operating system. This is the reason why C is usually a language of

choice for writing an operating system, since C is just a thin wrapper

of the underlying hardware, making it easy to understand how exactly

a hardware device runs when executing a certain piece of C code.

Each programming language represents a way of thinking about pro-

grams. Higher-level programming languages help to focus on problem

domains that are not related to hardware at all, and where program-

mer performance is more important than computer performance.

Lower-level programming languages help to focus on the inner-working

of a machine, thus are best suited for problem domains that are rela-

ted to control hardware. That is why so many languages exist. Use

the right tools for the right job to achieve the best results.

2.4 Abstraction

Abstraction is a technique for hiding complexity that is irrelevant to

the problem in context. For example, writing programs without any

other layer except the lowest layer: with circuits. Not only a person

needs an in-depth understanding of how circuits work, making it much

more obscure to design a circuit because the designer must look at

the raw circuits but think in higher-level such as logic gates. It is a

distracting process, as a designer must constantly translate the idea

into circuits. It is possible for a designer simply thinks his high-level

ideas straight, and later translate the ideas into circuits. Not only it is

more efficient, but it is also more accurate as a designer can focus all

his efforts into verifying the design with high-level thinking. When a

new designer arrives, he can easily understand the high-level designs,

thus can continue to develop or maintain existing systems.

2.4.1 Why abstraction works

In all the layers, abstractions manifest itself:

� Logic gates abstract away the details of CMOS.

� Machine language abstracts away the details of logic gates.

from hardware to software: layers of abstraction 27

� Assembly language abstracts away the details of machine languages.

� Programming language abstracts away the details of assembly

languages.

We see repeating patterns of how lower-layers build upper-layers:

� A lower layer has a recurring pattern. Then, this recurring pattern

is taken out and built a language on top of it.

� A higher layer strips away layer-specific (non-recurring) details to

focus on the recurring details.

� The recurring details are given a new and simpler language than

the languages of the lower layers.

What to realize is that every layer is just a more convenient language
to describe the lower layer. Only after a description is fully created

with the language of the higher layer, it is then be implemented with

the language of the lower layer.

� CMOS layer has a recurring pattern that makes sure logic gates

are reliably translated to CMOS circuits: a k-input gate uses k
PMOS and k NMOS transistors (Wakerly, 1999). Since digital

devices use CMOS exclusively, a language arose to describe higher

level ideas while hiding CMOS circuits: Logic Gates.

� Logic Gates hides the language of circuits and focuses on how to

implement primitive Boolean functions and combine them to create

new functions. All logic gates receive input and generate output

as binary numbers. Thanks to this recurring patterns, logic gates

are hidden away for the new language: Assembly, which is a set

of predefined binary patterns that cause the underlying gates to

perform an action.

� Soon, people realized that many recurring patterns arisen from

within Assembly language. Repeated blocks of Assembly code ap-

pear in Assembly source files that express the same or similar idea.

There were many such ideas that can be reliably translated into

Assembly code. Thus, the ideas were extracted for building into the

28 operating system: from 0 to 1

high level programming languages that everyone programmer learns

today.

Recurring patterns are the key to abstraction. Recurring patterns

are why abstraction works. Without them, no language can be built,

and thus no abstraction. Fortunately, human already developed a

systematic discipline for studying patterns: Mathematics. As quoted

from the British mathematician G. H. Hardy (2005):

A mathematician, like a painter or a poet, is a maker of patterns. If
his patterns are more permanent than theirs, it is because they are
made with ideas.

Isn’t that a mathematical formula a representation of a pattern? A va-

riable represents values with the same properties given by constraints?

Mathematics provides a formal system to identify and describe exis-

ting patterns in nature. For that reason, this system can certainly be

applied in the digital world, which is just a subset of the real world.

Mathematics can be used as a common language to help translation

between layers easier, and help with the understanding of layers.

Assembly Language

Logic Gates

Circuit

Mathematics Problem Domain

Programming Language

Figure 2.4.1: Mathematics as a
universal language for all layers.
Since all layers can express mat-
hematics with their technologies,
each layer can be translated into
another layer.

2.4.2 Why abstraction reduces complexity

Abstraction by building language certainly leverages productivity by

stripping irrelevant details to a problem. Imagine writing programs

without any other layout except the lowest layer: with circuits. This

is how complexity emerges: when high-level ideas are expressed with

lower-level language, as the example above demonstrated. Unfortuna-

tely, this is the case with software as programming languages at the

from hardware to software: layers of abstraction 29

moment are more emphasized on software rather than the problem

domains. That is, without prior knowledge, code written in a language

is unable to express itself the knowledge of its target domain. In other

words, a language is expressive if its syntax is designed to express the
problem domain it is trying to solve. Consider this example: That is,

the what it will do rather the how it will do.

Example 2.4.1. Graphviz (http://www.graphviz.org/) is a visua-

lization software that provides a language, called dot, for describing

graph:

digraph {
 a -> b;
 b -> c;
 a -> c;
 d -> c;
}

a

b

c

d

Figure 2.4.2: From graph descrip-
tion to graph.As can be seen, the code perfectly expresses itself how the graph

is connected. Even a non-programmer can understand and use such

language easily. If it were to implement in C, it would be more trou-

blesome, and this is assuming that the functions for drawing graphs

are already available. To draw a line, in C we might write something

like:

draw_line(a, b);

However, it is still verbose compared with:

a -> b;

http://www.graphviz.org/

30 operating system: from 0 to 1

Also, a and b must be defined in C, compared to the implicit nodes

in the dot language. However, if we do not factor in the verbosity,

then C still has a limitation: it cannot change its syntax to suit the

problem domain. A domain-specific language might even be more

verbose, but it makes a domain more understandable. If a problem

domain must be expressed in C, then it is constraint by the syntax of

C. Since C is not a specialized language for a problem domain that,

but is a general-purpose programming language, the domain knowledge

is buried within the implementation details. As a result, a C program-

mer is needed to decipher and extract the domain knowledge out. If

the domain knowledge cannot be extracted, then the software cannot

be further developed.

Example 2.4.2. Linux is full of applications controlled by many

domain-specific languages and are placed in /etc directory, such as a

web server. Instead of reprogramming the software, a domain-agnostic

language is made for it.

In general, code that can express a problem domain must be un-

derstandable by a domain expert. Even within the software domain,

building a language out of repeated programming patterns is useful.

It helps people aware the existence of such patterns in code and thus

making software easier to maintain, as software structure is visible as a

language. Only a programming language that is capable of morphing

itself to suit a problem domain can achieve that goal. Such language

is called a programmable programming language. Unfortunately, this

approach of turning software structure visible is not favored among

programmers, as a new language must be made out of it along with

new toolchain to support it. Thus, software structure and domain

knowledge are buried within code written in the syntax of a general-

purpose language, and if a programmer is not familiar or even aware

of the existence of a code pattern, then it is hopeless to understand

the code. A prime example is reading C code that controls hardware,

e.g. an operating system: if a programmer knows absolutely nothing

from hardware to software: layers of abstraction 31

about hardware, then it is impossible to read and write operating

system code in C, even if he could have 20 years of writing application

C code.

With abstraction, a software engineer can also understand the inner-

working of a device without specialized knowledge of physical circuit

design, enables the software engineer to write code that controls a

device. The separation between logical and physical implementation

also entails that gate designs can be reused even when the underlying

technologies changed. For example, in some distant future biological

computer could be a reality, and gates might not be implemented as

CMOS but some kind of biological cells e.g. as living cells; in either

technology: electrical or biological, as long as logic gates are physically

realized, the same computer design could be implemented.

3
Computer Architecture

To write lower level code, a programmer must understand the archi-

tecture of a computer. It is similar to when one writes programs in a

software framework, he must know what kinds of problems the frame-

work solves, and how to use the framework by its provided software

interfaces. But before getting to the definition of what computer archi-

tecture is, we must understand what exactly is a computer, as many

people still think that a computer is a regular computer we put on a

desk, or at best, a server. Computers come in various shapes and sizes

and are devices that people never imagine they are computers, and

that code can run on such devices.

3.1 What is a computer?

A computer is a hardware device that consists of at least a proces- computer
sor (CPU), a memory device and input/output interfaces. All the

computers can be grouped into two types:

Single-purpose computer is a computer built at the hardware level for
specific tasks. For example, dedicated application encoders/deco-

ders , timer, image/video/sound processors.

General-purpose computer is a computer that can be programmed

34 operating system: from 0 to 1

(without modifying its hardware) to emulate various features of

single-purpose computers.

3.1.1 Server

A server is a general-purpose high-performance computer with huge server
resources to provide large-scale services for a broad audience. The

audience are people with their personal computer connected to a

server.

Figure 3.1.1: Blade servers.
Each blade server is a computer
with a modular design optimize
for the use of physical space and
energy. The enclosure of blade
servers is called a chassis.(Source:
Wikimedia, author: Victorgrigas)

3.1.2 Desktop Computer

A desktop computer is a general-purpose computer with an input and desktop computer
output system designed for a human user, with moderate resources

enough for regular use. The input system usually includes a mouse

and a keyboard, while the output system usually consists of a monitor

that can display a large mount of pixels. The computer is enclosed in

a chassis large enough for putting various computer components such

as a processor, a motherboard, a power supply, a hard drive, etc.

3.1.3 Mobile Computer

A mobile computer is similar to a desktop computer with fewer resour- mobile computer
ces but can be carried around.

https://commons.wikimedia.org/wiki/File:Wikimedia_Foundation_Servers-8055_35.jpg

computer architecture 35

Figure 3.1.2: A typical desktop
computer.

(a) A laptop (b) A tablet (c) A
mobile
phone

Figure 3.1.3: Mobile computers

3.1.4 Game Consoles

Game consoles are similar to desktop computers but are optimized

for gaming. Instead of a keyboard and a mouse, the input system

of a game console are game controllers, which is a device with a few

buttons for controlling on-screen objects; the output system is a

television. The chassis is similar to a desktop computer but is smaller.

Game consoles use custom processors and graphic processors but are

similar to ones in desktop computers. For example, the first Xbox uses

a custom Intel Pentium III processor.

(a) A Play Station 4 (b) A Xbox One (c) A Wii U

Figure 3.1.4: Current-gen Game
ConsolesHandheld game consoles are similar to game consoles, but incorpo-

36 operating system: from 0 to 1

rate both the input and output systems along with the computer in a

single package.

(a) A Nintendo DS (b) A PS Vita

Figure 3.1.5: Some Handheld
Consoles

3.1.5 Embedded Computer

An embedded computer is a single-board or single-chip computer with embedded computer
limited resources designed for integrating into larger hardware devices.

Figure 3.1.6: An Intel 82815
Graphics and Memory Controller
Hub embedded on a PC motherbo-
ard. (Source: Wikimedia, author:
Qurren)

Figure 3.1.7: A PIC microcon-
troller. (Soure: Microchip)

A microcontroller is an embedded computer designed for controlling

microcontroller

other hardware devices. A microcontroller is mounted on a chip.

Microcontrollers are general-purpose computers, but with limited

resources so that it is only able to perform one or a few specialized

tasks. These computers are used for a single purpose, but they are

still general-purpose since it is possible to program them to perform

different tasks, depends on the requirements, without changing the

underlying hardware.

Another type of embedded computer is system-on-chip. A system-
on-chip is a full computer on a single chip. Though a microcontroller

is housed on a chip, its purpose is different: to control some hardware.

A microcontroller is usually simpler and more limited in hardware

resources as it specializes only in one purpose when running, whereas a

system-on-chip is a general-purpose computer that can serve multiple

purposes. A system-on-chip can run like a regular desktop compu-

ter that is capable of loading an operating system and run various

applications. A system-on-chip typically presents in a smartphone,

such as Apple A5 SoC used in Ipad2 and iPhone 4S, or Qualcomm

Snapdragon used in many Android phones.
Figure 3.1.8: Apple A5 SoC

Be it a microcontroller or a system-on-chip, there must be an en-

vironment where these devices can connect to other devices. This

environment is a circuit board called a PCB – Printed C ircuit Board.

https://commons.wikimedia.org/wiki/File:Intel_82815_GMCH.jpg
http://www.microchip.com/wwwproducts/en/PIC18F4620

computer architecture 37

A printed circuit board is a physical board that contains lines and pads

to enable electron flows between electrical and electronics components.

Without a PCB, devices cannot be combined to create a larger de-

vice. As long as these devices are hidden inside a larger device and

contribute to a larger device that operates at a higher level layer for a

higher level purpose, they are embedded devices. Writing a program

for an embedded device is therefore called embedded programming.
Embedded computers are used in automatically controlled devices in-

cluding power tools, toys, implantable medical devices, office machines,

engine control systems, appliances, remote controls and other types of

embedded systems.

3
.
5
m
m
o
u
t

C
o
m
p
o
s
i
t
e

V
i
d
e
o
+
a
u
d
i
o

Raspberry Pi Model B+ V1.2
(C)Raspberry Pi 2014

Ethernet
RJ45

2x USB 2.0

HDMI

Micro

USB
Power in

CPU/GPU
Broadcom
BCM2835
512MB SDRAM

C
a
m

e
ra

C
S
I

D
is

p
la

y
D

S
I Ethernet

controller

LAN9514

4x USB +

S
t
a
t
u
s
L
E
D
'
s

A
C
T

PW
R

2x USB 2.0

Ethernet

m
i
c
r
o
S
D

s
l
o
t

40pins: 28x GPIO, I2C, SPI, UART

Regulator polarity protection

current
3.3V
&

1.8V

1

4 poles

HDMI out

jack

R
U
N

o
n
b
o
t
t
o
m

s
i
d
e

limiter

power
good

(a) Functional View.
The SoC is a Broadcom BCM2835.
The microcontroller is the Ethernet Controller LAN9514.
(Source: Wikimedia, author: Efa2)

(b) Physical
View

Figure 3.1.9: Raspberry Pi B+
Rev 1.2, a single-board computer
that includes both a system-on-
chip and a microcontroller.

The line between a microcontroller and a system-on-chip is blurry.

If hardware keeps evolving more powerful, then a microcontroller

can get enough resources to run a minimal operating system on it

for multiple specialized purposes. In contrast, a system-on-chip is

powerful enough to handle the job of a microcontroller. However,

using a system-on-chip as a microcontroller would not be a wise

choice as price will rise significantly, but we also waste hardware

resources since the software written for a microcontroller requires little

computing resources.

https://commons.wikimedia.org/wiki/File:Raspberry_Pi_B%2B_rev_1.2.svg

38 operating system: from 0 to 1

3.1.6 Field Gate Programmable Array

Field Programmable Gate Array (FPGA) is a hardware an array of Field Programmable Gate
Arrayreconfigurable gates that makes circuit structure programmable after

it is shipped away from the factory1. Recall that in the previous 1 This is why it is called Field Gate
Programmable Array. It is changeable
“in the field” where it is applied.chapter, each 74HC00 chip can be configured as a gate, and a more

sophisticated device can be built by combining multiple 74HC00

chips. In a similar manner, each FPGA device contains thousands

of chips called logic blocks, which is a more complicated chip than a

74HC00 chip that can be configured to implement a Boolean logic

function. These logic blocks can be chained together to create a high-

level hardware feature. This high-level feature is usually a dedicated

algorithm that needs high-speed processing.

Figure 3.1.10: FPGA Archi-
tecture (Source: National Instru-
ments)

Digital devices can be designed by combining logic gates, without

regarding actual circuit components, since the physical circuits are

just multiples of CMOS circuits. Digital hardware, including various

components in a computer, is designed by writing code, like a regular

programmer, by using a language to describe how gates are wired

together. This language is called a Hardware Description Language.
Later the hardware description is compiled to a description of con-

nected electronic components called a netlist, which is a more detailed

description of how gates are connected.

The difference between FPGA and other embedded computers

is that programs in FPGA are implemented at the digital logic le-

vel, while programs in embedded computers like microcontrollers or

system-on-chip devices are implemented at assembly code level. An

algorithm written for a FPGA device is a description of the algorithm

http://www.ni.com/tutorial/6097/en/
http://www.ni.com/tutorial/6097/en/

computer architecture 39

in logic gates, which the FPGA device then follows the description to

configure itself to run the algorithm. An algorithm written for a micro-

controller is in assembly instructions that a processor can understand

and act accordingly.

FPGA is applied in the cases where the specialized operations are

unsuitable and costly to run on a regular computer such as real-time

medical image processing, cruise control system, circuit prototyping,

video encoding/decoding, etc. These applications require high-speed

processing that is not achievable with a regular processor because

a processor wastes a significant amount of time in executing many

non-specialized instructions - which might add up to thousands of

instructions or more - to implement a specialized operation, thus more

circuits at physical level to carry the same operation. A FPGA device

carries no such overhead; instead, it runs a single specialized operation

implemented in hardware directly.

3.1.7 Application-Specific Integrated Circuit

An Application-Specific Integrated C ircuit (or ASIC) is a chip de-

signed for a particular purpose rather than for general-purpose use.

ASIC does not contain a generic array of logic blocks that can be

reconfigured to adapt to any operation like an FPGA; instead, every

logic block in an ASIC is made and optimized for the circuit itself.

FPGA can be considered as the prototyping stage of an ASIC, and

ASIC as the final stage of circuit production. ASIC is even more

specialized than FPGA, so it can achieve even higher performance.

However, ASICs are very costly to manufacture and once the circuits

are made, if design errors happen, everything is thrown away, unlike

the FPGA devices which can simply be reprogrammed because of the

generic gate array.

3.2 Computer Architecture

The previous section examined various classes of computers. Regard-

less of shapes and sizes, every computer is designed for an architect

from high level to low level.

40 operating system: from 0 to 1

Computer Architecture = Instruction Set Architecture+Computer Organization+Hardware

At the highest-level is the Instruction Set Architecture.

At the middle-level is the Computer Organization.

At the lowest-level is the Hardware.

3.2.1 Instruction Set Architecture

An instruction set is the basic set of commands and instructions that

a microprocessor understands and can carry out.

An Instruction Set Architecture, or ISA, is the design of an en-

vironment that implements an instruction set. Essentially, a runtime

environment similar to those interpreters of high-level languages. The

design includes all the instructions, registers, interrupts, memory mo-

dels (how memory are arranged to be used by programs), addressing

modes, I/O... of a CPU. The more features (e.g. more instructions) a

CPU has, the more circuits are required to implement it.

3.2.2 Computer organization

Computer organization is the functional view of the design of a compu- Computer organization
ter. In this view, hardware components of a computer are presented

as boxes with input and output that connects to each other and form

the design of a computer. Two computers may have the same ISA, but

different organizations. For example, both AMD and Intel processors

implement x86 ISA, but the hardware components of each processor

that make up the environments for the ISA are not the same.

Computer organizations may vary depend on a manufacturer’s de-

sign, but they are all originated from the Von Neumann architecture2: 2 John von Neumann was a mathema-
tician and physicist who invented a
computer architecture.CPU fetches instructions continuously from main memory and exe-

cute.

Memory stores program code and data.

Bus are electrical wires for sending raw bits between the above compo-

nents.

computer architecture 41

Memory Input and
Output

Control bus

Address bus

Data bus S
ys

te
m

 b
u
s

CPU Figure 3.2.1: Von-Neumann
Architecture

I/O Devices are devices that give input to a computer i.e. keyboard,

mouse, sensor... and takes the output from a computer i.e. monitor

takes information sent from CPU to display it, LED turns on/off

according to a pattern computed by CPU...

The Von-Neumann computer operates by storing its instructions in

main memory, and CPU repeatedly fetches those instructions into its

internal storage for executing, one after another. Data are transferred

through a data bus between CPU, memory and I/O devices, and

where to store in the devices is transferred through the address bus by

the CPU. This architecture completely implements the fetch – decode –
execute cycle.

The earlier computers were just the exact implementations of the

Von Neumann architecture, with CPU and memory and I/O devices

communicate through the same bus. Today, a computer has more

buses, each is specialized in a type of traffic. However, at the core,

they are still Von Neumann architecture. To write an OS for a Von

Neumann computer, a programmer needs to be able to understand

and write code that controls the cores components: CPU, memory,

I/O devices, and bus.

CPU , or Central Processing Unit, is the heart and brain of any

computer system. Understand a CPU is essential to writing an OS

from scratch:

42 operating system: from 0 to 1

� To use these devices, a programmer needs to controls the CPU to

use the programming interfaces of other devices. CPU is the only

way, as CPU is the only direct device a programmer can use and

the only device that understand code written by a programmer.

� In a CPU, many OS concepts are already implemented directly in

hardware, e.g. task switching, paging. A kernel programmer needs

to know how to use the hardware features, to avoid duplicating such

concept in software, thus wasting computer resources.

� CPU built-in OS features boost both OS performance and develo-

per productivity because those features are actual hardware, the

lowest possible level, and developers are free to implement such

features.

� To effectively use the CPU, a programmer needs to understand the

documentation provided from CPU manufacturer. For example,

Intel® 64 and IA-32 Architectures Software Developer Manuals.

� After understanding one CPU architecture well, it is easier to learn

other CPU architectures.

A CPU is an implementation of an ISA, effective the implementation

of an assembly language (and depends on the CPU architecture, the

language may vary). Assembly language is one of the interfaces that

are provided for software engineers to control a CPU, thus control

a computer. But how can every computer device be controlled with

only the access to the CPU? The simple answer is that a CPU can

communicate with other devices through these two interfaces, thus

commanding them what to do:

Registers are a hardware component for high-speed data access and Registers
communication with other hardware devices. Registers allow soft-

ware to control hardware directly by writing to registers of a device,

or receive information from hardware device when reading from

registers of a device.

Not all registers are used for communication with other devices. In

a CPU, most registers are used as high-speed storage for temporary

[http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

computer architecture 43

data. Other devices that a CPU can communicate always have a set

of registers for interfacing with the CPU.

Port is a specialized register in a hardware device used for commu- Port
nication with other devices. When data are written to a port, it

causes a hardware device to perform some operation according to

values written to the port. The different between a port and a regis-

ter is that port does not store data, but delegate data to some other

circuit.

These two interfaces are extremely important, as they are the only

interfaces for controlling hardware with software. Writing device

drivers is essentially learning the functionality of each register and how

to use them properly to control the device.

Memory is a storage device that stores information. Memory con- Memory
sists of many cells. Each cell is a byte with its address number, so a

CPU can use such address number to access an exact location in me-

mory. Memory is where software instructions (in the form of machine

language) is stored and retrieved to be executed by CPU; memory

also stores data needed by some software. Memory in a Von Neumann

machine does not distinguish between which bytes are data and which

bytes are software instructions. It’s up to the software to decide, and

if somehow data bytes are fetched and executed as instructions, CPU

still does it if such bytes represents valid instructions, but will produce

undesirable results. To a CPU, there’s no code and data; both are

merely different types of data for it to act on: one tells it how to do

something in a specific manner, and one is necessary materials for it to

carry such action.

The RAM is controlled by a device called a memory controller.
Currently, most processors have this device embedded, so the CPU

has a dedicated memory bus connecting the processor to the RAM.

On older CPU3, however, this device was located in a chip also known 3 Prior to the CPU’s produced in 2009

as MCH or Memory Controller Hub. In this case, the CPU does

not communicate directly to the RAM, but to the MCH chip, and

this chip then accesses the memory to read or write data. The first

option provides better performance since there is no middleman in the

44 operating system: from 0 to 1

communications between the CPU and the memory.

CPU

Memory
Control

Address

Data

System Bus

MCH

(a) Old CPU

CPU Memory
Control

Address

Data

System Bus

MCH

(b) Modern CPU

Figure 3.2.2: CPU - Memory
CommunicationAt the physical level, RAM is implemented as a grid of cells that

each contain a transistor and an electrical device called a capacitor , capacitor
which stores charge for short periods of time. The transistor controls

access to the capacitor; when switched on, it allows a small charge

to be read from or written to the capacitor. The charge on the ca-

pacitor slowly dissipates, requiring the inclusion of a refresh circuit

to periodically read values from the cells and write them back after

amplification from an external power source.

Bus is a subsystem that transfers data between computer compo- Bus
nents or between computers. Physically, buses are just electrical wires

that connect all components together and each wire transfer a single

big of data. The total number of wires is called bus width, and is de- bus width
pendent on how many wires a CPU can support. If a CPU can only

accept 16 bits at a time, then the bus has 16 wires connecting from a

component to the CPU, which means the CPU can only retrieve 16

bits of data a time.

3.2.3 Hardware

Hardware is a specific implementation of a computer. A line of proces-

sors implement the same instruction set architecture and use nearly

identical organizations but differ in hardware implementation. For

example, the Core i7 family provides a model for desktop computers

that is more powerful but consumes more energy, while another model

computer architecture 45

for laptops is less performant but more energy efficient. To write soft-

ware for a hardware device, seldom we need to understand a hardware

implementation if documents are available. Computer organization

and especially the instruction set architecture are more relevant to an

operating system programmer. For that reason, the next chapter is

devoted to study the x86 instruction set architecture in depth.

3.3 x86 architecture

A chipset is a chip with multiple functions. Historically, a chipset is ac-

tually a set of individual chips, and each is responsible for a function,

e.g. memory controller, graphic controllers, network controller, power

controller, etc. As hardware progressed, the set of chips were incorpo-

rated into a single chip, thus more space, energy, and cost efficient. In

a desktop computer, various hardware devices are connected to each

other through a PCB called a motherboard. Each CPU needs a compa-

tible motherboard that can host it. Each motherboard is defined by its

chipset model that determine the environment that a CPU can control.

This environment typically consists of

� a slot or more for CPU

� a chipset of two chips which are the Northbridge and Southbridge

chips

– Northbridge chip is responsible for the high-performance commu-

nication between CPU, main memory and the graphic card.

– Southbridge chip is responsible for the communication with I/O

devices and other devices that are not performance sensitive.

� slots for memory sticks

� a slot or more for graphic cards.

� generic slots for other devices, e.g. network card, sound card.

� ports for I/O devices, e.g. keyboard, mouse, USB.

46 operating system: from 0 to 1

CPU

Flash ROM
(BIOS)

Super I/O
Serial Port

Parallel Port
Floppy Disk

Keyboard
Mouse

Northbridge

(memory
controller hub)

Southbridge
(I/O controller

hub)
IDE

SATA
USB

Ethernet
Audio Codec

CMOS Memory

Clock
GeneratorGraphics

card slot

High-speed

graphics bus

(AGP or PCI

Express)

Chipset

Front-side

bus

Memory
bus

Memory Slots

PCI

Bus

PCI Slots

LPC

Bus

Internal

Bus

Cables and

ports leading

off-board

Figure 3.3.1: Motherboard
organization.

computer architecture 47

To write a complete operating system, a programmer needs to

understand how to program these devices. After all, an operating

system manages hardware automatically to free application programs

doing so. However, of all the components, learning to program the

CPU is the most important, as it is the component present in any

computer, regardless of what type a computer is. For this reason,

the primary focus of this book will be on how to program an x86

CPU. Even solely focused on this device, a reasonably good minimal

operating system can be written. The reason is that not all computers

include all the devices as in a normal desktop computer. For example,

an embedded computer might only have a CPU and limited internal

memory, with pins for getting input and producing an output; yet,

operating systems were written for such devices.

However, learning how to program an x86 CPU is a daunting task,

with 3 primary manuals written for it: almost 500 pages for volume

1, over 2000 pages for volume 2 and over 1000 pages for volume 3. It

is an impressive feat for a programmer to master every aspect of x86

CPU programming.

3.4 Intel Q35 Chipset

Q35 is an Intel chipset released September 2007. Q35 is used as an

example of a high-level computer organization because later we will

use QEMU to emulate a Q35 system, which is latest Intel system

that QEMU can emulate. Though released in 2007, Q35 is relatively

modern to the current hardware, and the knowledge can still be reused

for current chipset model. With a Q35 chipset, the emulated CPU is

also relatively up-to-date with features presented in current day CPUs

so we can use the latest software manuals from Intel.

Figure 3.3.1 on the facing page is a typical current-day motherbo-

ard organization, in which Q35 shares similar organization.

48 operating system: from 0 to 1

3.5 x86 Execution Environment

An execution environment is an environment that provides the facility

to make code executable. The execution environment needs to address

the following question:

� Supported operations? data transfer, arithmetic, control,

floating-point...

� Where are operands stored? registers, memory, stack,

accumulator

� How many explicit operands are there for each

instruction? 0, 1, 2, or 3

� How is the operand location specified? register, immedi-

ate, indirect, . . .

� What type and size of operands are supported? byte,

int, float, double, string, vector...

� etc.

For the remain of this chapter, please carry on the reading to chapter

3 in Intel Manual Volume 1, “Basic Execution Environment” .

4
x86 Assembly and C

In this chapter, we will explore assembly language, and how it con-

nects to C. But why should we do so? Isn’t it better to trust the

compiler, plus no one writes assembly anymore?

Not quite. Surely, the compiler at its current state of the art is

trustworthy, and we do not need to write code in assembly, most of the
time. A compiler can generate code, but as mentioned previously, a

high-level language is a collection of patterns of a lower-level language.

It does not cover everything that a hardware platform provides. As

a consequence, not every assembly instruction can be generated by

a compiler, so we still need to write assembly code for these circum-

stances to access hardware-specific features. Since hardware-specific

features require writing assembly code, debugging requires reading it.

We might spend even more time reading than writing. Working with

low-level code that interacts directly with hardware, assembly code

is unavoidable. Also, understand how a compiler generates assembly

code could improve a programmer’s productivity. For example, if a

job or school assignment requires us to write assembly code, we can

simply write it in C, then let gcc does the hard working of writing the

assembly code for us. We merely collect the generated assembly code,

modify as needed and be done with the assignment.

We will learn objdump extensively, along with how to use Intel

50 operating system: from 0 to 1

documents to aid in understanding x86 assembly code.

4.1 objdump

objdump is a program that displays information about object files. It

will be handy later to debug incorrect layout from manual linking.

Now, we use objdump to examine how high level source code maps to

assembly code. For now, we ignore the output and learn how to use

the command first. It is simple to use objdump :

$ objdump -d hello

-d option only displays assembled contents of executable sections. A

section is a block of memory that contains either program code or

data. A code section is executable by the CPU, while a data section is

not executable. Non-executable sections, such as .data and .bss (for

storing program data), debug sections... are not displayed. We will

learn more about section when studying ELF binary file format in

chapter 5 on page 109 . On the other hand:

$ objdump -D hello

where -D option displays assembly contents of all sections. If -D, -d is

implicitly assumed. objdump is mostly used for inspecting assembly

code, so -d is the most useful and thus is set by default.

The output overruns the terminal screen. To make it easy for

reading, send all the output to less:

$ objdump -d hello | less

To intermix source code and assembly, the binary must be compiled

with -g option to include source code in it, then add -S option:

$ objdump -S hello | less

x86 assembly and c 51

The default syntax used by objdump is AT&T syntax. To change it

to the familiar Intel syntax:

$ objdump -M intel -D hello | less

When using -M option, option -D or -d must be explicitly supplied.

Next, we will use objdump to examine how compiled C data and code

are represented in machine code.

Finally, we will write a 32-bit kernel, therefore we will need to

compile a 32-bit binary and examine it in 32-bit mode:

$ objdump -M i386,intel -D hello | less

-M i386 tells objdump to display assembly content using 32-bit layout.

Knowing the difference between 32-bit and 64-bit is crucial for writing

kernel code. We will examine this matter later on when writing our

kernel.

4.2 Reading the output

At the start of the output displays the file format of the object file:

hello: file format elf64-x86-64

After the line is a series of disassembled sections:

Disassembly of section .interp:

...

Disassembly of section .note.ABI-tag:

...

Disassembly of section .note.gnu.build-id:

...

...

etc

52 operating system: from 0 to 1

Finally, each disassembled section displays its actual content - which is

a sequence of assembly instructions - with the following format:

4004d6: 55 push rbp

� The first column is the address of an assembly instruction. In the

above example, the address is 0x4004d6.

� The second column is assembly instruction in raw hex values. In

the above example, the address is 0x55.

� The third column is the assembly instruction. Depends on the

section, the assembly instruction might be meaningful or mea-

ningless. For example, if the assembly instructions are in a .text

section, then the assembly instructions are actual program code.

On the other hand, if the assembly instructions are displayed in a

.data section, then we can safely ignore the displayed instructions.

The reason is that objdump doesn’t know which hex values are code

and which are data, so it blindly translates every hex values into as-

sembly instructions. In the above example, the assembly instruction

is push %rbp.

� The optional fourth column is a comment - appears when there is

a reference to an address - to inform where the address originates.

For example, the comment in blue:

lea r12,[rip+0x2008ee] # 600e10 <__frame_dummy_init_array_entry>

is to inform that the referenced address from [rip+0x2008ee] is

0x600e10, where the variable __frame_dummy_init_array_entry

resides.

In a disassembled section, it may also contain labels. A label is a

name given to an assembly instruction. The label denotes the pur-

pose of an assembly block to a human reader, to make it easier to

understand. For example, .text section carries many of such labels to

denote where code in a program start; .text section below carries two

functions: _start and deregister_tm_clones. The _start function

starts at address 4003e0, is annotated to the left of the function name.

x86 assembly and c 53

Right below _start label is also the instruction at address 4003e0.

This whole thing means that a label is simply a name of a memory

address. The function deregister_tm_clones also shares the same

format as every function in the section.

00000000004003e0 <_start>:

4003e0: 31 ed xor ebp,ebp

4003e2: 49 89 d1 mov r9,rdx

4003e5: 5e pop rsi

...more assembly code....

0000000000400410 <deregister_tm_clones>:

400410: b8 3f 10 60 00 mov eax,0x60103f

400415: 55 push rbp

400416: 48 2d 38 10 60 00 sub rax,0x601038

...more assembly code....

4.3 Intel manuals

The best way to understand and use assembly language properly is

to understand precisely the underlying computer architecture and

what each machine instruction does. To do so, the most reliable source

is to refer to documents provided by vendors. After all, hardware

vendors are the one who made their machines. To understand Intel’s

instruction set, we need the document “Intel 64 and IA-32 architec-
tures software developer’s manual combined volumes 2A, 2B, 2C, and
2D: Instruction set reference, A-Z”. The document can be retrieved

here: https://software.intel.com/en-us/articles/intel-sdm.

� Chapter 1 provides brief information about the manual, and the

comment notations used in the book.

� Chapter 2 provides an in-depth explanation of the anatomy of an

assembly instruction, which we will investigate in the next section.

� Chapter 3 - 5 provide the details of every instruction of the x86_64

architecture.

https://software.intel.com/en-us/articles/intel-sdm

54 operating system: from 0 to 1

� Chapter 6 provides information about safer mode extensions. We

won’t need to use this chapter.

The first volume “Intel® 64 and IA-32 Architectures Software De-
veloper’s Manual Volume 1: Basic Architecture” describes the basic

architecture and programming environment of Intel processors. In

the book, Chapter 5 gives the summary of all Intel instructions, by

listing instructions into different categories. We only need to learn

general-purpose instructions listed chapter 5.1 for our OS. Chapter 7
describes the purpose of each category. Gradually, we will learn all of

these instructions.

Exercise 4.3.1. Read section 1.3 in volume 2, exclude sections 1.3.5

and 1.3.7.

4.4 Experiment with assembly code

The subsequent sections examine the anatomy of an assembly in-

struction. To fully understand, it is necessary to write code and see

the code in its actual form displayed as hex numbers. For this purpose,

we use nasm assembler to write a few line of assembly code and see the

generated code.

Example 4.4.1. Suppose we want to see the machine code generated

for this instruction:

jmp eax

Then, we use an editor e.g. Emacs, then create a new file, write the

code and save it in a file, e.g. test.asm. Then, in the terminal, run

the command:

$ nasm -f bin test.asm -o test

x86 assembly and c 55

-f option specifies the file format, e.g. ELF, of the final output file.

But in this case, the format is bin, which means this file is just a flat

binary output without any extra information. That is, the written

assembly code is translated to machine code as is, without the

overhead of the metadata from file format like ELF. Indeed, after

compiling, we can examine the output using this command:

$ hd test

hd (short for hexdump) is a program that displays the content of a

file in hex format. And get the following output: Though its name is short for

hexdump, hd can display in

different base, e.g. binary, other

than hex.

00000000 66 ff e0 |f..|

00000003

The file only consists of 3 bytes: 66 ff e0, which is equivalent to

the instruction jmp eax.

Example 4.4.2. If we were to use elf as file format:

$ nasm -f elf test.asm -o test

It would be more challenging to learn and understand assembly

instructions with all the added noise1: 1 The output from hd.

00000000 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 |.ELF............|

00000010 01 00 03 00 01 00 00 00 00 00 00 00 00 00 00 00 |................|

00000020 40 00 00 00 00 00 00 00 34 00 00 00 00 00 28 00 |@.......4.....(.|

00000030 05 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

00000060 00 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 |................|

00000070 06 00 00 00 00 00 00 00 10 01 00 00 02 00 00 00 |................|

56 operating system: from 0 to 1

00000080 00 00 00 00 00 00 00 00 10 00 00 00 00 00 00 00 |................|

00000090 07 00 00 00 03 00 00 00 00 00 00 00 00 00 00 00 |................|

000000a0 20 01 00 00 21 00 00 00 00 00 00 00 00 00 00 00 | ...!...........|

000000b0 01 00 00 00 00 00 00 00 11 00 00 00 02 00 00 00 |................|

000000c0 00 00 00 00 00 00 00 00 50 01 00 00 30 00 00 00 |........P...0...|

000000d0 04 00 00 00 03 00 00 00 04 00 00 00 10 00 00 00 |................|

000000e0 19 00 00 00 03 00 00 00 00 00 00 00 00 00 00 00 |................|

000000f0 80 01 00 00 0d 00 00 00 00 00 00 00 00 00 00 00 |................|

00000100 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000110 ff e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000120 00 2e 74 65 78 74 00 2e 73 68 73 74 72 74 61 62 |..text..shstrtab|

00000130 00 2e 73 79 6d 74 61 62 00 2e 73 74 72 74 61 62 |..symtab..strtab|

00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

00000160 01 00 00 00 00 00 00 00 00 00 00 00 04 00 f1 ff |................|

00000170 00 00 00 00 00 00 00 00 00 00 00 00 03 00 01 00 |................|

00000180 00 64 69 73 70 38 2d 35 2e 61 73 6d 00 00 00 00 |.disp8-5.asm....|

00000190

Thus, it is better just to use flat binary format in this case, to

experiment instruction by instruction.

With such a simple workflow, we are ready to investigate the struc-

ture of every assembly instruction.

Note: Using the bin format puts nasm by default into 16-bit mode.

To enable 32-bit code to be generated, we must add this line at the

beginning of an nasm source file:

bits 32

4.5 Anatomy of an Assembly Instruction

Chapter 2 of the instruction reference manual provides an in-depth of

view of instruction format. But, the information is too much that it

can overwhelm beginners. This section provides an easier instruction

before reading the actual chapter in the manual.

x86 assembly and c 57

Instruction
Prefixes

Opcode ModR/M SIB Displacement Immediate

Prefixes of
1 byte each
(optional)1,2

1-, 2-, or 3-byte
opcode

1 byte
(if required)

1 byte
(if required)

Address
displacement
of 1, 2 or 4
bytes or none3

Immediate
data of
1, 2 or 4
bytes or none3

Mod
Reg/

Opcode
R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

1. The REX prefix is optional, but if used must be immediately before the opcode; see Section
2.2.1, “REX Prefixes” in the manual for additional information.
2. For VEX encoding information, see Section 2.3, “Intel® Advanced Vector Extensions (Intel®
AVX)” in the manual.
3. Some rare instructions can take an 8B immediate or 8B displacement.

Figure 4.5.1: Intel 64 and IA-32
Architectures Instruction FormatRecall that an assembly instruction is simply a fixed-size series of

bits. The length of an instruction varies and depends on how compli-

cated an instruction is. What every instruction shares is a common

format described in the figure above that divides the bits of an in-

struction into smaller parts that encode different types of information.

These parts are:

Instruction Prefixes appears at the beginning of an instruction.

Prefixes are optional. A programmer can choose to use a prefix or

not because in practice, a so-called prefix is just another assembly

instruction to be inserted before another assembly instruction that

such prefix is applicable. Instructions with 2 or 3-bytes opcodes

include the prefixes by default.

Opcode is a unique number that identifies an instruction. Each op-

code is given an mnemonic name that is human readable, e.g. one

of the opcodes for instruction add is 04. When a CPU sees the

number 04 in its instruction cache, it sees instruction add and exe-

cute accordingly. Opcode can be 1,2 or 3 bytes long and includes an

additional 3-bit field in the ModR/M byte when needed.

Example 4.5.1. This instruction:

58 operating system: from 0 to 1

jmp [0x1234]

generates the machine code:

ff 26 34 12

The very first byte, 0xff is the opcode, which is unique to jmp

instruction.

ModR/M specifies operands of an instruction. Operand can either be a

register, a memory location or an immediate value. This component

of an instruction consists of 3 smaller parts:

� mod field, or modifier field, is combined with r/m field for a total

of 5 bits of information to encode 32 possible values: 8 registers

and 24 addressing modes.

� reg/opcode field encodes either a register operand, or extends

the Opcode field with 3 more bits.

� r/m field encodes either a register operand or can be combined

with mod field to encode an addressing mode.

The tables 4.5.1 and 4.5.2 list all possible 256 values of ModR/M byte

and how each value maps to an addressing mode and a register, in

16-bit and 32-bit modes.

x86 assembly and c 59

r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP1 SI DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
mm(/r) MM0 MM1 MM2 MM3 MM4 MM5 MM6 MM7
xmm(/r) XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 001 010 011 100 101 110 111

Effective Address Mod R/M Values of ModR/M Byte (In Hexadecimal)
[BX + SI] 00 000 00 08 10 18 20 28 30 38
[BX + DI] 001 01 09 11 19 21 29 31 39
[BP + SI] 010 02 0A 12 1A 22 2A 32 3A
[BP + DI] 011 03 0B 13 1B 23 2B 33 3B
[SI] 100 04 0C 14 1C 24 2C 34 3C
[DI] 101 05 0D 15 1D 25 2D 35 3D
disp162 110 06 0E 16 1E 26 2E 36 3E
[BX] 111 07 0F 17 1F 27 2F 37 3F
[BX + SI] + disp83 01 000 40 48 50 58 60 68 70 78
[BX + DI] + disp8 001 41 49 51 59 61 69 71 79
[BP + SI] + disp8 010 42 4A 52 5A 62 6A 72 7A
[BP + DI] + disp8 011 43 4B 53 5B 63 6B 73 7B
[SI] + disp8 100 44 4C 54 5C 64 6C 74 7C
[DI] + disp8 101 45 4D 55 5D 65 6D 75 7D
[BP] + disp8 110 46 4E 56 5E 66 6E 76 7E
[BX] + disp8 111 47 4F 57 5F 67 6F 77 7F
[BX + SI] + disp16 10 000 80 88 90 98 A0 A8 B0 B8
[BX + DI] + disp16 001 81 89 91 99 A1 A9 B1 B9
[BP + SI] + disp16 010 82 8A 92 9A A2 AA B2 BA
[BP + DI] + disp16 011 83 8B 93 9B A3 AB B3 BB
[SI] + disp16 100 84 8C 94 9C A4 AC B4 BC
[DI] + disp16 101 85 8D 95 9D A5 AD B5 BD
[BP] + disp16 110 86 8E 96 9E A6 AE B6 BE
[BX] + disp16 111 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL/MM0/XMM0 11 000 C0 C8 D0 D8 E0 E8 F0 F8
ECX/CX/CL/MM1/XMM1 001 C1 C9 D1 D9 E1 E9 F1 F9
EDX/DX/DL/MM2/XMM2 010 C2 CA D2 DA E2 EA F2 FA
EBX/BX/BL/MM3/XMM3 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AHMM4/XMM4 100 C4 CC D4 DC E4 EC F4 FC
EBP/BP/CH/MM5/XMM5 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH/MM6/XMM6 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH/MM7/XMM7 111 C7 CF D7 DF E7 EF F7 FF

1. The default segment register is SS for the effective addresses containing a BP index, DS for other effective
addresses.

2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added to the
index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-extended

and added to the index.

Table 4.5.1: 16-Bit Addressing
Forms with the ModR/M Byte

60 operating system: from 0 to 1

r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP SI DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
mm(/r) MM0 MM1 MM2 MM3 MM4 MM5 MM6 MM7
xmm(/r) XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 001 010 011 100 101 110 111

Effective Address Mod R/M Values of ModR/M Byte (In Hexadecimal)
[EAX] 00 000 00 08 10 18 20 28 30 38
[ECX] 001 01 09 11 19 21 29 31 39
[EDX] 010 02 0A 12 1A 22 2A 32 3A
[EBX] 011 03 0B 13 1B 23 2B 33 3B
[--][--]1 100 04 0C 14 1C 24 2C 34 3C
disp322 101 05 0D 15 1D 25 2D 35 3D
[ESI] 110 06 0E 16 1E 26 2E 36 3E
[EDI] 111 07 0F 17 1F 27 2F 37 3F
[EAX] + disp83 01 000 40 48 50 58 60 68 70 78
[ECX] + disp8 001 41 49 51 59 61 69 71 79
[EDX] + disp8 010 42 4A 52 5A 62 6A 72 7A
[EBX] + disp8 011 43 4B 53 5B 63 6B 73 7B
[--][--] + disp8 100 44 4C 54 5C 64 6C 74 7C
[EBP] + disp8 101 45 4D 55 5D 65 6D 75 7D
[ESI] + disp8 110 46 4E 56 5E 66 6E 76 7E
[EDI] + disp8 111 47 4F 57 5F 67 6F 77 7F
[EAX] + disp32 10 000 80 88 90 98 A0 A8 B0 B8
[ECX] + disp32 001 81 89 91 99 A1 A9 B1 B9
[EDX] + disp32 010 82 8A 92 9A A2 AA B2 BA
[EBX] + disp32 011 83 8B 93 9B A3 AB B3 BB
[--][--] + disp32 100 84 8C 94 9C A4 AC B4 BC
[EBP] + disp32 101 85 8D 95 9D A5 AD B5 BD
[ESI] + disp32 110 86 8E 96 9E A6 AE B6 BE
[EDI] + disp32 111 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL/MM0/XMM0 11 000 C0 C8 D0 D8 E0 E8 F0 F8
ECX/CX/CL/MM/XMM1 001 C1 C9 D1 D9 E1 E9 F1 F9
EDX/DX/DL/MM2/XMM2 010 C2 CA D2 DA E2 EA F2 FA
EBX/BX/BL/MM3/XMM3 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH/MM4/XMM4 100 C4 CC D4 DC E4 EC F4 FC
EBP/BP/CH/MM5/XMM5 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH/MM6/XMM6 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH/MM7/XMM7 111 C7 CF D7 DF E7 EF F7 FF

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB byte if one
is present) and that is added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB byte if one is

present) and that is sign-extended and added to the index.

Table 4.5.2: 32-Bit Addressing
Forms with the ModR/M Byte

x86 assembly and c 61

How to read the table:

In an instruction, next to the opcode is a ModR/M byte. Then, look

up the byte value in this table to get the corresponding operands in

the row and column.

Example 4.5.2. An instruction uses this addressing mode:

jmp [0x1234]

Then, the machine code is:

ff 26 34 12

0xff is the opcode. Next to it, 0x26 is the ModR/M byte. Look up in

the 16-bit table , the first operand is in the row, equivalent to a Remember, using bin format

generates 16-bit code by defaultdisp16, which means a 16-bit offset. Since the instruction does not

have a second operand, the column can be ignored.

Example 4.5.3. An instruction uses this addressing mode:

add eax, ecx

Then the machine code is:

01 c8

0x01 is the opcode. Next to it, c8 is the ModR/M byte. Look up in

the 16-bit table at c8 value, the row tells the first operand is ax , the Remember, using bin format

generates 16-bit code by defaultcolumn tells the second operand is cx; the column can’t be ignored as

the second operand is in the instruction.

Why is the first operand in the row and the second in a column?

Let’s break down the ModR/M byte, with an example value c8, into

bits:

mod reg/opcode r/m

1 1 0 0 1 0 0 0

62 operating system: from 0 to 1

The mod field divides addressing modes into 4 different categories.

Further combines with the r/m field, exactly one addressing mode can

be selected from one of the 24 rows. If an instruction only requires one

operand, then the column can be ignored. Then the reg/opcode field

finally provides the if an instruction requires one.

SIB is Scale-Index-Base byte. This byte encodes ways to calculate

the memory position into an element of an array. SIB is the name

that is based on this formula for calculating an effective address:

Effective address = scale ∗ index + base

� Index is an offset into an array.

� Scale is a factor of Index. Scale is one of the values 1, 2, 4 or

8; any other value is invalid. To scale with values other than 2,

4 or 8, the scale factor must be set to 1, and the offset must be

calculated manually. For example, if we want to get the address

of the nth element in an array and each element is 12-bytes long.

Because each element is 12-bytes long instead of 1, 2, 4 or 8,

Scale is set to 1 and a compiler needs to calculate the offset:

Effective address = 1 ∗ (12 ∗ n) + base

Why do we bother with SIB when we can manually calculate the

offset? The answer is that in the above scenario, an additional

mul instruction must be executed to get the offset, and the mul

instruction consumes more than 1 byte, while the SIB only

consumes 1 byte. More importantly, if the element is repeatedly

accessed many times in a loop, e.g. millions of times, then an

extra mul instruction can detriment the performance as the

CPU must spend time executing millions of these additional mul

instructions.

The values 2, 4 and 8 are not random chosen. They map to

16-bit (or 2 bytes), 32-bit (or 4 bytes) and 64-bit (or 8 bytes)

numbers that are often used for intensive numeric calculations.

x86 assembly and c 63

� Base is the starting address.

Below is the table listing all 256 values of SIB byte, with the lookup

rule similar to ModR/M tables:

r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 001 010 011 100 101 110 111

Effective Address SS R/M Values of SIB Byte (In Hexadecimal)
[EAX] 00 000 00 01 02 03 04 05 06 07
[ECX] 001 08 09 0A 0B 0C 0D 0E 0F
[EDX] 010 10 11 12 13 14 15 16 17
[EBX] 011 18 19 1A 1B 1C 1D 1E 1F
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 2C 2D 2E 2F
[ESI] 110 30 31 32 33 34 35 36 37
[EDI] 111 38 39 3A 3B 3C 3D 3E 3F
[EAX*2] 01 000 40 41 42 43 44 45 46 47
[ECX*2] 001 48 49 4A 4B 4C 4D 4E 4F
[EDX*2] 010 50 51 52 53 54 55 56 57
[EBX*2] 011 58 59 5A 5B 5C 5D 5E 5F
none 100 60 61 62 63 64 65 66 67
[EBP*2] 101 68 69 6A 6B 6C 6D 6E 6F
[ESI*2] 110 70 71 72 73 74 75 76 77
[EDI*2] 111 78 79 7A 7B 7C 7D 7E 7F
[EAX*4] 10 000 80 81 82 83 84 85 86 87
[ECX*4] 001 88 89 8A 8B 8C 8D 8E 8F
[EDX*4] 010 90 91 92 93 94 95 96 97
[EBX*4] 011 98 99 9A 9B 9C 9D 9E 9F
none 100 A0 A1 A2 A3 A4 A5 A6 A7
[EBP*4] 101 A8 A9 AA AB AC AD AE AF
[ESI*4] 110 B0 B1 B2 B3 B4 B5 B6 B7
[EDI*4] 111 B8 B9 BA BB BC BD BE BF
[EAX*8] 11 000 C0 C1 C2 C3 C4 C5 C6 C7
[ECX*8] 001 C8 C9 CA CB CC CD CE CF
[EDX*8] 010 D0 D1 D2 D3 D4 D5 D6 D7
[EBX*8] 011 D8 D9 DA DB DC DD DE DF
none 100 E0 E1 E2 E3 E4 E5 E6 E7
[EBP*8] 101 E8 E9 EA EB EC ED EE EF
[ESI*8] 110 F0 F1 F2 F3 F4 F5 F6 F7
[EDI*8] 111 F8 F9 FA FB FC FD FE FF

1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or disp32 +
[EBP]. This provides the following address modes:

MOD bits Effective Address
00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

Table 4.5.3: 32-Bit Addressing
Forms with the SIB ByteExample 4.5.4. This instruction:

jmp [eax*2 + ebx]

generates the following code:

00000000 67 ff 24 43

64 operating system: from 0 to 1

First of all, the first byte, 0x67 is not an opcode but a prefix. The
number is a predefined prefix for address-size override prefix. After

the prefix, comes the opcode 0xff and the ModR/M byte 0x24. The

value from ModR/M suggests that there exists a SIB byte that follows.

The SIB byte is 0x43.

Look up in the SIB table, the row tells that eax is scaled by 2, and

the column tells that the base to be added is in ebx.

Displacement is the offset from the start of the base index.

Example 4.5.5. This instruction:

jmp [0x1234]

generates machine code is:

ff 26 34 12

0x1234, which is generated as 34 12 in raw machine code, is the

displacement and stands right next to 0x26, which is the ModR/M

byte.

Example 4.5.6. This instruction:

jmp [eax * 4 + 0x1234]

generates the machine code:

67 ff 24 8d 34 12 00 00

� 0x67 is an address-size override prefix. Its meaning is that if

an instruction runs a default address size e.g. 16-bit, the use of

prefix enables the instruction to use non-default address size, e.g.

32-bit or 64-bit. Since the binary is supposed to be 16-bit, 0x67

changes the instruction to 32-bit mode.

� 0xff is the opcode.

� 0x24 is the ModR/M byte. The value suggests that a SIB byte

follows, according to table 4.5.2.

x86 assembly and c 65

� 34 12 00 00 is the displacement. As can be seen, the displa-

cement is 4 bytes in size, which is equivalent to 32-bit, due to

address-size override prefix.

Immediate When an instruction accepts a fixed value, e.g. 0x1234, as

an operand, this optional field holds the value. Note that this field

is different from displacement: the value is not necessary used an

offset, but an arbitrary value of anything.

Example 4.5.7. This instruction:

mov eax, 0x1234

generates the code:

66 b8 34 12 00 00

� 0x66 is operand-sized override prefix. Similar to address-size

override prefix, this prefix enables operand-size to be non-default.

� 0xb8 is one of the opcodes for mov instruction.

� 0x1234 is the value to be stored in register eax. It is just a value

for storing directly into a register, and nothing more. On the

other hand, displacement value is an offset for some address

calculation.

Exercise 4.5.1. Read section 2.1 in Volume 2 for even more details.

Exercise 4.5.2. Skim through section 5.1 in volume 1. Read chapter

7 in volume 1. If there are terminologies that you don’t understand

e.g. segmentation, don’t worry as the terms will be explained in later

chapters or ignored.

4.6 Understand an instruction in detail

In the instruction reference manual (Volume 2), from chapter 3 on-

ward, every x86 instruction is documented in detail. Whenever the

precise behavior of an instruction is needed, we always consult this do-

cument first. However, before using the document, we must know the

writing conventions first. Every instruction has the following common

structure for organizing information:

66 operating system: from 0 to 1

Opcode table lists all possible opcodes of an assembly instruction.

Each table contains the following fields, and can have one or more

rows:

Opcode Instruction Op/En 64/32-bit Mode CPUID

Feature flag

Description

Opcode shows a unique hexadecimal number assigned to an in-

struction. There can be more than one opcode for an instruction,

each encodes a variant of the instruction. For example, one va-

riant requires one operand, but another requires two. In this

column, there can be other notations aside from hexadecimal

numbers. For example, /r indicates that the ModR/M byte of the

instruction contains a reg operand and an r/m operand. The de-

tail listing is in section 3.1.1.1 and 3.1.1.2 in the Intel’s manual,

volume 2.

Instruction gives the syntax of the assembly instruction that a

programmer can use for writing code. Aside from the mnemonic

representation of the opcode, e.g. jmp, other symbols represent

operands with specific properties in the instruction. For example,

rel8 represents a relative address from 128 bytes before the

end of the instruction to 127 bytes after the end of instruction;

similarly rel16/rel32 also represents relative addresses, but

with the operand size of 16/32-bit instead of 8-bit like rel8. For

a detailed listing, please refer to section 3.1.1.3 of volume 2.

Op/En is short for Operand/Encoding. An operand encoding speci-

fies how a ModR/M byte encodes the operands that an instruction

requires. If a variant of an instruction requires operands, then

an additional table named “Instruction Operand Encoding” is

added for explaining the operand encoding, with the following

structure:

Op/En Operand 1 Operand 2 Operand 3 Operand 4

Most instructions require one to two operands. We make use

of these instructions for our OS and skip the instructions that

require three or four operands. The operands can be readable or

x86 assembly and c 67

writable or both. The symbol (r) denotes a readable operand,

and (w) denotes a writable operand. For example, when Operand

1 field contains ModRM:r/m (r), it means the first operand is

encoded in r/m field of ModR/M byte, and is only readable.

64/32-bit mode indicates whether the opcode sequence is suppor-

ted in a 64-bit mode and possibly 32-bit mode.

CPUID Feature Flag indicates indicate a particular CPU feature

must be available to enable the instruction. An instruction is

invalid if a CPU does not support the required feature. In Linux, the command:

cat /proc/cpuinfo

lists the information of available

CPUs and its features in flags

field.

Compat/Leg Mode Many instructions do not have this field,

but instead is replaced with Compat/Leg Mode, which stands

for Compatibility or Legacy Mode. This mode enables 64-bit

variants of instructions to run normally in 16 or 32-bit mode.

Table 4.6.1: Notations in
Compat/Leg Mode

Notation Description

Valid Supported
I Not supported
N.E. The 64-bit opcode cannot be

encoded as it overlaps with
existing 32-bit opcode.

Description briefly explains the variant of an instruction in the

current row.

Description specifies the purpose of the instructions and how an

instruction works in detail.

Operation is pseudo-code that implements an instruction. If a des-

cription is vague, this section is the next best source to understand

an assembly instruction. The syntax is described in section 3.1.1.9
in volume 2.

Flags affected lists the possible changes to system flags in EFLAGS

register.

Exceptions list the possible errors that can occur when an in-

struction cannot run correctly. This section is valuable for OS

debugging. Exceptions fall into one of the following categories:

� Protected Mode Exceptions

� Real-Address Mode Exception

� Virtual-8086 Mode Exception

� Floating-Point Exception

68 operating system: from 0 to 1

� SIMD Floating-Point Exception

� Compatibility Mode Exception

� 64-bit Mode Exception

For our OS, we only use Protected Mode Exceptions and Real-Address
Mode Exceptions. The details are in section 3.1.1.13 and 3.1.1.14,
volume 2.

4.7 Example: jmp instruction

Let’s look at our good old jmp instruction. First, the opcode table:

Opcode Instruction Op/

En

64-bit

Mode

Compat/Leg

Mode

Description

EB cb JMP rel8 D Valid Valid Jump short, RIP = RIP + 8-bit displacement sign

extended to 64-bits

E9 cw JMP rel16 D N.S. Valid Jump near, relative, displacement relative to next

instruction. Not supported in 64-bit mode.

E9 cd JMP rel32 D Valid Valid Jump near, relative, RIP = RIP + 32-bit displacement

sign extended to 64-bits

FF /4 JMP r/m16 M N.S. Valid Jump near, absolute indirect, address = zero- extended

r/m16. Not supported in 64-bit mode

FF /4 JMP r/m32 M N.S. Valid Jump near, absolute indirect, address given in r/m32.

Not supported in 64-bit mode

FF /4 JMP r/m64 M Valid N.E Jump near, absolute indirect, RIP = 64-Bit offset from

register or memory

EA cd JMP ptr16:16 D Inv. Valid Jump far, absolute, address given in operand

EA cp JMP ptr16:32 D Inv. Valid Jump far, absolute, address given in operand

FF /5 JMP m16:16 D Valid Valid Jump far, absolute indirect, address given in m16:16

FF /5 JMP m16:32 D Valid Valid Jump far, absolute indirect, address given in m16:32

REX.W + FF /5 JMP m16:64 D Valid N.E. Jump far, absolute indirect, address given in m16:64

Table 4.7.1: jmp opcode table
Each row lists a variant of jmp instruction. The first column has

the opcode EB cb, with an equivalent symbolic form jmp rel8. Here,

rel8 means 128 bytes offset, counting from the end of the instruction.

The end of an instruction is the next byte after the last byte of an

instruction. To make it more concrete, consider this assembly code:

x86 assembly and c 69

main:

jmp main

jmp main2

jmp main

main2:

jmp 0x1234

generates the machine code:

main main2
↓ ↓

Address 00 01 02 03 04 05 06 07 08 09
Opcode eb fe eb 02 eb fa e9 2b 12 00

Table 4.7.2: Memory address of
each opcode

The first jmp main instruction is generated into eb fe and occupies

the addresses 00 and 01; the end of the first jmp main is at address 02,

past the last byte of the first jmp main which is located at the address

01. The value fe is equivalent to -2, since eb opcode uses only a byte

(8 bits) for relative addressing. The offset is -2, and the end address of

the first jmp main is 02, adding them together we get 00 which is the

destination address for jumping to.

Similarly, the jmp main2 instruction is generated into eb 02, which

means the offset is +2; the end address of jmp main2 is at 04, and

adding together with the offset we get the destination address is 06,

which is the start instruction marked by the label main2.

The same rule can be applied to rel16 and rel32 encoding. In

the example code, jmp 0x1234 uses rel16 (which means 2-byte off-

set) and is generated into e9 2b 12. As the table 4.7.1 shows, e9

opcode takes a cw operand, which is a 2-byte offset (section 3.1.1.1,
volume 2). Notice one strange issue here: the offset value is 2b 12,

while it is supposed to be 34 12. There is nothing wrong. Remember,

rel8/rel16/rel32 is an offset, not an address. A offset is a distance

from a point. Since no label is given but a number, the offset is cal-

culated from the start of a program. In this case, the start of the

70 operating system: from 0 to 1

program is the address 00, the end of jmp 0x1234 is the address 092, 2 which means 9 bytes was consumed,
starting from address 0.

so the offset is calculated as 0x1234 - 0x9 = 0x122b. That solved the

mystery!

The jmp instructions with opcode FF /4 enable jumping to a near,
absolute address stored in a general-purpose register or a memory

location; or in short, as written in the description, absolute indirect.
The symbol /4 is the column with digit 4 in table 4.5.13. For example: 3 The column with the following fields:

AH
SP
ESP
M45
XMM4
4
100

jmp [0x1234]

is generated into:

ff 26 34 12

Since this is 16-bit code, we use table 4.5.1. Looking up the table,

ModR/M value 26 means disp16, which means a 16-bit offset from the

start of current index4, which is the base address stored in DS register. 4 Look at the note under the table.

In this case, jmp [0x1234] is implicitly understood as jmp

[ds:0x1234], which means the destination address is 0x1234 bytes

away from the start of a data segment.

The jmp instruction with opcode FF /5 enables jumping to a far,
absolute address stored in a memory location (as opposed to /4, which

means stored in a register); in short, a far pointer. To generate such

instruction, the keyword far is needed to tell nasm we are using a far

pointer:

jmp far [eax]

is generated into:

67 ff 28

Since 28 is the value in the 5th column of the table 4.5.25 that refers 5 Remember the prefix 67 indicates
the instruction is used as 32-bit. The
prefix only added if the default envi-
ronment is assumed as 16-bit when
generating code by an assembler.

to [eax], we successfully generate an instruction for a far jump. After

CPU runs the instruction, the program counter eip and code segment

x86 assembly and c 71

register cs is set to the memory address, stored in the memory

location that eax points to, and CPU starts fetching code from the

new address in cs and eip. To make it more concrete, here is an

example:

eax

0x00001000

00 01 02 0403 05 06 07 0908 0A 0B 0C 0E0D 0F

1000
cs

eip

0x00001234

0x00005678 jmp far [eax]

567800 001234

Figure 4.7.1: far jmp example,
with the destination memory
stored at address 0x1000, which
is stored in eax to be dereferen-
ced. After CPU executes the
instruction, code segment register
cs and instruction pointer eip

The far address consumes total of 6 bytes in size for a 16-bit segment

and 32-bit address, which is encoded as m16:32 from the table 4.7.1.

As can be seen from the figure above, the blue part is a segment

address, loaded into cs register with the value 0x5678; the red part is

the memory address within that segment, loaded into eip register

with the value 0x1234 and start executing from there.

Finally, the jmp instructions with EA opcode jump to a direct

absolute address. For example, the instruction:

jmp 0x5678:0x1234

is generated into:

ea 34 12 78 56

The address 0x5678:0x1234 is right next to the opcode, unlike FF /5

instruction that needs an indirect address in eax register.

We skip the jump instruction with REX prefix, as it is a 64-bit

instruction.

4.8 Examine compiled data

In this section, we will examine how data definition in C maps to its

assembly form. The generated code is extracted from .bss section.

That means, the assembly code displayed has no6, aside from showing 6 Actually, code is just a type of data,
and is often used for hijacking into a
running program to execute such code.
However, we have no use for it in this
book.

72 operating system: from 0 to 1

that such a value has an equivalent assembly opcode that represents

an instruction.

The code-assembly listing is not random, but is based on Chapter 4
of Volume 1, “Data Type”. The chapter lists fundamental data types

that x86 hardware operates on, and through learning the generated

assembly code, it can be understood how close C maps its syntax to

hardware, and then a programmer can see why C is appropriate for

OS programming. The specific objdump command used in this section

will be:

$ objdump -z -M intel -S -D <object file> | less

Note: zero bytes are hidden with three dot symbols: ... To show

all the zero bytes, we add -z option.

4.8.1 Fundamental data types

The most basic types that x86 architecture works with are based on

sizes, each is twice as large as the previous one: 1 byte (8 bits), 2

bytes (16 bits), 4 bytes (32 bits), 8 bytes (64 bits) and 16 bytes (128

bits).

Byte Unsigned Integer

07

Word Unsigned Integer

015

Doubleword Unsigned Integer

031

Byte Signed Integer

07

Word Signed Integer

015

Doubleword Signed Integer

031

Byte Unsigned Integer

063

Byte Signed Integer

063

Sign

Sign

Sign

Sign

Figure 4.8.1: Fundamental Data
Types

These types are simplest: they are just chunks of memory at diffe-

rent sizes that enables CPU to access memory efficiently. From the

x86 assembly and c 73

manual, section 4.1.1, volume 1:

Words, doublewords, and quadwords do not need to be aligned in
memory on natural boundaries. The natural boundaries for words,
double words, and quadwords are even-numbered addresses, addresses
evenly divisible by four, and addresses evenly divisible by eight,
respectively. However, to improve the performance of programs, data
structures (especially stacks) should be aligned on natural boundaries
whenever possible. The reason for this is that the processor requires
two memory accesses to make an unaligned memory access; aligned
accesses require only one memory access. A word or doubleword
operand that crosses a 4-byte boundary or a quadword operand that
crosses an 8-byte boundary is considered unaligned and requires two
separate memory bus cycles for access.

Some instructions that operate on double quadwords require memory
operands to be aligned on a natural boundary. These instructions
generate a general-protection exception (#GP) if an unaligned operand
is specified. A natural boundary for a double quadword is any address
evenly divisible by 16. Other instructions that operate on double
quadwords permit unaligned access (without generating a general-
protection exception). However, additional memory bus cycles are
required to access unaligned data from memory.

In C, the following primitive types (must include stdint.h) maps to

the fundamental types:

Source

#include <stdint.h>

uint8_t byte = 0x12;

uint16_t word = 0x1234;

uint32_t dword = 0x12345678;

uint64_t qword = 0x123456789abcdef;

unsigned __int128 dqword1 = (__int128) 0x123456789abcdef;

unsigned __int128 dqword2 = (__int128) 0x123456789abcdef << 64;

int main(int argc, char *argv[]) {

return 0;

}

74 operating system: from 0 to 1

Assembly

0804a018 <byte>:

804a018: 12 00 adc al,BYTE PTR [eax]

0804a01a <word>:

804a01a: 34 12 xor al,0x12

0804a01c <dword>:

804a01c: 78 56 js 804a074 <_end+0x48>

804a01e: 34 12 xor al,0x12

0804a020 <qword>:

804a020: ef out dx,eax

804a021: cd ab int 0xab

804a023: 89 67 45 mov DWORD PTR [edi+0x45],esp

804a026: 23 01 and eax,DWORD PTR [ecx]

0000000000601040 <dqword1>:

601040: ef out dx,eax

601041: cd ab int 0xab

601043: 89 67 45 mov DWORD PTR [rdi+0x45],esp

601046: 23 01 and eax,DWORD PTR [rcx]

601048: 00 00 add BYTE PTR [rax],al

60104a: 00 00 add BYTE PTR [rax],al

60104c: 00 00 add BYTE PTR [rax],al

60104e: 00 00 add BYTE PTR [rax],al

0000000000601050 <dqword2>:

601050: 00 00 add BYTE PTR [rax],al

601052: 00 00 add BYTE PTR [rax],al

601054: 00 00 add BYTE PTR [rax],al

601056: 00 00 add BYTE PTR [rax],al

601058: ef out dx,eax

601059: cd ab int 0xab

60105b: 89 67 45 mov DWORD PTR [rdi+0x45],esp

60105e: 23 01 and eax,DWORD PTR [rcx]

gcc generates the variables byte, word, dword, qword, dqword1,

dword2, written earlier, with their respective values highlighted in the

same colors; variables of the same type are also highlighted in the

x86 assembly and c 75

same color. Since this is data section, the assembly listing carries no

meaning. When byte is declared with uint8_t, gcc guarantees that

the size of byte is always 1 byte. But, an alert reader might notice the

00 value next to the 12 value in the byte variable. This is normal, as

gcc avoid memory misalignment by adding extra padding bytes. To
make it easier to see, we look at readelf output of .data section:

$ readelf -x .data hello

the output is (the colors mark which values belong to which variables):

Hex dump of section ’.data’:

0x00601020 00000000 00000000 00000000 00000000

0x00601030 12003412 78563412 efcdab89 67452301 ..4.xV4.....gE#.

0x00601040 efcdab89 67452301 00000000 00000000gE#.........

0x00601050 00000000 00000000 efcdab89 67452301gE#.

As can be seen in the readelf output, variables are allocated storage

space according to their types and in the declared order by the pro-

grammer (the colors correspond the the variables). Intel is a little-

endian machine, which means smaller addresses hold bytes with

smaller values, larger addresses hold byte with larger values. For exam-

ple, 0x1234 is displayed as 34 12; that is, 34 appears first at address

0x601032, then 12 at 0x601033. The decimal values within a byte is

unchanged, so we see 34 12 instead of 43 21. This is quite confusing

at first, but you will get used to it soon.

Also, isn’t it redundant when char type is always 1 byte already and

why do we bother adding int8_t? The truth is, char type is not

guaranteed to be 1 byte in size, but only the minimum of 1 byte in

size. In C, a byte is defined to be the size of a char, and a char is

defined to be smallest addressable unit of the underlying hardware

platform. There are hardware devices that the smallest addressable

unit is 16 bit or even bigger, which means char is 2 bytes in size and a

“byte” in such platforms is actually 2 units of 8-bit bytes.

Not all architectures support the double quadword type. Still, gcc

does provide support for 128-bit number and generate code when a

76 operating system: from 0 to 1

CPU supports it (that is, a CPU must be 64-bit). By specifying a

variable of type __int128 or unsigned __int128, we get a 128-bit

variable. If a CPU does not support 64-bit mode, gcc throws an error.

The data types in C, which represents the fundamental data types,

are also called unsigned numbers. Other than numerical calculations,

unsigned numbers are used as a tool for structuring data in memory;

we will this application see later in the book, when various data

structures are organized into bit groups.

In all the examples above, when the value of a variable with smaller

size is assigned to a variable with larger size, the value easily fits in

the larger variable. On the contrary, the value of a variable with larger

size is assigned to a variable with smaller size, two scenarios occur:

� The value is greater than the maximum value of the variable with

smaller layout, so it needs truncating to the size of the variable and

causing incorrect value.

� The value is smaller than the maximum value of the variable with a

smaller layout, so it fits the variable.

However, the value might be unknown until runtime and can be value,

it is best not to let such implicit conversion handled by the compiler,

but explicitly controlled by a programmer. Otherwise it will cause

subtle bugs that are hard to catch as the erroneous values might rarely

be used to reproduce the bugs.

4.8.2 Pointer Data Types

Pointers are variables that hold memory addresses. x86 works with 2

types of pointers:

Near pointer is a 16-bit/32-bit offset within a segment, also called

effective address.

Far pointer is also an offset like a near pointer, but with an explicit

segment selector.

C only provides near pointer, since far pointer is platform de-

pendent, such as x86. In application code, you can assume that the

x86 assembly and c 77

Near Pointer

031

3247 031

Far Pointer or Logical Address

Segment Selector Offset

Offset

Figure 4.8.2: Numeric Data
Types

address of current segment starts at 0, so the offset is actually any

memory addres from 0 to the maximum address.

Source

#include <stdint.h>

int8_t i = 0;

int8_t *p1 = (int8_t *) 0x1234;

int8_t *p2 = &i;

int main(int argc, char *argv[]) {

return 0;

}

Assembly

0000000000601030 <p1>:

601030: 34 12 xor al,0x12

601032: 00 00 add BYTE PTR [rax],al

601034: 00 00 add BYTE PTR [rax],al

601036: 00 00 add BYTE PTR [rax],al

0000000000601038 <p2>:

601038: 41 10 60 00 adc BYTE PTR [r8+0x0],spl

60103c: 00 00 add BYTE PTR [rax],al

60103e: 00 00 add BYTE PTR [rax],al

Disassembly of section .bss:

78 operating system: from 0 to 1

0000000000601040 <__bss_start>:

601040: 00 00 add BYTE PTR [rax],al

0000000000601041 <i>:

601041: 00 00 add BYTE PTR [rax],al

601043: 00 00 add BYTE PTR [rax],al

601045: 00 00 add BYTE PTR [rax],al

601047: 00 .byte 0x0

The pointer p1 holds a direct address with the value 0x1234. The

pointer p2 holds the address of the variable i. Note that both the

pointers are 8 bytes in size (or 4-byte, if 32-bit).

4.8.3 Bit Field Data Type

A bit field is a contiguous sequence of bits. Bit fields allow data struc-

turing at bit level. For example, a 32-bit data can hold multiple bit

fields that represent multiples different pieces of information, such

as bits 0-4 specifies the size of a data structure, bit 5-6 specifies per-

missions and so on. Data structures at the bit level are common for

low-level programming.

.

Least

Significant

Bit

Bit Field

Field Length

Figure 4.8.3: Numeric Data
Types (Source: Figure 4-6, Volume
1

Source

struct bit_field {

int data1:8;

int data2:8;

int data3:8;

int data4:8;

};

x86 assembly and c 79

struct bit_field2 {

int data1:8;

int data2:8;

int data3:8;

int data4:8;

char data5:4;

};

struct normal_struct {

int data1;

int data2;

int data3;

int data4;

};

struct normal_struct ns = {

.data1 = 0x12345678,

.data2 = 0x9abcdef0,

.data3 = 0x12345678,

.data4 = 0x9abcdef0,

};

int i = 0x12345678;

struct bit_field bf = {

.data1 = 0x12,

.data2 = 0x34,

.data3 = 0x56,

.data4 = 0x78

};

struct bit_field2 bf2 = {

.data1 = 0x12,

.data2 = 0x34,

.data3 = 0x56,

80 operating system: from 0 to 1

.data4 = 0x78,

.data5 = 0xf

};

int main(int argc, char *argv[]) {

return 0;

}

Assembly

Each variable and its value are given a unique color in the assembly

listing below:

0804a018 <ns>:

804a018: 78 56 js 804a070 <_end+0x34>

804a01a: 34 12 xor al,0x12

804a01c: f0 de bc 9a 78 56 34 lock fidivr WORD PTR [edx+ebx*4+0x12345678]

804a023: 12

804a024: f0 de bc 9a 78 56 34 lock fidivr WORD PTR [edx+ebx*4+0x12345678]

804a02b: 12

0804a028 <i>:

804a028: 78 56 js 804a080 <_end+0x44>

804a02a: 34 12 xor al,0x12

0804a02c <bf>:

804a02c: 12 34 56 adc dh,BYTE PTR [esi+edx*2]

804a02f: 78 12 js 804a043 <_end+0x7>

0804a030 <bf2>:

804a030: 12 34 56 adc dh,BYTE PTR [esi+edx*2]

804a033: 78 0f js 804a044 <_end+0x8>

804a035: 00 00 add BYTE PTR [eax],al

804a037: 00 .byte 0x0

The sample code creates 4 variables: ns, i, bf, bf2. The definition

of normal_struct and bit_field structs both specify 4 integers.

bit_field specifies additional information next to its member name,

separated by a colon, e.g. .data1 : 8. This extra information is

the bit width of each bit group. It means, even though defined as an

x86 assembly and c 81

int, .data1 only consumes 8 bit of information. If additional data

members are specified after .data1, two scenarios happen:

� If the new data members fit within the remaining bits after .data,

which are 24 bits7, then the total size of bit_field struct is still 4 7 Since .data1 is declared as an int, 32
bits are still allocated, but .data1 can
only access 8 bits of information.bytes, or 32 bits.

� If the new data members don’t fit, then the remaining 24 bits (3

bytes) are still allocated. However, the new data members are

allocated brand new storages, without using the previous 24 bits.

In the example, the 4 data members: .data1, .data2, .data3 and

.data4, each can access 8 bits of information, and together can access

all of 4 bytes of the integer first declared by .data1. As can be seen

by the generated assembly code, the values of bf are follow natural

order as written in the C code: 12 34 56 78, since each value is

a separate members. In contrast, the value of i is a number as a

whole, so it is subject to the rule of little endianess and thus contains

the value 78 56 34 12. Note that at 804a02f, is the address of the

final byte in bf, but next to it is a number 12, despite 78 is the last

number in it. This extra number 12 does not belong to the value of bf.

objdump is just being confused that 78 is an opcode; 78 corresponds to

js instruction, and it requires an operand. For that reason, objdump

grabs whatever the next byte after 78 and put it there. objdump is

a tool to display assembly code after all. A better tool to use is gdb

that we will learn in the next chapter. But for this chapter, objdump

suffices.

Unlike bf, each data member in ns is allocated fully as an integer,

4 bytes each, 16 bytes in total. As we can see, bit field and normal

struct are different: bit field structure data at the bit level, while

normal struct works at byte level.

Finally, the struct of bf28 is the same of bf9, except it contains 8 bit_field2
9 bit_field

one more data member: .data5, and is defined as an integer. For this

reason, another 4 bytes are allocated just for .data5, even though it

can only access 8 bits of information, and the final value of bf2 is: 12

34 56 78 0f 00 00 00. The remaining 3 bytes must be accessed by

82 operating system: from 0 to 1

the mean of a pointer, or casting to another data type that can fully

access all 4 bytes..

Exercise 4.8.1. What happens when the definition of bit_field

struct and bf variable are changed to:

struct bit_field {

int data1:8;

};

struct bit_field bf = {

.data1 = 0x1234,

};

What will be the value of .data1?

Exercise 4.8.2. What happens when the definition of bit_field2

struct is changed to:

struct bit_field2 {

int data1:8;

int data5:32;

};

What is layout of a variable of type bit_field2?

4.8.4 String Data Types

Although share the same name, string as defined by x86 is different

than a string in C. x86 defines string as “continuous sequences of bits,
bytes, words, or doublewords”. On the other hand, C defines a string

as an array of 1-byte characters with a zero as the last element of the

array to make a null-terminated string. This implies that strings in

x86 are arrays, not C strings. A programmer can define an array of by-

tes, words or doublewords with char or uint8_t, short or uint16_t

and int or uint32_t, except an array of bits. However, such a feature

can be easily implemented, as an array of bits is essentially any array

of bytes, or words or doublewords, but operates at the bit level.

The following code demonstrates how to define array (string) data

types:

x86 assembly and c 83

Source

#include <stdint.h>

uint8_t a8[2] = {0x12, 0x34};

uint16_t a16[2] = {0x1234, 0x5678};

uint32_t a32[2] = {0x12345678, 0x9abcdef0};

uint64_t a64[2] = {0x123456789abcdef0, 0x123456789abcdef0

};

int main(int argc, char *argv[])

{

return 0;

}

Assembly

0804a018 <a8>:

804a018: 12 34 00 adc dh,BYTE PTR [eax+eax*1]

804a01b: 00 34 12 add BYTE PTR [edx+edx*1],dh

0804a01c <a16>:

804a01c: 34 12 xor al,0x12

804a01e: 78 56 js 804a076 <_end+0x3a>

0804a020 <a32>:

804a020: 78 56 js 804a078 <_end+0x3c>

804a022: 34 12 xor al,0x12

804a024: f0 de bc 9a f0 de bc lock fidivr WORD PTR [edx+ebx*4-0x65432110]

804a02b: 9a

0804a028 <a64>:

804a028: f0 de bc 9a 78 56 34 lock fidivr WORD PTR [edx+ebx*4+0x12345678]

804a02f: 12

804a030: f0 de bc 9a 78 56 34 lock fidivr WORD PTR [edx+ebx*4+0x12345678]

804a037: 12

Despite a8 is an array with 2 elements, each is 1-byte long, but it

is still allocated with 4 bytes. Again, to ensure natural alignment

for best performance, gcc pads extra zero bytes. As shown in the

84 operating system: from 0 to 1

assembly listing, the actual value of a8 is 12 34 00 00, with a8[0]

equals to 12 and a8[1] equals to 34.

Then it comes a16 with 2 elements, each is 2-byte long. Since 2

elements are 4 bytes in total, which is in the natural alignment, gcc

pads no byte. The value of a16 is 34 12 78 56, with a16[0] equals

to 34 12 and a16[1] equals to 78 56. Note that, objdump is confused

again, as de is the opcode for the instruction fidivr (short of reverse

divide) that requires another operand, so objdump grabs whatever the

next bytes that makes sense to it for creating “an operand”. Only the

highlighted values belong to a32.

Next is a32, with 2 elements, 4 bytes each. Similar to above arrays,

the value of a32[0] is 78 56 34 12, the value of a32[1] is f0 de bc

9a, exactly what is assigned in the C code.

Finally is a64, also with 2 elements, but 8 bytes each. The total

size of a64 is 16 bytes, which is in the natural alignment, therefore no

padding bytes added. The values of both a64[0] and a64[1] are the

same: f0 de bc 9a 78 56 34 12, that got misinterpreted to fidivr

instruction.

a8: 12 | 34

a16: 34 12 | 78 56

a32: 78 56 34 12 | f0 de bc 9a

a64: f0 de bc 9a 78 56 34 12 | f0 de bc 9a 78 56 34 12

Figure 4.8.4: a8, a16, a32 and
a64 memory layouts

However, beyond one-dimensional arrays that map directly to

hardware string type, C provides its own syntax for multi-dimensional

arrays:

Source

#include <stdint.h>

uint8_t a2[2][2] = {

{0x12, 0x34},

{0x56, 0x78}

};

x86 assembly and c 85

uint8_t a3[2][2][2] = {

{{0x12, 0x34},

{0x56, 0x78}},

{{0x9a, 0xbc},

{0xde, 0xff}},

};

int main(int argc, char *argv[]) {

return 0;

}

Assembly

0804a018 <a2>:

804a018: 12 34 56 adc dh,BYTE PTR [esi+edx*2]

804a01b: 78 12 js 804a02f <_end+0x7>

0804a01c <a3>:

804a01c: 12 34 56 adc dh,BYTE PTR [esi+edx*2]

804a01f: 78 9a js 8049fbb <_DYNAMIC+0xa7>

804a021: bc .byte 0xbc

804a022: de ff fdivrp st(7),st

Technically, multi-dimensional arrays are like normal arrays: in the

end, the total size is translated into flat allocated bytes. A 2 x 2 array

is allocated with 4 bytes; a 2× 2× 2 array is allocated with 8 bytes,

as can be seen in the assembly listing of a210 and a3. In low-level 10 Again, objdump is confused and
put the number 12 next to 78 in a3
listing.assembly code, the representation is the same between a[4] and

a[2][2]. However, in high-level C code, the difference is tremendous.

The syntax of multi-dimensional array enables a programmer to think

with higher level concepts, instead of translating manually from high-

level concepts to low-level code and work with high-level concepts in

his head at the same time.

Example 4.8.1. The following two-dimensional array can hold a list of

2 names with the length of 10:

char names[2][10] = {

86 operating system: from 0 to 1

"John␣Doe",

"Jane␣Doe"

};

To access a name, we simply adjust the column index11 e.g. names[0], 11 The left index is called column
index since it changes the index based
on a column.names[1]. To access individual character within a name, we use the

row index12 e.g. names[0][0] gives the character “J”, names[0][1] 12 Same with column index, the right
index is called row index since it
changes the index based on a row.gives the character “o” and so on.

Without such syntax, we need to create a 20-byte array e.g. names[20],

and whenever we want to access a character e.g. to check if the names

contains with a number in it, we need to calculate the index manually.

It would be distracting, since we constantly need to switch thinkings

between the actual problem and the translate problem.

Since this is a repeating pattern, C abstracts away this problem

with the syntax for define and manipulating multi-dimensional array.

Through this example, we can clearly see the power of abstraction

through language can give us. It would be ideal if a programmer is

equipped with such power to define whatever syntax suitable for a

problem at hands. Not many languages provide such capacity. Fortu-

nately, through C macro, we can partially achieve that goal .

In all cases, an array is guaranteed to generate contiguous bytes of

memory, regardless of the dimensions it has.

Exercise 4.8.3. What is the difference between a multi-dimensional

array and an array of pointers, or even pointers of pointers?

4.9 Examine compiled code

This section will explore how compiler transform high level code into

assembly code that CPU can execute, and see how common assembly

patterns help to create higher level syntax. -S option is added to

objdump to better demonstrate the connection between high and low

level code.

In this section, the option --no-show-raw-insn is added to obj-

dump command to omit the opcodes for clarity:

x86 assembly and c 87

$ objdump --no-show-raw-insn -M intel -S -D <object

file> | less

4.9.1 Data Transfer

Previous section explores how various types of data are created, and

how they are laid out in memory. Once memory storages are allocated

for variables, they must be accessible and writable. Data transfer

instructions move data (bytes, words, doublewords or quadwords)

between memory and registers, and between registers, effectively read

from a storage source and write to another storage source.

Source

#include <stdint.h>

int32_t i = 0x12345678;

int main(int argc, char *argv[]) {

int j = i;

int k = 0xabcdef;

return 0;

}

Assembly

080483db <main>:

#include <stdint.h>

int32_t i = 0x12345678;

int main(int argc, char *argv[]) {

80483db: push ebp

80483dc: mov ebp,esp

80483de: sub esp,0x10

int j = i;

80483e1: mov eax,ds:0x804a018

88 operating system: from 0 to 1

80483e6: mov DWORD PTR [ebp-0x8],eax

int k = 0xabcdef;

80483e9: mov DWORD PTR [ebp-0x4],0xabcdef

return 0;

80483f0: mov eax,0x0

}

80483f5: leave

80483f6: ret

80483f7: xchg ax,ax

80483f9: xchg ax,ax

80483fb: xchg ax,ax

80483fd: xchg ax,ax

80483ff: nop

The general data movement is performed with the mov instruction.

Note that despite the instruction being called mov, it actually copies

data from one destination to another.

The red instruction copies data from the register esp to the regis-

ter ebp. This mov instruction moves data between registers and is

assigned the opcode 89.

The blue instructions copies data from one memory location (the i

variable) to another (the j variable). There exists no data movement

from memory to memory; it requires two mov instructions, one for

copying the data from a memory location to a register, and one for

copying the data from the register to the destination memory location.

The pink instruction copies an immediate value into memory. Fi-

nally, the green instruction copies immediate data into a register.

4.9.2 Expressions

Source

int expr(int i, int j)

{

int add = i + j;

int sub = i - j;

int mul = i * j;

x86 assembly and c 89

int div = i / j;

int mod = i % j;

int neg = -i;

int and = i & j;

int or = i | j;

int xor = i ^ j;

int not = ~i;

int shl = i << 8;

int shr = i >> 8;

char equal1 = (i == j);

int equal2 = (i == j);

char greater = (i > j);

char less = (i < j);

char greater_equal = (i >= j);

char less_equal = (i <= j);

int logical_and = i && j;

int logical_or = i || j;

++i;

--i;

int i1 = i++;

int i2 = ++i;

int i3 = i--;

int i4 = --i;

return 0;

}

int main(int argc, char *argv[]) {

return 0;

}

Assembly

The full assembly listing is really long. For that reason, we examine

expression by expression.

Expression: int add = i + j;

90 operating system: from 0 to 1

80483e1: mov edx,DWORD PTR [ebp+0x8]

80483e4: mov eax,DWORD PTR [ebp+0xc]

80483e7: add eax,edx

80483e9: mov DWORD PTR [ebp-0x34],eax

The assembly code is straight forward: variable i and j are

stored in eax and edx respectively, then added together with

the add instruction, and the final result is stored into eax. Then,

the result is saved into the local variable add, which is at the

location [ebp-0x34].

Expression: int sub = i - j;

80483ec: mov eax,DWORD PTR [ebp+0x8]

80483ef: sub eax,DWORD PTR [ebp+0xc]

80483f2: mov DWORD PTR [ebp-0x30],eax

Similar to add instruction, x86 provides a sub instruction for

subtraction. Hence, gcc translates a subtraction into sub in-

struction, with eax is reloaded with i, as eax still carries the

result from previous expression. Then, j is subtracted from i.

After the subtraction, the value is saved into the variable sub, at

location [ebp-0x30].

Expression: int mul = i * j;

80483f5: mov eax,DWORD PTR [ebp+0x8]

80483f8: imul eax,DWORD PTR [ebp+0xc]

80483fc: mov DWORD PTR [ebp-0x34],eax

Similar to sub instruction, only eax is reloaded, since it carries

the result of previous calculation. imul performs signed multi-

ply13. eax is first loaded with i, then is multiplied with j and 13 Unsigned multiply is perform by
mul instruction.

stored the result back into eax, then stored into the variable mul

at location [ebp-0x34].

Expression: int div = i / j;

80483ff: mov eax,DWORD PTR [ebp+0x8]

8048402: cdq

8048403: idiv DWORD PTR [ebp+0xc]

8048406: mov DWORD PTR [ebp-0x30],eax

x86 assembly and c 91

Similar to imul, idiv performs sign divide. But, different from

imul above idiv only takes one operand:

1. First, i is reloaded into eax.

2. Then, cdq converts the double word value in eax into a quad-

word value stored in the pair of registers edx:eax, by copying

the signed (bit 31th) of the value in eax into every bit posi-

tion in edx. The pair edx:eax is the dividend, which is the

variable i, and the operand to idiv is the divisor, which is the

variable j.

3. After the calculation, the result is stored into the pair edx:eax

registers, with the quotient in eax and remainder in edx. The

quotient is stored in the variable div, at location [ebp-0x30].

Expression: int mod = i % j;

8048409: mov eax,DWORD PTR [ebp+0x8]

804840c: cdq

804840d: idiv DWORD PTR [ebp+0xc]

8048410: mov DWORD PTR [ebp-0x2c],edx

The same idiv instruction also performs the modulo operation,

since it also calculates a remainder and stores in the variable mod,

at location [ebp-0x2c].

Expression: int neg = -i;

8048413: mov eax,DWORD PTR [ebp+0x8]

8048416: neg eax

8048418: mov DWORD PTR [ebp-0x28],eax

neg replaces the value of operand (the destination operand) with

its two’s complement (this operation is equivalent to subtracting

the operand from 0). In this example, the value i in eax is

replaced replaced with -i using neg instruction. Then, the new

value is stored in the variable neg at [ebp-0x28].

Expression: int and = i & j;

804841b: mov eax,DWORD PTR [ebp+0x8]

804841e: and eax,DWORD PTR [ebp+0xc]

8048421: mov DWORD PTR [ebp-0x24],eax

92 operating system: from 0 to 1

and performs a bitwise AND operation on two operands, and

stores the result in the destination operand, which is the variable

and at [ebp-0x24].

Expression: int or = i | j;

8048424: mov eax,DWORD PTR [ebp+0x8]

8048427: or eax,DWORD PTR [ebp+0xc]

804842a: mov DWORD PTR [ebp-0x20],eax

Similar to and instruction, or performs a bitwise OR opera-

tion on two operands, and stores the result in the destination

operand, which is the variable or at [ebp-0x20] in this case.

Expression: int xor = i ^ j;

804842d: mov eax,DWORD PTR [ebp+0x8]

8048430: xor eax,DWORD PTR [ebp+0xc]

8048433: mov DWORD PTR [ebp-0x1c],eax

Similar to and/or instruction, xor performs a bitwise XOR ope-

ration on two operands, and stores the result in the destination

operand, which is the variable xor at [ebp-0x1c].

Expression: int not = ~i;

8048436: mov eax,DWORD PTR [ebp+0x8]

8048439: not eax

804843b: mov DWORD PTR [ebp-0x18],eax

not performs a bitwise NOT operation (each 1 is set to 0, and

each 0 is set to 1) on the destination operand and stores the

result in the destination operand location, which is the variable

not at [ebp-0x18].

Expression: int shl = i <�< 8;

804843e: mov eax,DWORD PTR [ebp+0x8]

8048441: shl eax,0x8

8048444: mov DWORD PTR [ebp-0x14],eax

shl (shift logical left) shifts the bits in the destination operand

to the left by the number of bits specified in the source operand.

In this case, eax stores i and shl shifts eax by 8 bits to the left.

A different name for shl is sal (shift arithmetic left). Both can

x86 assembly and c 93

be used synonymous. Finally, the result is stored in the variable

shl at [ebp-0x14].

Here is a visual demonstration of shl/sal and shr instructions:

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1X

CF
Initial State

After 1-bit SHL/SAL instruction

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 01 0

After 1-bit SHL/SAL instruction

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 00 0

(a) SHL/SAL (Source: Figure 7-6, Volume 1)

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 X

CF
Initial State

After 1-bit SHR instruction

10

After 10-bit SHR instruction

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 00 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

(b) SHR (Source: Figure 7-7, Volume 1)

Figure 4.9.1: Shift Instructions
(red is the start bit, blue is the end
bit.)

After shifting to the left, the right most bit is set for Carry Flag

in EFLAGS register.

Expression: int shr = i >�> 8;

8048447: mov eax,DWORD PTR [ebp+0x8]

804844a: sar eax,0x8

804844d: mov DWORD PTR [ebp-0x10],eax

sar is similar to shl/sal, but shift bits to the right and ex-

tends the sign bit. For right shift, shr and sar are two diffe-

rent instructions. shr differs to sar is that it does not extend

the sign bit. Finally, the result is stored in the variable shr at

[ebp-0x10].

In the figure 4.9.1(b), notice that initially, the sign bit is 1, but

after 1-bit and 10-bit shiftings, the shifted-out bits are filled with

zeros.

With sar, the sign bit (the most significant bit) is preserved.

That is, if the sign bit is 0, the new bits always get the value 0; if

the sign bit is 1, the new bits always get the value 1.

Expression: char equal1 = (i == j);

8048450: mov eax,DWORD PTR [ebp+0x8]

94 operating system: from 0 to 1

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

CF
Initial State (Positive Operand)

After 1-bit SAR instruction

1

Initial State (Negative Operand)

1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1

After 10-bit SAR instruction

1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

Operand

Operand

Figure 4.9.2: SAR Instruction
Operation (Source: Figure 7-8,
Volume 1)

8048453: cmp eax,DWORD PTR [ebp+0xc]

8048456: sete al

8048459: mov BYTE PTR [ebp-0x41],al

cmp and variants of the variants of set instructions make up

all the logical comparisons. In this expression, cmp compares

variable i and j; then sete stores the value 1 to al register

if the comparison from cmp earlier is equal, or stores 0 other-

wise. The general name for variants of set instruction is called

SETcc. The suffix cc denotes the condition being tested for in

EFLAGS register. Appendix B in volume 1, “EFLAGS Condition
Codes”, lists the conditions it is possible to test for with this

instruction. Finally, the result is stored in the variable equal1 at

[ebp-0x41].

Expression: int equal2 = (i == j);

804845c: mov eax,DWORD PTR [ebp+0x8]

804845f: cmp eax,DWORD PTR [ebp+0xc]

8048462: sete al

8048465: movzx eax,al

8048468: mov DWORD PTR [ebp-0xc],eax

Similar to equality comparison, this expression also compares

for equality, with an exception that the result is stored in an int

type. For that reason, one more instruction is a added: movzx

x86 assembly and c 95

instruction, a variant of mov that copies the result into a desti-

nation operand and fills the remaining bytes with 0. In this case,

since eax is 4-byte wide, after copying the first byte in al, the

remaining bytes of eax are filled with 0 to ensure the eax carries

the same value as al.

12 34 56 78

(a) eax before movzx

00 00 00 78

(b) after movzx eax, al

Figure 4.9.3: movzx instruction

Expression: char greater = (i > j);

804846b: mov eax,DWORD PTR [ebp+0x8]

804846e: cmp eax,DWORD PTR [ebp+0xc]

8048471: setg al

8048474: mov BYTE PTR [ebp-0x40],al

Similar to equality comparison, but used setg for greater compa-

rison instead.

Expression: char less = (i < j);

8048477: mov eax,DWORD PTR [ebp+0x8]

804847a: cmp eax,DWORD PTR [ebp+0xc]

804847d: setl al

8048480: mov BYTE PTR [ebp-0x3f],al

Applied setl for less comparison.

Expression: char greater_equal = (i >= j);

8048483: mov eax,DWORD PTR [ebp+0x8]

8048486: cmp eax,DWORD PTR [ebp+0xc]

8048489: setge al

804848c: mov BYTE PTR [ebp-0x3e],al

Applied setge for greater or equal comparison.

Expression: char less_equal = (i <= j);

804848f: mov eax,DWORD PTR [ebp+0x8]

8048492: cmp eax,DWORD PTR [ebp+0xc]

8048495: setle al

8048498: mov BYTE PTR [ebp-0x3d],al

Applied setle for less than or equal comparison.

96 operating system: from 0 to 1

Expression: int logical_and = (i && j);

804849b: cmp DWORD PTR [ebp+0x8],0x0

804849f: je 80484ae <expr+0xd3>

80484a1: cmp DWORD PTR [ebp+0xc],0x0

80484a5: je 80484ae <expr+0xd3>

80484a7: mov eax,0x1

80484ac: jmp 80484b3 <expr+0xd8>

80484ae: mov eax,0x0

80484b3: mov DWORD PTR [ebp-0x8],eax

Logical AND operator && is one of the syntaxes that is made

entirely in software14 with simpler instructions. The algorithm 14 That is, there is no equivalent
assembly instruction implemented in
hardware.from the assembly code is simple:

1. First, check if i is 0 with the instruction at 0x804849b.

(a) If true, jump to 0x80484ae and set eax to 0.

(b) Set the variable logical_and to 0, as it is the next in-

struction after 0x80484ae.

2. If i is not 0, check if j is 0 with the instruction at 0x80484a1.

(a) If true, jump to 0x80484ae and set eax to 0.

(b) Set the variable logical_and to 0, as it is the next in-

struction after 0x80484ae.

3. If both i and j are not 0, the result is certainly 1, or true.

(a) Set it accordingly with the instruction at 0x80484a7.

(b) Then jump to the instruction at 0x80484b3 to set the

variable logical_and at [ebp-0x8] to 1.

Expression: int logical_or = (i || j);

80484b6: cmp DWORD PTR [ebp+0x8],0x0

80484ba: jne 80484c2 <expr+0xe7>

80484bc: cmp DWORD PTR [ebp+0xc],0x0

80484c0: je 80484c9 <expr+0xee>

80484c2: mov eax,0x1

80484c7: jmp 80484ce <expr+0xf3>

80484c9: mov eax,0x0

80484ce: mov DWORD PTR [ebp-0x4],eax

x86 assembly and c 97

Logical OR operator || is similar to logical and above. Under-

stand the algorithm is left as an exercise for readers.

Expression: ++i; and --i; (or i++ and i--)

80484d1: add DWORD PTR [ebp+0x8],0x1

80484d5: sub DWORD PTR [ebp+0x8],0x1

The syntax of increment and decrement is similar to logical AND

and logical OR in that it is made from existing instruction, that is

add. The difference is that the CPU actually does has a built-in

instruction, but gcc decided not to use the instruction because

inc and dec cause a partial flag register stall, occurs when an

instruction modifies a part of the flag register and the following

instruction is dependent on the outcome of the flags (section
3.5.2.6, Intel Optimization Manual, 2016b). The manual even

suggests that inc and dec should be replaced with add and sub

instructions (section 3.5.1.1, Intel Optimization Manual, 2016b).

Expression: int i1 = i++;

80484d9: mov eax,DWORD PTR [ebp+0x8]

80484dc: lea edx,[eax+0x1]

80484df: mov DWORD PTR [ebp+0x8],edx

80484e2: mov DWORD PTR [ebp-0x10],eax

First, i is copied into eax at 80484d9. Then, the value of eax +

0x1 is copied into edx as an effective address at 80484dc. The

lea (load effective address) instruction copies a memory address

into a register. According to Volume 2, the source operand is a

memory address specified with one of the processors addressing

modes. This means, the source operand must be specified by the

addressing modes defined in 16-bit/32-bit ModR/M Byte tables,

4.5.1 and 4.5.2.

After loading the incremented value into edx, the value of i is

increased by 1 at 80484df. Finally, the previous i value is stored

back to i1 at [ebp-0x8] by the instruction at 80484e2.

Expression: int i2 = ++i;

80484e5: add DWORD PTR [ebp+0x8],0x1

98 operating system: from 0 to 1

80484e9: mov eax,DWORD PTR [ebp+0x8]

80484ec: mov DWORD PTR [ebp-0xc],eax

The primary differences between this increment syntax and the

previous one are:

� add is used instead of lea to increase i directly.

� the newly incremented i is stored into i2 instead of the old

value.

� the expression only costs 3 instructions instead of 4.

This prefix-increment syntax is faster than the post-fix one used

previously. It might not matter much which version to use if the

increment is only used once or a few hundred times in a small

loop, but it matters when a loop runs millions or more times.

Also, depends on different circumstances, it is more convenient to

use one over the other e.g. if i is an index for accessing an array,

we want to use the old value for accessing previous array element

and newly incremented i for current element.

Expression: int i3 = i--;

80484ef: mov eax,DWORD PTR [ebp+0x8]

80484f2: lea edx,[eax-0x1]

80484f5: mov DWORD PTR [ebp+0x8],edx

80484f8: mov DWORD PTR [ebp-0x8],eax

Similar to i++ syntax, and is left as an exercise to readers.

Expression: int i4 = --i;

80484fb: sub DWORD PTR [ebp+0x8],0x1

80484ff: mov eax,DWORD PTR [ebp+0x8]

8048502: mov DWORD PTR [ebp-0x4],eax

Similar to ++i syntax, and is left as an exercise to readers.

Exercise 4.9.1. Read section 3.5.2.4, “Partial Register Stalls” to

understand register stalls in general.

Exercise 4.9.2. Read the sections from 7.3.1 to 7.3.7 in volume 1.

x86 assembly and c 99

4.9.3 Stack

A stack is a contiguous array of memory locations that holds a col-

lection of discrete data. When a new element is added, a stack grows
down in memory toward lesser addresses, and shrinks up toward gre-

ater addresses when an element is removed. x86 uses the esp register

to point to the top of the stack, at the newest element. A stack can

be originated anywhere in main memory, as esp can be set to any

memory address. x86 provides two operations for manipulating stacks:

� push instruction and its variants add a new element on top of the

stack

� pop instructions and its variants remove the top-most element from

the stack.

0x10000 00
0x10001 00
0x10002 00
0x10003 00
0x10004 12 ← esp

(a) Initial state at address
0x10004

0x10000 00
0x10001 00
0x10002 78 ← esp
0x10003 56
0x10004 12

(b) After executing push word
0x5678

0x10000 00
0x10001 00
0x10002 00
0x10003 00
0x10004 12 ← esp

(c) After executing pop word

Figure 4.9.4: Stack operations

4.9.4 Automatic variables

Local variables are variables that exist within a scope. A scope is

delimited by a pair of braces: {..}. The most common scope to define

local variables is at function scope. However, scope can be unnamed,

and variables created inside an unnamed scope do not exist outside of

its scope and its inner scope.

Example 4.9.1. Function scope:

void foo() {

int a;

int b;

}

a and b are variables local to the function foo.

100 operating system: from 0 to 1

Example 4.9.2. Unnamed scope:

int foo() {

int i;

{

int a = 1;

int b = 2;

{

return i = a + b;

}

}

}

a and b are local to where it is defined and local into its inner

child scope that return i = a + b. However, they do not exist at the

function scope that creates i.

When a local variable is created, it is pushed on the stack; when

a local variable goes out of scope, it is pop out of the stack, thus

destroyed. When an argument is passed from a caller to a callee, it is

pushed on the stack; when a callee returns to the caller, the arguments

are popped out the stack. The local variables and arguments are

automatically allocated upon enter a function and destroyed after

exiting a function, that’s why it’s called automatic variables.

A base frame pointer points to the start of the current function

frame, and is kept in ebp register. Whenever a function is called, it is

allocated with its own dedicated storage on stack, called stack frame.
A stack frame is where all local variables and arguments of a function

are placed on a stack15. 15 Data and only data are exclusively
allocated on stack for every stack
frame. No code resides here.When a function needs a local variable or an argument, it uses ebp

to access a variable:

� All local variables are allocated after the ebp pointer. Thus, to

access a local variable, a number is subtracted from ebp to reach

the location of the variable.

x86 assembly and c 101

� All arguments are allocated before ebp pointer. To access an ar-

gument, a number is added to ebp to reach the location of the

argument.

� The ebp itself pointer points to the return address of its caller.

Previous Frame Current Frame
Function Arguments ebp Local variables

A1 A2 A3 An Return Address Old ebp L1 L2 L3 Ln
Figure 4.9.5: Function arguments
and local variablesA = Argument

L = Local Variable

Here is an example to make it more concrete:

Source

int add(int a, int b) {

int i = a + b;

return i;

}

Assembly

080483db <add>:

#include <stdint.h>

int add(int a, int b) {

80483db: push ebp

80483dc: mov ebp,esp

80483de: sub esp,0x10

int i = a + b;

80483e1: mov edx,DWORD PTR [ebp+0x8]

80483e4: mov eax,DWORD PTR [ebp+0xc]

80483e7: add eax,edx

80483e9: mov DWORD PTR [ebp-0x4],eax

return i;

80483ec: mov eax,DWORD PTR [ebp-0x4]

}

102 operating system: from 0 to 1

80483ef: leave

80483f0: ret

In the assembly listing, [ebp-0x4] is the local variable i, since it is

allocated after ebp, with the length of 4 bytes (an int). On the other

hand, a and b are arguments and can be accessed with ebp:

� [ebp+0x8] accesses a.

� [ebp+0xc] access b.

For accessing arguments, the rule is that the closer a variable on stack

to ebp, the closer it is to a function name.

ebp+0xc ebp+0x8 ebp+0x4 ebp
↓ ↓ ↓ ↓

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
0x10000 b a Return Address Old ebp

ebp+0x8 ebp+0x4
↓ ↓

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
0xffe0 N i

Figure 4.9.6: Function arguments
and local variables in memoryN = Next local variable starts here

From the figure, we can see that a and b are laid out in memory

with the exact order as written in C, relative to the return address.

4.9.5 Function Call and Return

Source

#include <stdio.h>

int add(int a, int b) {

int local = 0x12345;

return a + b;

}

int main(int argc, char *argv[]) {

x86 assembly and c 103

add(1,1);

return 0;

}

Assembly

For every function call, gcc pushes arguments on the stack in

reversed order with the push instructions. That is, the arguments

pushed on stack are in reserved order as it is written in high level

C code, to ensure the relative order between arguments, as seen

in previous section how function arguments and local variables

are laid out. Then, gcc generates a call instruction, which then

implicitly pushes a return address before transferring the control to

add function:

080483f2 <main>:

int main(int argc, char *argv[]) {

80483f2: push ebp

80483f3: mov ebp,esp

add(1,2);

80483f5: push 0x2

80483f7: push 0x1

80483f9: call 80483db <add>

80483fe: add esp,0x8

return 0;

8048401: mov eax,0x0

}

8048406: leave

8048407: ret

Upon finishing the call to add function, the stack is restored by adding

0x8 to stack pointer esp (which is equivalent to 2 pop instructions).

Finally, a leave instruction is executed and main returns with a ret

instruction. A ret instruction transfers the program execution back to

the caller to the instruction right after the call instruction, the add

instruction. The reason ret can return to such location is that the

104 operating system: from 0 to 1

return address implicitly pushed by the call instruction, which is the

address right after the call instruction; whenever the CPU executes

ret instruction, it retrieves the return address that sits right after all

the arguments on the stack:

At the end of a function, gcc places a leave instruction to clean

up all spaces allocated for local variables and restore the frame pointer

to frame pointer of the caller.

080483db <add>:

#include <stdio.h>

int add(int a, int b) {

80483db: push ebp

80483dc: mov ebp,esp

80483de: sub esp,0x10

int local = 0x12345;

80483e1: DWORD PTR [ebp-0x4],0x12345

return a + b;

80483e8: mov edx,DWORD PTR [ebp+0x8]

80483eb: mov eax,DWORD PTR [ebp+0xc]

80483ee: add eax,edx

}

80483f0: leave

80483f1: ret

Exercise 4.9.3. The above code that gcc generated for function

calling is actually the standard method x86 defined. Read chapter 6,

“Produce Calls, Interrupts, and Exceptions”, Intel manual volume 1.

4.9.6 Loop

Loop is simply resetting the instruction pointer to an already executed

instruction and starting from there all over again. A loop is just one

application of jmp instruction. However, because looping is a pervasive

pattern, it earned its own syntax in C.

Source

#include <stdio.h>

x86 assembly and c 105

int main(int argc, char *argv[]) {

for (int i = 0; i < 10; i++) {

}

return 0;

}

Assembly

080483db <main>:

#include <stdio.h>

int main(int argc, char *argv[]) {

80483db: push ebp

80483dc: mov ebp,esp

80483de: sub esp,0x10

for (int i = 0; i < 10; i++) {

80483e1: mov DWORD PTR [ebp-0x4],0x0

80483e8: jmp 80483ee <main+0x13>

80483ea: add DWORD PTR [ebp-0x4],0x1

80483ee: cmp DWORD PTR [ebp-0x4],0x9

80483f2: jle 80483ea <main+0xf>

}

return 0;

80483f4: b8 00 00 00 00 mov eax,0x0

}

80483f9: c9 leave

80483fa: c3 ret

80483fb: 66 90 xchg ax,ax

80483fd: 66 90 xchg ax,ax

80483ff: 90 nop

The colors mark corresponding high level code to assembly code:

1. The red instruction initialize i to 0.

2. The green instructions compare i to 10 by using jle and com-

pare it to 9. If true, jump to 80483ea for another iteration.

106 operating system: from 0 to 1

3. The blue instruction increase i by 1, making the loop able to

terminate once the terminate condition is satisfied.

Exercise 4.9.4. Why does the increment instruction (the blue

instruction) appears before the compare instructions (the green

instructions)?

Exercise 4.9.5. What assembly code can be generated for while

and do...while?

4.9.7 Conditional

Again, conditional in C with if...else... construct is just another

application of jmp instruction under the hood. It is also a pervasive

pattern that earned its own syntax in C.

Source

#include <stdio.h>

int main(int argc, char *argv[]) {

int i = 0;

if (argc) {

i = 1;

} else {

i = 0;

}

return 0;

}

Assembly

int main(int argc, char *argv[]) {

80483db: push ebp

80483dc: mov ebp,esp

80483de: sub esp,0x10

int i = 0;

x86 assembly and c 107

80483e1: mov DWORD PTR [ebp-0x4],0x0

if (argc) {

80483e8: cmp DWORD PTR [ebp+0x8],0x0

80483ec: je 80483f7 <main+0x1c>

i = 1;

80483ee: mov DWORD PTR [ebp-0x4],0x1

80483f5: jmp 80483fe <main+0x23>

} else {

i = 0;

80483f7: mov DWORD PTR [ebp-0x4],0x0

}

return 0;

80483fe: mov eax,0x0

}

8048403: leave

8048404: ret

The generated assembly code follows the same order as the corre-

sponding high level syntax:

� red instructions represents if branch.

� blue instructions represents else branch.

� green instruction is the exit point for both if and else branch.

if branch first compares whether argc is false (equal to 0) with

cmp instruction. If true, it proceeds to else branch at 80483f7.

Otherwise, if branch continues with the code of its branch, which

is the next instruction at 80483ee for copying 1 to i. Finally, it

skips over else branch and proceeds to 80483fe, which is the next

instruction pasts the if..else... construct.

else branch is entered when cmp instruction from if branch is true.

else branch starts at 80483f7, which is the first instruction of

else branch. The instruction copies 0 to i, and proceeds naturally

to the next instruction pasts the if...else... construct without

any jump.

5
The Anatomy of a Program

Every program consists of code and data, and only those two com-

ponents made up a program. However, if a program consists purely

code and data of its own, from the perspective of an operating system

(as well as human), it does not know in a program, which block of

binary is a program and which is just raw data, where in the program

to start execution, which region of memory should be protected and

which is free to modify. For that reason, each program carries extra

metadata to communicate with the operating system how to handle

the program.

When a source file is compiled, the generated machine code is

stored into an object file, which is just a block of binary. One or more object file
object files can be combined to produce an executable binary, which is executable binary
a complete program runnable in an operating system.

readelf is a program that recognizes and displays the ELF me-

tadata of a binary file, be it an object file or an executable binary.

ELF , or Executable and Linkable Format, is the content at the very

beginning of an executable to provide an operating system necessary

information to load into main memory and run the executable. ELF

can be thought of similar to the table of contents of a book. In a book,

a table of contents list the page numbers of the main sections, sub-

sections, sometimes even figures and tables for easy lookup. Similarly,

110 operating system: from 0 to 1

ELF lists various sections used for code and data, and the memory

addresses of each symbol along with other information.

An ELF binary is composed of:

� An ELF header : the very first section of an executable that descri- ELF header
bes the file’s organization.

� A program header table: is an array of fixed-size structures that program header table
describes segments of an executable.

� A section header table: is an array of fixed-size structures that section header table
describes sections of an executable.

� Segments and sections are the main content of an ELF binary, Segments and sections
which are the code and data, divided into chunks of different purpo-

ses.

A segment is a composition of zero or more sections and is directly

loaded by an operating system at runtime.

A section is a block of binary that is either:

– actual program code and data that is available in memory when

a program runs.

– metadata about other sections used only in the linking process,

and disappear from the final executable.

Linker uses sections to build segments.

...

.data

.rodata

.text

Program header table

ELF header

Section header table

{
{

Figure 5.0.1: ELF - Linking
View vs Executable View (Source:
Wikipedia)

the anatomy of a program 111

Later we will compile our kernel as an ELF executable with GCC,

and explicitly specify how segments are created and where they are lo-

aded in memory through the use a linker script, a text file to instruct

how a linker should generate a binary. For now, we will examine the

anatomy of an ELF executable in detail.

5.1 Reference documents:

The ELF specification is bundled as a man page in Linux: ELF specification

$ man elf

It is a useful resource to understand and implement ELF. However,

it will be much easier to use after you finish this chapter, as the

specification mixes implementation details in it.

The default specification is a generic one, in which every ELF im-

plementation follows. However, each platform provides extra features

unique to it. The ELF specification for x86 is currently maintained

on Github by H.J. Lu: https://github.com/hjl-tools/x86-psABI/

wiki/X86-psABI.

Platform-dependent details are referred to as “processor specific” in

the generic ELF specification. We will not explore these details, but

study the generic details, which are enough for crafting an ELF binary

image for our operating system.

5.2 ELF header

To see the information of an ELF header:

$ readelf -h hello

The output:

https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI
https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI

112 operating system: from 0 to 1

Output ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2’s complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: Advanced Micro Devices X86-64

Version: 0x1

Entry point address: 0x400430

Start of program headers: 64 (bytes into file)

Start of section headers: 6648 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 9

Size of section headers: 64 (bytes)

Number of section headers: 31

Section header string table index: 28

Let’s go through each field:

Magic

Displays the raw bytes that uniquely addresses a file is an ELF

executable binary. Each byte gives a brief information.

In the example, we have the following magic bytes:

Output Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Examine byte by byte:

the anatomy of a program 113

Byte Description

7f 45 4c 46 Predefined values. The first byte is always

7F, the remaining 3 bytes represent the

string “ELF”.

02 See Class field below.

01 See Data field below.

01 See Version field below.

00 See OS/ABI field below.

00 00 00 00 00

00 00 00

Padding bytes. These bytes are unused

and are always set to 0. Padding bytes are

added for proper alignment, and is

reserved for future use when more

information is needed.

Class

A byte in Magic field. It specifies the class or capacity of a file.

Possible values:

Value Description

0 Invalid class

1 32-bit objects

2 64-bit objects

Data

A byte in Magic field. It specifies the data encoding of the processor-

specific data in the object file.

Possible values:

Value Description

0 Invalid data encoding

1 Little endian, 2’s complement

2 Big endian, 2’s complement

114 operating system: from 0 to 1

Version

A byte in Magic. It specifies the ELF header version number.

Possible values:
Value Description

0 Invalid version

1 Current version

OS/ABI

A byte in Magic field. It specifies the target operating system ABI.

Originally, it was a padding byte.

Possible values: Refer to the latest ABI document, as it is a long

list of different operating systems.

Type

Identifies the object file type.

Value Description

0 No file type

1 Relocatable file

2 Executable file

3 Shared object file

4 Core file

0xff00 Processor specific, lower bound

0xffff Processor specific, upper bound
The values from 0xff00 to 0xffff are reserved for a processor to

define additional file types meaningful to it.

Machine

Specifies the required architecture value for an ELF file e.g. x86_64,

MIPS, SPARC, etc. In the example, the machine is of x86_64

architecture.

Possible values: Please refer to the latest ABI document, as it is a

long list of different architectures.

Version

Specifies the version number of the current object file (not the

version of the ELF header, as the above Version field specified).

the anatomy of a program 115

Entry point address

Specifies the memory address where the very first code to be exe-

cuted. The address of main function is the default in a normal

application program, but it can be any function by explicitly spe-

cifying the function name to gcc. For the operating system we

are going to write, this is the single most important field that we

need to retrieve to bootstrap our kernel, and everything else can be

ignored.

Start of program headers

The offset of the program header table, in bytes. In the example,

this number is 64 bytes, which means the 65th byte, or <start

address> + 64, is the start address of the program header table.

That is, if a program is loaded at address 0x10000 in memory, then

the start address is 0x10000 (the very first byte of Magic field,

where the value 0x7f resides) and the start address of program

header table is 0x10000 + 0x40 = 0x10040.

Start of section headers

The offset of the section header table in bytes, similar to the start

of program headers. In the example, it is 6648 bytes into file.

Flags

Hold processor-specific flags associated with the file. When the pro-

gram is loaded, in a x86 machine, EFLAGS register is set according

to this value. In the example, the value is 0x0, which means EFLAGS

register is in a clear state.

Size of this header

Specifies the total size of ELF header’s size in bytes. In the exam-

ple, it is 64 bytes, which is equivalent to Start of program headers.

Note that these two numbers are not necessary equivalent, as pro-

gram header table might be placed far away from the ELF header.

The only fixed component in the ELF executable binary is the ELF

header, which appears at the very beginning of the file.

Size of program headers

116 operating system: from 0 to 1

Specifies the size of each program header in bytes. In the example,

it is 64 bytes.

Number of program headers

Specifies the total number of program headers. In the example, the

file has a total of 9 program headers.

Size of section headers

Specifies the size of each section header in bytes. In the example, it

is 64 bytes.

Number of section headers

Specifies the total number of section headers. In the example, the

file has a total of 31 section headers. In a section header table, the

first entry in the table is always an empty section.

Section header string table index

Specifies the index of the header in the section header table that

points to the section that holds all null-terminated strings. In the

example, the index is 28, which means it’s the 28th entry of the

table.

5.3 Section header table

As we know already, code and data compose a program. However, not

all types of code and data have the same purpose. For that reason,

instead of a big chunk of code and data, they are divided into smaller

chunks, and each chunk must satisfy these conditions (according to

gABI):

� Every section in an object file has exactly one section header descri-

bing it. But, section headers may exist that do not have a section.

� Each section occupies one contiguous (possibly empty) sequence of

bytes within a file. That means, there’s no two regions of bytes that

are the same section.

� Sections in a file may not overlap. No byte in a file resides in more

than one section.

the anatomy of a program 117

� An object file may have inactive space. The various headers and the

sections might not “cover” every byte in an object file. The contents

of the inactive data are unspecified.

To get all the headers from an executable binary e.g. hello, use the

following command:

$ readelf -S hello

Here is a sample output (do not worry if you don’t understand the

output. Just skim to get your eyes familiar with it. We will dissect it

soon enough):

Output There are 31 section headers, starting at offset 0x19c8:

Section Headers:

[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[0] NULL 0000000000000000 00000000

0000000000000000 0000000000000000 0 0 0

[1] .interp PROGBITS 0000000000400238 00000238

000000000000001c 0000000000000000 A 0 0 1

[2] .note.ABI-tag NOTE 0000000000400254 00000254

0000000000000020 0000000000000000 A 0 0 4

[3] .note.gnu.build-i NOTE 0000000000400274 00000274

0000000000000024 0000000000000000 A 0 0 4

[4] .gnu.hash GNU_HASH 0000000000400298 00000298

000000000000001c 0000000000000000 A 5 0 8

[5] .dynsym DYNSYM 00000000004002b8 000002b8

0000000000000048 0000000000000018 A 6 1 8

[6] .dynstr STRTAB 0000000000400300 00000300

0000000000000038 0000000000000000 A 0 0 1

[7] .gnu.version VERSYM 0000000000400338 00000338

0000000000000006 0000000000000002 A 5 0 2

[8] .gnu.version_r VERNEED 0000000000400340 00000340

0000000000000020 0000000000000000 A 6 1 8

118 operating system: from 0 to 1

[9] .rela.dyn RELA 0000000000400360 00000360

0000000000000018 0000000000000018 A 5 0 8

[10] .rela.plt RELA 0000000000400378 00000378

0000000000000018 0000000000000018 AI 5 24 8

[11] .init PROGBITS 0000000000400390 00000390

000000000000001a 0000000000000000 AX 0 0 4

[12] .plt PROGBITS 00000000004003b0 000003b0

0000000000000020 0000000000000010 AX 0 0 16

[13] .plt.got PROGBITS 00000000004003d0 000003d0

0000000000000008 0000000000000000 AX 0 0 8

[14] .text PROGBITS 00000000004003e0 000003e0

0000000000000192 0000000000000000 AX 0 0 16

[15] .fini PROGBITS 0000000000400574 00000574

0000000000000009 0000000000000000 AX 0 0 4

[16] .rodata PROGBITS 0000000000400580 00000580

0000000000000004 0000000000000004 AM 0 0 4

[17] .eh_frame_hdr PROGBITS 0000000000400584 00000584

000000000000003c 0000000000000000 A 0 0 4

[18] .eh_frame PROGBITS 00000000004005c0 000005c0

0000000000000114 0000000000000000 A 0 0 8

[19] .init_array INIT_ARRAY 0000000000600e10 00000e10

0000000000000008 0000000000000000 WA 0 0 8

[20] .fini_array FINI_ARRAY 0000000000600e18 00000e18

0000000000000008 0000000000000000 WA 0 0 8

[21] .jcr PROGBITS 0000000000600e20 00000e20

0000000000000008 0000000000000000 WA 0 0 8

[22] .dynamic DYNAMIC 0000000000600e28 00000e28

00000000000001d0 0000000000000010 WA 6 0 8

[23] .got PROGBITS 0000000000600ff8 00000ff8

0000000000000008 0000000000000008 WA 0 0 8

[24] .got.plt PROGBITS 0000000000601000 00001000

0000000000000020 0000000000000008 WA 0 0 8

[25] .data PROGBITS 0000000000601020 00001020

0000000000000010 0000000000000000 WA 0 0 8

the anatomy of a program 119

[26] .bss NOBITS 0000000000601030 00001030

0000000000000008 0000000000000000 WA 0 0 1

[27] .comment PROGBITS 0000000000000000 00001030

0000000000000034 0000000000000001 MS 0 0 1

[28] .shstrtab STRTAB 0000000000000000 000018b6

000000000000010c 0000000000000000 0 0 1

[29] .symtab SYMTAB 0000000000000000 00001068

0000000000000648 0000000000000018 30 47 8

[30] .strtab STRTAB 0000000000000000 000016b0

0000000000000206 0000000000000000 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings), l (large)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

The first line:

There are 31 section headers, starting at offset 0x19c8

summarizes the total number of sections in the file, and where the

address where it starts. Then, comes the listing section by section

with the following header, is also the format of each section output:

Output [Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

Each section has two lines with different fields:

Nr The index of each section.

Name The name of each section.

Type This field (in a section header) identifies the type of each section.

Types classify sections (similar to types in programming languages

are used by a compiler).

Address The starting virtual address of each section. Note that the

addresses are virtual only when a program runs in an OS with

120 operating system: from 0 to 1

support for virtual memory enabled. In our OS, since we run on

bare metal, the addresses will all be physical.

Offset The offset of each section into a file. An offset is a distance in offset
bytes, from the first byte of a file to the start of an object, such as a

section or a segment in the context of an ELF binary file.

Size The size in bytes of each section.

EntSize Some sections hold a table of fixed-size entries, such as a

symbol table. For such a section, this member gives the size in

bytes of each entry. The member contains 0 if the section does not

hold a table of fixed-size entries.

Flags describes attributes of a section. Flags together with a type

defines the purpose of a section. Two sections can be of the same

type, but serve different purposes. For example, even though .data

and .text share the same type, .data holds the initialized data of

a program while .text holds executable instructions of a program.

For that reason, .data is given read and write permission, but

not executable. Any attempt to execute code in .data is denied

by the running OS: in Linux, such invalid section usage gives a

segmentation fault.

ELF gives information to enable an OS with such protection mecha-

nism. However, running on bare metal, nothing can prevent from

doing anything. Our OS can execute code in data section, and vice

versa, writing to code section.

Table 5.3.1: Section Flags

Flag Descriptions

W Bytes in this section are writable during execution.

A Memory is allocated for this section during process execution. Some control sections do

not reside in the memory image of an object file; this attribute is off for those sections.

X The section contains executable instructions.

M The data in the section may be merged to eliminate duplication. Each element in the

section is compared against other elements in sections with the same name, type and flags.

Elements that would have identical values at program run-time may be merged.

the anatomy of a program 121

S The data elements in the section consist of null-terminated character strings. The size of

each character is specified in the section header’s EntSize field.

l Specific large section for x86_64 architecture. This flag is not specified in the Generic

ABI but in x86_64 ABI.

I The Info field of this section header holds an index of a section header. Otherwise, the

number is the index of something else.

L Preserve section ordering when linking. If this section is combined with other sections in

the output file, it must appear in the same relative order with respect to those sections, as

the linked-to section appears with respect to sections the linked-to section is combined

with. Apply when the Link field of this section’s header references another section (the

linked-to section)

G This section is a member (perhaps the only one) of a section group.

T This section holds Thread-Local Storage, meaning that each thread has its own distinct

instance of this data. A thread is a distinct execution flow of code. A program can have

multiple threads that pack different pieces of code and execute separately, at the same

time. We will learn more about threads when writing our kernel.

E Link editor is to exclude this section from executable and shared library that it builds

when those objects are not to be further relocated.

x Unknown flag to readelf. It happens because the linking process can be done manually

with a linker like GNU ld (we will later later). That is, section flags can be specified

manually, and some flags are for a customized ELF that the open-source readelf doesn’t

know of.

O This section requires special OS-specific processing (beyond the standard linking rules) to

avoid incorrect behavior. A link editor encounters sections whose headers contain

OS-specific values it does not recognize by Type or Flags values defined by ELF standard,

the link editor should combine those sections.

o All bits included in this flag are reserved for operating system-specific semantics.

p All bits included in this flag are reserved for processor-specific semantics. If meanings are

specified, the processor supplement explains them.

Link and Info are numbers that references the indexes of sections,

symbol table entries, hash table entries. Link field holds the index

of a section, while Info field holds an index of a section, a symbol

table entry or a hash table entry, depends on the type of a section.

Later when writing our OS, we will handcraft the kernel image

122 operating system: from 0 to 1

by explicitly linking the object files (produced by gcc) through

a linker script. We will specify the memory layout of sections by

specifying at what addresses they will appear in the final image.

But we will not assign any section flag and let the linker take care

of it. Nevertheless, knowing which flag does what is useful.

Align is a value that enforces the offset of a section should be di-

visible by the value. Only 0 and positive integral powers of two

are allowed. Values 0 and 1 mean the section has no alignment

constraint.

Example 5.3.1. Output of .interp section:

Output [Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[1] .interp PROGBITS 0000000000400238 00000238

000000000000001c 0000000000000000 A 0 0 1

Nr is 1.

Type is PROGBITS, which means this section is part of the program.

Address is 0x0000000000400238, which means the program is

loaded at this virtual memory address at runtime.

Offset is 0x00000238 bytes into file.

Size is 0x000000000000001c in bytes.

EntSize is 0, which means this section does not have any fixed-size

entry.

Flags are A (Allocatable), which means this section consumes

memory at runtime.

Info and Link are 0 and 0, which means this section links to no

section or entry in any table.

Align is 1, which means no alignment.

Example 5.3.2. Output of the .text section:

Output [14] .text PROGBITS 00000000004003e0 000003e0

0000000000000192 0000000000000000 AX 0 0 16

the anatomy of a program 123

Nr is 14.

Type is PROGBITS, which means this section is part of the program.

Address is 0x00000000004003e0, which means the program is

loaded at this virtual memory address at runtime.

Offset is 0x000003e0 bytes into file.

Size is 0x0000000000000192 in bytes.

EntSize is 0, which means this section does not have any fixed-size

entry.

Flags are A (Allocatable) and X (Executable), which means this

section consumes memory and can be executed as code at runtime.

Info and Link are 0 and 0, which means this section links to no

section or entry in any table.

Align is 16, which means the starting address of the section should

be divisible by 16, or 0x10. Indeed, it is: 0x3e0/0x10 = 0x3e.

5.4 Understand Section in-depth

In this section, we will learn different details of section types and the

purposes of special sections e.g. .bss, .text, .data... by looking

at each section one by one. We will also examine the content of each

section as a hexdump with the commands:

$ readelf -x <section name|section number> <file>

For example, if you want to examine the content of section with

index 25 (the .bss section in the sample output) in the file hello:

$ readelf -x 25 hello

Equivalently, using name instead of index works:

$ readelf -x .data hello

If a section contains strings e.g. string symbol table, the flag -x

can be replaced with -p.

124 operating system: from 0 to 1

NULL marks a section header as inactive and does not have an associa-

ted section. NULL section is always the first entry of section header

table. It means, any useful section starts from 1.

Example 5.4.1. The sample output of NULL section:

Output [Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[0] NULL 0000000000000000 00000000

0000000000000000 0000000000000000 0 0 0

Examining the content, the section is empty:

Output Section ” has no data to dump.

NOTE marks a section with special information that other programs

will check for conformance, compatibility... by a vendor or a system

builder.

Example 5.4.2. In the sample output, we have 2 NOTE sections:

Output [Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[2] .note.ABI-tag NOTE 0000000000400254 00000254

0000000000000020 0000000000000000 A 0 0 4

[3] .note.gnu.build-i NOTE 0000000000400274 00000274

0000000000000024 0000000000000000 A 0 0 4

Examine 2nd section with the command:

$ readelf -x 2 hello

we have:

Output Hex dump of section ’.note.ABI-tag’:

0x00400254 04000000 10000000 01000000 474e5500GNU.

0x00400264 00000000 02000000 06000000 20000000

the anatomy of a program 125

PROGBITS indicates a section holding the main content of a program,

either code or data.

Example 5.4.3. There are many PROGBITS sections:

Output [Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[1] .interp PROGBITS 0000000000400238 00000238

000000000000001c 0000000000000000 A 0 0 1

...

[11] .init PROGBITS 0000000000400390 00000390

000000000000001a 0000000000000000 AX 0 0 4

[12] .plt PROGBITS 00000000004003b0 000003b0

0000000000000020 0000000000000010 AX 0 0 16

[13] .plt.got PROGBITS 00000000004003d0 000003d0

0000000000000008 0000000000000000 AX 0 0 8

[14] .text PROGBITS 00000000004003e0 000003e0

0000000000000192 0000000000000000 AX 0 0 16

[15] .fini PROGBITS 0000000000400574 00000574

0000000000000009 0000000000000000 AX 0 0 4

[16] .rodata PROGBITS 0000000000400580 00000580

0000000000000004 0000000000000004 AM 0 0 4

[17] .eh_frame_hdr PROGBITS 0000000000400584 00000584

000000000000003c 0000000000000000 A 0 0 4

[18] .eh_frame PROGBITS 00000000004005c0 000005c0

0000000000000114 0000000000000000 A 0 0 8

...

[23] .got PROGBITS 0000000000600ff8 00000ff8

0000000000000008 0000000000000008 WA 0 0 8

[24] .got.plt PROGBITS 0000000000601000 00001000

0000000000000020 0000000000000008 WA 0 0 8

[25] .data PROGBITS 0000000000601020 00001020

0000000000000010 0000000000000000 WA 0 0 8

[27] .comment PROGBITS 0000000000000000 00001030

0000000000000034 0000000000000001 MS 0 0 1

126 operating system: from 0 to 1

For our operating system, we only need the following section:

.text

This section holds all the compiled code of a program.

.data

This section holds the initialized data of a program. Since the

data are initialized with actual values, gcc allocates the section

with actual byte in the executable binary.

.rodata

This section holds read-only data, such as fixed-size strings in a

program, e.g. “Hello World”, and others.

.bss

This section, shorts for Block Started by Symbol, holds uni-
nitialized data of a program. Unlike other sections, no space

is allocated for this section in the image of the executable bi-

nary on disk. The section is allocated only when the program is

loaded into main memory.

Other sections are mainly needed for dynamic linking, that is code

linking at runtime for sharing between many programs. To enable

such feature, an OS as a runtime environment must be presented.

Since we run our OS on bare metal, we are effectively creating such

environment. For simplicity, we won’t add dynamic linking to our

OS.

SYMTAB and DYNSYM These sections hold symbol table. A symbol table
is an array of entries that describe symbols in a program. A symbol
is a name assigned to an entity in a program. The types of these

entities are also the types of symbols, and these are the possible

types of an entity:

Example 5.4.4. In the sample output, section 5 and 29 are symbol

tables:

the anatomy of a program 127

Output [Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[5] .dynsym DYNSYM 00000000004002b8 000002b8

0000000000000048 0000000000000018 A 6 1 8

...

[29] .symtab SYMTAB 0000000000000000 00001068

0000000000000648 0000000000000018 30 47 8

To show the symbol table:

$ readelf -s hello

Output consists of 2 symbol tables, corresponding to the two secti-

ons above, .dynsym and .symtab:

Output Symbol table ’.dynsym’ contains 4 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 0000000000000000 0 FUNC GLOBAL DEFAULT UND puts@GLIBC_2.2.5 (2)

2: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.2.5 (2)

3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

Symbol table ’.symtab’ contains 67 entries:

Num: Value Size Type Bind Vis Ndx Name

..

59: 0000000000601040 0 NOTYPE GLOBAL DEFAULT 26 _end

60: 0000000000400430 42 FUNC GLOBAL DEFAULT 14 _start

61: 0000000000601038 0 NOTYPE GLOBAL DEFAULT 26 __bss_start

62: 0000000000400526 32 FUNC GLOBAL DEFAULT 14 main

63: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

64: 0000000000601038 0 OBJECT GLOBAL HIDDEN 25 __TMC_END__

65: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable

66: 00000000004003c8 0 FUNC GLOBAL DEFAULT 11 _init

TLS The symbol is associated with a Thread-Local Storage entity.

Num is the index of an entry in a table.

Value is the virtual memory address where the symbol is located.

128 operating system: from 0 to 1

Size is the size of the entity associated with a symbol.

Type is a symbol type according to table.

NOTYPE The type of a symbol is not specified.

OBJECT The symbol is associated with a data object. In C, any

variable definition is of OBJECT type.

FUNC The symbol is associated with a function or other executa-

ble code.

SECTION The symbol is associated with a section, and exists

primarily for relocation.

FILE The symbol is the name of a source file associated with an

executable binary.

COMMON The symbol labels an uninitialized variable. That is,

when a variable in C is defined as global variable without

an initial value, or as an external variable using the extern

keyword. In other words, these variables stay in .bss section.

Bind is the scope of a symbol.

LOCAL are symbols that are only visible in the object files

that defined them. In C, the static modifier marks a symbol

(e.g. a variable/function) as local to only the file that defines

it.

Example 5.4.5. If we define variables and functions with

static modifer:

hello.c

static int global_static_var = 0;

static void local_func() {

}

int main(int argc, char *argv[])

{

static int local_static_var = 0;

return 0;

the anatomy of a program 129

}

Then we get the static variables listed as local symbols after

compiling:

$ gcc -m32 hello.c -o hello

$ readelf -s hello

Output Symbol table ’.dynsym’ contains 5 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 00000000 0 NOTYPE LOCAL DEFAULT UND

1: 00000000 0 FUNC GLOBAL DEFAULT UND puts@GLIBC_2.0 (2)

2: 00000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

3: 00000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.0 (2)

4: 080484bc 4 OBJECT GLOBAL DEFAULT 16 _IO_stdin_used

Symbol table ’.symtab’ contains 72 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 00000000 0 NOTYPE LOCAL DEFAULT UND

......... output omitted

38: 0804a020 4 OBJECT LOCAL DEFAULT 26 global_static_var

39: 0804840b 6 FUNC LOCAL DEFAULT 14 local_func

40: 0804a024 4 OBJECT LOCAL DEFAULT 26 local_static_var.1938

......... output omitted

GLOBAL are symbols that are accessible by other object files

when linking together. These symbols are primarily non-

static functions and non-static global data. The extern

modifier marks a symbol as externally defined elsewhere but is

accessible in the final executable binary, so an extern variable

is also considered GLOBAL.

Example 5.4.6. Similar to the LOCAL example above, the

output lists many GLOBAL symbols such as main:

Num: Value Size Type Bind Vis Ndx Name

......... output omitted

130 operating system: from 0 to 1

66: 080483e1 10 FUNC GLOBAL DEFAULT 14 main

......... output omitted

WEAK are symbols whose definitions can be redefined. Nor-

mally, a symbol with multiple definitions are reported as an

error by a compiler. However, this constraint is lax when a de-

finition is explicitly marked as weak, which means the default

implementation can be replaced by a different definition at

link time.

Example 5.4.7. Suppose we have a default implementation of

the function add:

hello.c

#include <stdio.h>

__attribute__((weak)) int add(int a, int b) {

printf("warning: function is not implemented.\n")

;

return 0;

}

int main(int argc, char *argv[])

{

printf("add(1,2) is %d\n", add(1,2));

return 0;

}

__attribute__((weak)) is a function attribute. A function function attribute
attribute is extra information for a compiler to handle a

function differently from a normal function. In this example,

weak attribute makes the function add a weak function,which

means the default implementation can be replaced by a diffe-

rent definition at link time. Function attribute is a feature of

a compiler, not standard C.

If we do not supply a different function definition in a different

file (must be in a different file, otherwise gcc reports as an

error), then the default implementation is applied. When the

the anatomy of a program 131

function add is called, it only prints the message: "warning:

function not implemented"and returns 0:

$./hello

warning: function is not implemented.

add(1,2) is 0

However, if we supply a different definition in another file e.g.

math.c:

math.c

int add(int a, int b) {

return a + b;

}

and compile the two files together:

$ gcc math.c hello.c -o hello

Then, when running hello, no warning message is printed and

the correct value is returned.

Weak symbol is a mechanism to provide a default imple-

mentation, but replaceable when a better implementation is

available (e.g. more specialized and optimized) at link-time.

Vis is the visibility of a symbol. The following values are available:

Table 5.4.1: Symbol Visibility

Value Description

DEFAULT The visibility is specified by the binding type of asymbol.

� Global and weak symbols are visible outside of their defining component (executable

file or shared object).

� Local symbols are hidden. See HIDDEN below.

HIDDEN A symbol is hidden when the name is not visible to any other program outside of its

running program.

132 operating system: from 0 to 1

PROTECTED A symbol is protected when it is shared outside of its running program or shared libary

and cannot be overridden. That is, there can only be one definition for this symbol

across running programs that use it. No program can define its own definition of the

same symbol.

INTERNAL Visibility is processor-specific and is defined by processor-specific ABI.

Ndx is the index of a section that the symbol is in. Aside from fixed

index numbers that represent section indexes, index has these

special values:

Table 5.4.2: Symbol Index

Value Description

ABS The index will not be changed by any symbol relocation.

COM The index refers to an unallocated common block.

UND The symbol is undefined in the current object file, which means the symbol depends on

the actual definition in another file. Undefined symbols appears when the object file refers

to symbols that are available at runtime, from shared library.

LORESERVE

HIRESERVE

LORESERVE is the lower boundary of the reserve indexes. Its value is 0xff00.

HIREVERSE is the upper boundary of the reserve indexes. Its value is 0xffff.

The operating system reserves exclusive indexes between LORESERVE and HIRESERVE,

which do not map to any actual section header.

XINDEX The index is larger than LORESERVE. The actual value will be contained in the section

SYMTAB_SHNDX, where each entry is a mapping between a symbol, whose Ndx field is a

XINDEX value, and the actual index value.

Others Sometimes, values such as ANSI_COM, LARGE_COM, SCOM, SUND appear. This means that the

index is processor-specific.

Name is the symbol name.

Example 5.4.8. A C application program always starts from

symbol main. The entry for main in the symbol table in .symtab

section is:

Output Num: Value Size Type Bind Vis Ndx Name

62: 0000000000400526 32 FUNC GLOBAL DEFAULT 14 main

the anatomy of a program 133

The entry shows that:

� main is the 62th entry in the table.

� main starts at address 0x0000000000400526.

� main consumes 32 bytes.

� main is a function.

� main is in global scope.

� main is visible to other object files that use it.

� main is inside the 14th section, which is .text. This is logical,

since .text holds all program code.

STRTAB hold a table of null-terminated strings, called string table.
The first and last byte of this section is always a NULL character.

A string table section exists because a string can be reused by

more than one section to represent symbol and section names, so

a program like readelf or objdump can display various objects in

a program, e.g. variable, functions, section names, in a human-

readable text instead of its raw hex address.

Example 5.4.9. In the sample output, section 28 and 30 are of

STRTAB type:

Output [Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[28] .shstrtab STRTAB 0000000000000000 000018b6

000000000000010c 0000000000000000 0 0 1

[30] .strtab STRTAB 0000000000000000 000016b0

0000000000000206 0000000000000000 0 0 1

.shstrtab holds all the section names.

.strtab holds the symbols e.g. variable names, function names,

struct names, etc., in a C program, but not fixed-size null-

terminated C strings; the C strings are kept in .rodata section.

Example 5.4.10. Strings in those section can be inspected with

the command:

134 operating system: from 0 to 1

$ readelf -p 29 hello

The output shows all the section names, with the offset (also the

string index) into .shstrtab the table to the left:

Output String dump of section ’.shstrtab’:

[1] .symtab

[9] .strtab

[11] .shstrtab

[1b] .interp

[23] .note.ABI-tag

[31] .note.gnu.build-id

[44] .gnu.hash

[4e] .dynsym

[56] .dynstr

[5e] .gnu.version

[6b] .gnu.version_r

[7a] .rela.dyn

[84] .rela.plt

[8e] .init

[94] .plt.got

[9d] .text

[a3] .fini

[a9] .rodata

[b1] .eh_frame_hdr

[bf] .eh_frame

[c9] .init_array

[d5] .fini_array

[e1] .jcr

[e6] .dynamic

[ef] .got.plt

[f8] .data

[fe] .bss

[103] .comment

the anatomy of a program 135

The actual implementation of a string table is a contiguous array of

null-terminated strings. The index of a string is the position of its

first character in the array. For example, in the above string table,

.symtab is at index 1 in the array (NULL character is at index 0).

The length of .symtab is 7, plus the NULL character, which occurs

8 bytes in total. So, .strtab starts at index 9, and so on.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00000000 \0 . s y m t a b \0 . s t r t a b

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00000010 \0 . s h s t r t a b \0 . i n t e

.... and so on
Figure 5.4.1: String table in me-
mory of .shstrtab. A red number
is the starting index of a string.Similarly, the output of .strtab:

Output String dump of section ’.strtab’:

[1] crtstuff.c

[c] __JCR_LIST__

[19] deregister_tm_clones

[2e] __do_global_dtors_aux

[44] completed.7585

[53] __do_global_dtors_aux_fini_array_entry

[7a] frame_dummy

[86] __frame_dummy_init_array_entry

[a5] hello.c
[ad] __FRAME_END__

[bb] __JCR_END__

[c7] __init_array_end

[d8] _DYNAMIC

[e1] __init_array_start

[f4] __GNU_EH_FRAME_HDR

[107] _GLOBAL_OFFSET_TABLE_

[11d] __libc_csu_fini

[12d] _ITM_deregisterTMCloneTable

[149] j

136 operating system: from 0 to 1

[14b] _edata

[152] __libc_start_main@@GLIBC_2.2.5

[171] __data_start

[17e] __gmon_start__

[18d] __dso_handle

[19a] _IO_stdin_used

[1a9] __libc_csu_init

[1b9] __bss_start

[1c5] main
[1ca] _Jv_RegisterClasses

[1de] __TMC_END__

[1ea] _ITM_registerTMCloneTable

HASH holds a symbol hash table, which supports symbol table access.

DYNAMIC holds information for dynamic linking.

NOBITS is similar to PROGBITS but occupies no space.

Example 5.4.11. .bss section holds uninitialized data, which me-

ans the bytes in the section can have any value. Until a operating

system actually loads the section into main memory, there is no

need to allocate space for the binary image on disk to reduce the

size of a binary file. Here is the details of .bss from the example

output:

Output [Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[26] .bss NOBITS 0000000000601038 00001038

0000000000000008 0000000000000000 WA 0 0 1

[27] .comment PROGBITS 0000000000000000 00001038

0000000000000034 0000000000000001 MS 0 0 1

In the above output, the size of the section is only 8 bytes, while

the offsets of both sections are the same, which means .bss consu-

mes no byte of the executable binary on disk.

the anatomy of a program 137

Notice that the .comment section has no starting address. This

means that this section is discarded when the executable binary is

loaded into memory.

REL holds relocation entries without explicit addends. This type will

be explained in details in 8.1

RELA holds relocation entries with explicit addends. This type will be

explained in details in 8.1

INIT_ARRAY is an array of function pointers for program initialization.

When an application program runs, before getting to main(),

initialization code in .init and this section are executed first. The

first element in this array is an ignored function pointer.

It might not make sense when we can include initialization code in

the main() function. However, for shared object files where there

are no main(), this section ensures that the initialization code from

an object file executes before any other code to ensure a proper

environment for main code to run properly. It also makes an object

file more modularity, as the main application code needs not to

be responsible for initializing a proper environment for using a

particular object file, but the object file itself. Such a clear division

makes code cleaner.

However, we will not use any .init and INIT_ARRAY sections in

our operating system, for simplicity, as initializing an environment

is part of the operating-system domain.

Example 5.4.12. To use the INIT_ARRAY, we simply mark a

function with the attribute constructor:

hello.c

#include <stdio.h>

__attribute__((constructor)) static void init1(){

printf("%s\n", __FUNCTION__);

}

__attribute__((constructor)) static void init2(){

138 operating system: from 0 to 1

printf("%s\n", __FUNCTION__);

}

int main(int argc, char *argv[])

{

printf("hello␣world\n");

return 0;

}

The program automatically calls the constructor without explicitly

invoking it:

$ gcc -m32 hello.c -o hello

$./hello

init1

init2

hello world

Example 5.4.13. Optionally, a constructor can be assigned with a

priority from 101 onward. The priorities from 0 to 100 are reserved

for gcc. If we want init2 to run before init1, we give it a higher

priority:

hello.c

#include <stdio.h>

__attribute__((constructor(102))) static void init1(){

printf("%s\n", __FUNCTION__);

}

__attribute__((constructor(101))) static void init2(){

printf("%s\n", __FUNCTION__);

}

the anatomy of a program 139

int main(int argc, char *argv[])

{

printf("hello␣world\n");

return 0;

}

The call order should be exactly as specified:

$ gcc -m32 hello.c -o hello

$./hello

init2

init1

hello world

Example 5.4.14. We can add initialization functions using another

method:

hello.c

#include <stdio.h>

void init1() {

printf("%s\n", __FUNCTION__);

}

void init2() {

printf("%s\n", __FUNCTION__);

}

/* Without typedef, init is a definition of a function

pointer.

With typedef, init is a declaration of a type.*/

typedef void (*init)();

140 operating system: from 0 to 1

__attribute__((section(".init_array"))) init init_arr[2]

= {init1, init2};

int main(int argc, char *argv[])

{

printf("hello␣world!\n");

return 0;

}

The attribute section(“...”) put a function into a particu-

lar section rather then the default .text. In this example, it is

.init_arary. Again, the program automatically calls the construc-

tors without explicitly invoking it:

$ gcc -m32 hello.c -o hello

$./hello

init1

init2

hello world!

FINI_ARRAY is an array of function pointers for program termination,

called after exiting main(). If the application terminate abnormally,

such as through abort() call or a crash, the .finit_array is

ignored.

Example 5.4.15. A destructor is automatically called after exiting

main(), if one or more available:

hello.c

#include <stdio.h>

__attribute__((destructor)) static void destructor(){

printf("%s\n", __FUNCTION__);

}

the anatomy of a program 141

int main(int argc, char *argv[])

{

printf("hello␣world\n");

return 0;

}

$ gcc -m32 hello.c -o hello

$./hello

hello world

destructor

PREINIT_ARRAY is an array of function pointers that are invoked

before all other initialization functions in INIT_ARRAY.

Example 5.4.16. To use the .preinit_array, the only way to put

functions into this section is to use the attribute section():

hello.c

#include <stdio.h>

void preinit1() {

printf("%s\n", __FUNCTION__);

}

void preinit2() {

printf("%s\n", __FUNCTION__);

}

void init1() {

printf("%s\n", __FUNCTION__);

}

void init2() {

printf("%s\n", __FUNCTION__);

142 operating system: from 0 to 1

}

typedef void (*preinit)();

typedef void (*init)();

__attribute__((section(".init_array"))) preinit

preinit_arr[2] = {preinit1, preinit2};

__attribute__((section(".init_array"))) init init_arr[2]

= {init1, init2};

int main(int argc, char *argv[])

{

printf("hello␣world!\n");

return 0;

}

$ gcc -m32 hello2.c -o hello2

$./hello2

preinit1

preinit2

init1

init2

hello world!

GROUP defines a section group, which is the same section that appears

in different object files but when merged into the final executable

binary file, only one copy is kept and the rest in other object files

are discarded. This section is only relevant in C++ object files, so

we will not examine further.

SYMTAB_SHNDX is a section containing extended section indexes, that

are associated with a symbol table. This section only appears

when the Ndx value of an entry in the symbol table exceeds the

the anatomy of a program 143

LORESERVE value. This section then maps between a symbol and an

actual index value of a section header.

Upon understanding section types, we can understand the number in

Link and Info fields:

Type Link Info
DYNAMIC Entries in this section uses the section

index of the dynamic string table.
0

HASH
GNU_HASH

The section index of the symbol table
to which the hash table applies.

0

REL
RELA

The section index of the associated
symbol table.

The section index to which the
relocation applies.

SYMTAB
DYNSYM

The section index of the associated
string table.

One greater than the symbol table
index of the last local symbol.

GROUP The section index of the associated
symbol table.

The symbol index of an entry in the
associated symbol table. The name of
the specified symbol table entry
provides a signature for the section
group.

SYMTAB_SHNDX The section header index of the
associated symbol table.

Table 5.4.3: The meannings
of Link and Info depend on
section types. interpretationExercise 5.4.1. Verify that the value of the Link field of a SYMTAB

section is the index of a STRTAB section.

Exercise 5.4.2. Verify that the value of the Info field of a SYMTAB

section is the index of last local symbol + 1. It means, in the symbol

table, from the index listed by Info field onward, no local symbol

appears.

Exercise 5.4.3. Verify that the value of the Info field of a REL section

is the index of the SYMTAB section.

Exercise 5.4.4. Verify that the value of the Link field of a REL section

is the index of the section where relocation is applied. For example. if

the section is .rel.text, then the relocating section should be .text.

144 operating system: from 0 to 1

5.5 Program header table

A program header table is an array of program headers that defines the

memory layout of a program at runtime.

A program header is a description of a program segment.

A program segment is a collection of related sections. A segment

contains zero or more sections. An operating system when loading a

program, only use segments, not sections. To see the information of a

program header table, we use the -l option with readelf:

$ readelf -l <binary file>

Similar to a section, a program header also has types:

PHDR specifies the location and size of the program header table itself,

both in the file and in the memory image of the program

INTERP specifies the location and size of a null-terminated path name

to invoke as an interpreter for linking runtime libraries.

LOAD specifies a loadable segment. That is, this segment is loaded into

main memory.

DYNAMIC specifies dynamic linking information.

NOTE specifies the location and size of auxiliary information.

TLS specifies the Thread-Local Storage template, which is formed from

the combination of all sections with the flag TLS.

GNU_STACK indicates whether the program’s stack should be made

executable or not. Linux kernel uses this type.

A segment also has permission, which is a combination of these 3

values:

Table 5.5.1: Segment Permission
Permission Description

R Readable
W Writable
E Executable� Read (R)

� Write (W)

� Execute (E)

the anatomy of a program 145

Example 5.5.1. The command to get the program header table:

$ readelf -l hello

Output:

Output Elf file type is EXEC (Executable file)

Entry point 0x400430

There are 9 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align

PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040

0x00000000000001f8 0x00000000000001f8 R E 8

INTERP 0x0000000000000238 0x0000000000400238 0x0000000000400238

0x000000000000001c 0x000000000000001c R 1

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000

0x000000000000070c 0x000000000000070c R E 200000

LOAD 0x0000000000000e10 0x0000000000600e10 0x0000000000600e10

0x0000000000000228 0x0000000000000230 RW 200000

DYNAMIC 0x0000000000000e28 0x0000000000600e28 0x0000000000600e28

0x00000000000001d0 0x00000000000001d0 RW 8

NOTE 0x0000000000000254 0x0000000000400254 0x0000000000400254

0x0000000000000044 0x0000000000000044 R 4

GNU_EH_FRAME 0x00000000000005e4 0x00000000004005e4 0x00000000004005e4

0x0000000000000034 0x0000000000000034 R 4

GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

0x0000000000000000 0x0000000000000000 RW 10

GNU_RELRO 0x0000000000000e10 0x0000000000600e10 0x0000000000600e10

0x00000000000001f0 0x00000000000001f0 R 1

Section to Segment mapping:

Segment Sections...

146 operating system: from 0 to 1

00

01 .interp

02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr

.gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .plt.got .text .fini

.rodata .eh_frame_hdr .eh_frame

03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss

04 .dynamic

05 .note.ABI-tag .note.gnu.build-id

06 .eh_frame_hdr

07

08 .init_array .fini_array .jcr .dynamic .got

In the sample output, LOAD segment appears twice:

Output LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000

0x000000000000070c 0x000000000000070c R E 200000

LOAD 0x0000000000000e10 0x0000000000600e10 0x0000000000600e10

0x0000000000000228 0x0000000000000230 RW 200000

Why? Notice the permission:

� the upper LOAD has Read and Execute permission. This is a text
segment. A text segment contains read-only instructions and read-

only data.

� the lower LOAD has Read and Write permission. This is a data
segment. It means that this segment can be read and written

to, but is not allowed to be used as executable code, for security

reason.

Then, LOAD contains the following sections:

Output 02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr

.gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .plt.got .text .fini

.rodata .eh_frame_hdr .eh_frame

03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss

the anatomy of a program 147

The first number is the index of a program header in program

header table, and the remaining text is the list of all sections within

a segment. Unfortunately, readelf does not print the index, so a

user needs to keep track manually which segment is of which index.

First segment starts at index 0, second at index 1 and so on. LOAD

are segments at index 2 and 3. As can be seen from the two lists of

sections, most sections are loadable and is available at runtime.

5.6 Segments vs sections

As mentioned earlier, an operating system loads program segments,

not sections. However, a question arises: Why doesn’t the operating

system use sections instead? After all, a section also contains similar

information to a program segment, such as the type, the virtual me-

mory address to be loaded, the size, the attributes, the flags and align.

As explained before, a segment is the perspective of an operating sy-

stem, while a section is the perspective of a linker. To understand why,

looking into the structure of a segment, we can easily see:

� A segment is a collection of sections. It means that sections are

logically grouped together by their attributes. For example, all

sections in a LOAD segment are always loaded by the operating

system; all sections have the same permission, either a RE (Read

+ Execute) for executable sections, or RW (Read + Write) for data

sections.

� By grouping sections into a segment, it is easier for an operating

system to batch load sections just once by loading the start and end

of a segment, instead of loading section by section.

� Since a segment is for loading a program and a section is for linking

a program, all the sections in a segment is within its start and end
virtual memory addresses of a segment.

To see the last point clearer, consider an example of linking two object

files. Suppose we have two source files:

148 operating system: from 0 to 1

hello.c

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello World\n");

return 0;

}

and:

math.c

int add(int a, int b) {

return a + b;

}

Now, compile the two source files as object files:

$ gcc -m32 -c math.c

$ gcc -m32 -c hello.c

Then, we check the sections of math.o:

$ readelf -S math.o

Output There are 11 section headers, starting at offset 0x1a8:

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .text PROGBITS 00000000 000034 00000d 00 AX 0 0 1

[2] .data PROGBITS 00000000 000041 000000 00 WA 0 0 1

[3] .bss NOBITS 00000000 000041 000000 00 WA 0 0 1

[4] .comment PROGBITS 00000000 000041 000035 01 MS 0 0 1

[5] .note.GNU-stack PROGBITS 00000000 000076 000000 00 0 0 1

[6] .eh_frame PROGBITS 00000000 000078 000038 00 A 0 0 4

the anatomy of a program 149

[7] .rel.eh_frame REL 00000000 00014c 000008 08 I 9 6 4

[8] .shstrtab STRTAB 00000000 000154 000053 00 0 0 1

[9] .symtab SYMTAB 00000000 0000b0 000090 10 10 8 4

[10] .strtab STRTAB 00000000 000140 00000c 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

As shown in the output, all the section virtual memory addresses

of every section are set to 0. At this stage, each object file is simply a

block of binary that contains code and data. Its existence is to serve

as a material container for the final product, which is the executable

binary. As such, the virtual addresses in hello.o are all zeroes.

No segment exists at this stage:

$ readelf -l math.o

There are no program headers in this file.

The same happens to other object file:

Output There are 13 section headers, starting at offset 0x224:

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .text PROGBITS 00000000 000034 00002e 00 AX 0 0 1

[2] .rel.text REL 00000000 0001ac 000010 08 I 11 1 4

[3] .data PROGBITS 00000000 000062 000000 00 WA 0 0 1

[4] .bss NOBITS 00000000 000062 000000 00 WA 0 0 1

[5] .rodata PROGBITS 00000000 000062 00000c 00 A 0 0 1

[6] .comment PROGBITS 00000000 00006e 000035 01 MS 0 0 1

[7] .note.GNU-stack PROGBITS 00000000 0000a3 000000 00 0 0 1

[8] .eh_frame PROGBITS 00000000 0000a4 000044 00 A 0 0 4

[9] .rel.eh_frame REL 00000000 0001bc 000008 08 I 11 8 4

[10] .shstrtab STRTAB 00000000 0001c4 00005f 00 0 0 1

150 operating system: from 0 to 1

[11] .symtab SYMTAB 00000000 0000e8 0000b0 10 12 9 4

[12] .strtab STRTAB 00000000 000198 000013 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

$ readelf -l hello.o

There are no program headers in this file.

Only when object files are combined into a final executable binary,

sections are fully realized:

$ gcc -m32 math.o hello.o -o hello

$ readelf -S hello.

Output There are 31 section headers, starting at offset 0x1804:

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .interp PROGBITS 08048154 000154 000013 00 A 0 0 1

[2] .note.ABI-tag NOTE 08048168 000168 000020 00 A 0 0 4

[3] .note.gnu.build-i NOTE 08048188 000188 000024 00 A 0 0 4

[4] .gnu.hash GNU_HASH 080481ac 0001ac 000020 04 A 5 0 4

[5] .dynsym DYNSYM 080481cc 0001cc 000050 10 A 6 1 4

[6] .dynstr STRTAB 0804821c 00021c 00004a 00 A 0 0 1

[7] .gnu.version VERSYM 08048266 000266 00000a 02 A 5 0 2

[8] .gnu.version_r VERNEED 08048270 000270 000020 00 A 6 1 4

[9] .rel.dyn REL 08048290 000290 000008 08 A 5 0 4

[10] .rel.plt REL 08048298 000298 000010 08 AI 5 24 4

[11] .init PROGBITS 080482a8 0002a8 000023 00 AX 0 0 4

[12] .plt PROGBITS 080482d0 0002d0 000030 04 AX 0 0 16

[13] .plt.got PROGBITS 08048300 000300 000008 00 AX 0 0 8

the anatomy of a program 151

[14] .text PROGBITS 08048310 000310 0001a2 00 AX 0 0 16

[15] .fini PROGBITS 080484b4 0004b4 000014 00 AX 0 0 4

[16] .rodata PROGBITS 080484c8 0004c8 000014 00 A 0 0 4

[17] .eh_frame_hdr PROGBITS 080484dc 0004dc 000034 00 A 0 0 4

[18] .eh_frame PROGBITS 08048510 000510 0000ec 00 A 0 0 4

[19] .init_array INIT_ARRAY 08049f08 000f08 000004 00 WA 0 0 4

[20] .fini_array FINI_ARRAY 08049f0c 000f0c 000004 00 WA 0 0 4

[21] .jcr PROGBITS 08049f10 000f10 000004 00 WA 0 0 4

[22] .dynamic DYNAMIC 08049f14 000f14 0000e8 08 WA 6 0 4

[23] .got PROGBITS 08049ffc 000ffc 000004 04 WA 0 0 4

[24] .got.plt PROGBITS 0804a000 001000 000014 04 WA 0 0 4

[25] .data PROGBITS 0804a014 001014 000008 00 WA 0 0 4

[26] .bss NOBITS 0804a01c 00101c 000004 00 WA 0 0 1

[27] .comment PROGBITS 00000000 00101c 000034 01 MS 0 0 1

[28] .shstrtab STRTAB 00000000 0016f8 00010a 00 0 0 1

[29] .symtab SYMTAB 00000000 001050 000470 10 30 48 4

[30] .strtab STRTAB 00000000 0014c0 000238 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

Every loadable section is assigned an address, highlighted in green.

The reason each section got its own address is that in reality, gcc

does not combine an object by itself, but invokes the linker ld. The

linker ld uses the default script that it can find in the system to build

the executable binary. In the default script, a segment is assigned a

starting address 0x8048000 and sections belong to it. Then:

� 1st section address = starting segment address + section offset = 0x8048000 + 0x154 = 0x08048154

� 2nd section address = starting segment address + section offset = 0x8048000 + 0x168 = 0x08048168

� and so on until the last loadable section...

Indeed, the end address of a segment is also the end address of the

final section. We can see this by listing all the segments:

152 operating system: from 0 to 1

$ readelf -l hello

And check, for example, LOAD segment which starts at 0x08048000

and end at 0x08048000 + 0x005fc = 0x080485fc:

Output Elf file type is EXEC (Executable file)

Entry point 0x8048310

There are 9 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000034 0x08048034 0x08048034 0x00120 0x00120 R E 0x4

INTERP 0x000154 0x08048154 0x08048154 0x00013 0x00013 R 0x1

[Requesting program interpreter: /lib/ld-linux.so.2]

LOAD 0x000000 0x08048000 0x08048000 0x005fc 0x005fc R E 0x1000

LOAD 0x000f08 0x08049f08 0x08049f08 0x00114 0x00118 RW 0x1000

DYNAMIC 0x000f14 0x08049f14 0x08049f14 0x000e8 0x000e8 RW 0x4

NOTE 0x000168 0x08048168 0x08048168 0x00044 0x00044 R 0x4

GNU_EH_FRAME 0x0004dc 0x080484dc 0x080484dc 0x00034 0x00034 R 0x4

GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x10

GNU_RELRO 0x000f08 0x08049f08 0x08049f08 0x000f8 0x000f8 R 0x1

Section to Segment mapping:

Segment Sections...

00

01 .interp

02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr

.gnu.version .gnu.version_r .rel.dyn .rel.plt .init .plt .plt.got .text .fini

.rodata .eh_frame_hdr .eh_frame

03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss

04 .dynamic

05 .note.ABI-tag .note.gnu.build-id

06 .eh_frame_hdr

07

08 .init_array .fini_array .jcr .dynamic .got

The last section in the first LOAD segment is .eh_frame. The

the anatomy of a program 153

section starts at 0x08048510, with the offset 0x510 and its size is

0xec. The end address of .eh_frame should be: 0x08048510 + 0x510 + 0xec = 0x080485fc,

exactly the same as the end address of the first LOAD segment.

Chapter 8 will explore this whole process in detail.

6
Runtime inspection and debug

A debugger is a program that allows inspection of a running program. debugger
A debugger can start and run a program then stop at a specific line

for examining the state of the program at that point. The point where

the debugger stop (but not halt) is called a breakpoint.

We will be using the GDB - GNU Debugger for debugging our

kernel. gdb is the program name. gdb can do four main kinds of

things:

� Start your program, specifying anything that might affect its beha-

vior.

� Make your program stop on specified conditions.

� Examine what has happened, when your program has stopped

� Change things in your program, so you can experiment with cor-

recting the effects of one bug and go on to learn about another

6.1 A sample program

There must be an existing program for debugging. The good old

“Hello World” program suffices for the educational purpose in this

chapter:

156 operating system: from 0 to 1

hello.c

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello World!\n");

return 0;

}

We compile it with debugging information with the option -g:

$ gcc -m32 -g hello.c -o hello

Finally, we start gdb with the program as argument:

$ gdb hello

6.2 Static inspection of a program

Before inspecting a program at runtime, gdb loads it first. Upon

loading into memory (but without running), a lot of useful information

can be retrieve for inspection. The commands in this section can be

used before the program runs. However, they are also usable when the

program runs and can display even more information.

6.2.1 Command: info target/info file/info files

This command prints the information of the target being debugged. A

target is the debugging program.

Example 6.2.1. The output of the command from hello program, a

local target in detail:

(gdb) info target

runtime inspection and debug 157

Output Symbols from "/tmp/hello".

Local exec file:

‘/tmp/hello’, file type elf32-i386.

Entry point: 0x8048310

0x08048154 - 0x08048167 is .interp

0x08048168 - 0x08048188 is .note.ABI-tag

0x08048188 - 0x080481ac is .note.gnu.build-id

0x080481ac - 0x080481cc is .gnu.hash

0x080481cc - 0x0804821c is .dynsym

0x0804821c - 0x08048266 is .dynstr

0x08048266 - 0x08048270 is .gnu.version

0x08048270 - 0x08048290 is .gnu.version_r

0x08048290 - 0x08048298 is .rel.dyn

0x08048298 - 0x080482a8 is .rel.plt

0x080482a8 - 0x080482cb is .init

0x080482d0 - 0x08048300 is .plt

0x08048300 - 0x08048308 is .plt.got

0x08048310 - 0x080484a2 is .text

0x080484a4 - 0x080484b8 is .fini

0x080484b8 - 0x080484cd is .rodata

0x080484d0 - 0x080484fc is .eh_frame_hdr

0x080484fc - 0x080485c8 is .eh_frame

0x08049f08 - 0x08049f0c is .init_array

0x08049f0c - 0x08049f10 is .fini_array

0x08049f10 - 0x08049f14 is .jcr

0x08049f14 - 0x08049ffc is .dynamic

0x08049ffc - 0x0804a000 is .got

0x0804a000 - 0x0804a014 is .got.plt

0x0804a014 - 0x0804a01c is .data

0x0804a01c - 0x0804a020 is .bss

The output displayed reports:

� Path of a symbol file. A symbol file is the file that contains the

debugging information. Usually, this is the same file as the binary,

158 operating system: from 0 to 1

but it is common to separate between an executable binary and its

debugging information into 2 files, especially for remote debugging.

In the example, it is this line:

Symbols from "/tmp/hello".

� The path of the debugging program and its file type. In the exam-

ple, it is this line:

Local exec file:

‘/tmp/hello’, file type elf32-i386.

� The entry point to the debugging program. That is, the very first

code the program runs. In the example, it is this line:

Entry point: 0x8048310

� A list of sections with its starting and ending addresses. In the

example, it is the remaining output.

Example 6.2.2. If the debugging program runs in a different machine,

it is a remote target and gdb only prints a brief information:

(gdb) info target

Output Remote serial target in gdb-specific protocol:

Debugging a target over a serial line.

6.2.2 Command: maint info sections

This command is similar to info target but give extra information

about program sections, specifically the file offset and the flags of each

section.

Example 6.2.3. Here is the output when running against hello

program:

(gdb) maint info sections

runtime inspection and debug 159

Output Exec file:

‘/tmp/hello’, file type elf64-x86-64.

[0] 0x00400238->0x00400254 at 0x00000238: .interp ALLOC LOAD READONLY DATA HAS_CONTENTS

[1] 0x00400254->0x00400274 at 0x00000254: .note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS

[2] 0x00400274->0x00400298 at 0x00000274: .note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS

[3] 0x00400298->0x004002b4 at 0x00000298: .gnu.hash ALLOC LOAD READONLY DATA HAS_CONTENTS

[4] 0x004002b8->0x00400318 at 0x000002b8: .dynsym ALLOC LOAD READONLY DATA HAS_CONTENTS

[5] 0x00400318->0x00400355 at 0x00000318: .dynstr ALLOC LOAD READONLY DATA HAS_CONTENTS

[6] 0x00400356->0x0040035e at 0x00000356: .gnu.version ALLOC LOAD READONLY DATA HAS_CONTENTS

[7] 0x00400360->0x00400380 at 0x00000360: .gnu.version_r ALLOC LOAD READONLY DATA HAS_CONTENTS

....remaining output omitted....

The output is similar to info target, but with more details. Next

to the section names are the section flags, which are attributes of a

section. Here, we can see that the sections with LOAD flag are from

LOAD segment. The command can be combined with the section flags

for filtered outputs:

ALLOBJ displays sections for all loaded object files, including shared

libraries. Shared libraries are only displayed when the program is

already running.

section names displays only named sections.

Example 6.2.4. The command:

(gdb) maint info sections .text .data .bss

only displays .text, .data and .bss sections:

Output Exec file:

‘/tmp/hello’, file type elf64-x86-64.

[13] 0x00400430->0x004005c2 at 0x00000430: .text ALLOC LOAD READONLY CODE HAS_CONTENTS

[24] 0x00601028->0x00601038 at 0x00001028: .data ALLOC LOAD DATA HAS_CONTENTS

[25] 0x00601038->0x00601040 at 0x00001038: .bss ALLOC

section-flags displays only sections with specified section flags. Note

that these section flags are specific to gdb, though it is based on the

section attributes defined previously. Currently, gdb understands

the following flags:

160 operating system: from 0 to 1

ALLOC Section will have space allocated in the process when

loaded. Set for all sections except those containing debug infor-

mation.

LOAD Section will be loaded from the file into the child process

memory. Set for pre-initialized code and data, clear for .bss

sections.

RELOC Section needs to be relocated before loading.

READONLY Section cannot be modified by the child process.

CODE Section contains executable code only.

DATA Section contains data only (no executable code).

ROM Section will reside in ROM.

CONSTRUCTOR Section contains data for constructor/destructor

lists.

HAS_CONTENTS Section is not empty.

NEVER_LOAD An instruction to the linker to not output the

section.

COFF_SHARED_LIBRARY A notification to the linker that the

section contains COFF shared library information. COFF is an

object file format, similar to ELF. While ELF is the file format

for an executable binary, COFF is the file format for an object

file.

IS_COMMON Section contains common symbols.

Example 6.2.5. We can restrict the output to only display sections

that contain code with the command:

(gdb) maint info sections CODE

The output:

Output Exec file:

‘/tmp/hello’, file type elf64-x86-64.

[10] 0x004003c8->0x004003e2 at 0x000003c8: .init ALLOC LOAD READONLY CODE HAS_CONTENTS

[11] 0x004003f0->0x00400420 at 0x000003f0: .plt ALLOC LOAD READONLY CODE HAS_CONTENTS

[12] 0x00400420->0x00400428 at 0x00000420: .plt.got ALLOC LOAD READONLY CODE HAS_CONTENTS

runtime inspection and debug 161

[13] 0x00400430->0x004005c2 at 0x00000430: .text ALLOC LOAD READONLY CODE HAS_CONTENTS

[14] 0x004005c4->0x004005cd at 0x000005c4: .fini ALLOC LOAD READONLY CODE HAS_CONTENTS

6.2.3 Command: info functions

This commands list all function names and their loaded addresses.

The names can be filtered with a regular expression.

Example 6.2.6. Run the command, we get the following output:

(gdb) info functions

Output All defined functions:

File hello.c:

int main(int, char **);

Non-debugging symbols:

0x00000000004003c8 _init

0x0000000000400400 puts@plt

0x0000000000400410 __libc_start_main@plt

0x0000000000400430 _start

0x0000000000400460 deregister_tm_clones

0x00000000004004a0 register_tm_clones

0x00000000004004e0 __do_global_dtors_aux

0x0000000000400500 frame_dummy

0x0000000000400550 __libc_csu_init

0x00000000004005c0 __libc_csu_fini

0x00000000004005c4 _fini

6.2.4 Command: info variables

This command lists all global and static variable names, or filtered

with a regular expression.

Example 6.2.7. If we add a global variable int i into the sample

source program and recompile then run the command, we get the

following output:

162 operating system: from 0 to 1

(gdb) info variables

Output All defined variables:

File hello.c:

int i;

Non-debugging symbols:

0x00000000004005d0 _IO_stdin_used

0x00000000004005e4 __GNU_EH_FRAME_HDR

0x0000000000400708 __FRAME_END__

0x0000000000600e10 __frame_dummy_init_array_entry

0x0000000000600e10 __init_array_start

0x0000000000600e18 __do_global_dtors_aux_fini_array_entry

0x0000000000600e18 __init_array_end

0x0000000000600e20 __JCR_END__

0x0000000000600e20 __JCR_LIST__

0x0000000000600e28 _DYNAMIC

0x0000000000601000 _GLOBAL_OFFSET_TABLE_

0x0000000000601028 __data_start

0x0000000000601028 data_start

0x0000000000601030 __dso_handle

0x000000000060103c __bss_start

0x000000000060103c _edata

0x000000000060103c completed

0x0000000000601040 __TMC_END__

0x0000000000601040 _end

6.2.5 Command: disassemble/disas

This command displays the assembly code of the executable file.

Example 6.2.8. gdb can display the assembly code of a function:

(gdb) disassemble main

runtime inspection and debug 163

Output Dump of assembler code for function main:

0x0804840b <+0>: lea ecx,[esp+0x4]

0x0804840f <+4>: and esp,0xfffffff0

0x08048412 <+7>: push DWORD PTR [ecx-0x4]

0x08048415 <+10>: push ebp

0x08048416 <+11>: mov ebp,esp

0x08048418 <+13>: push ecx

0x08048419 <+14>: sub esp,0x4

0x0804841c <+17>: sub esp,0xc

0x0804841f <+20>: push 0x80484c0

0x08048424 <+25>: call 0x80482e0 <puts@plt>

0x08048429 <+30>: add esp,0x10

0x0804842c <+33>: mov eax,0x0

0x08048431 <+38>: mov ecx,DWORD PTR [ebp-0x4]

0x08048434 <+41>: leave

0x08048435 <+42>: lea esp,[ecx-0x4]

0x08048438 <+45>: ret

End of assembler dump.

Example 6.2.9. It would be more useful if source is included:

(gdb) disassemble /s main

Output Dump of assembler code for function main:

hello.c:

4 {

0x0804840b <+0>: lea ecx,[esp+0x4]

0x0804840f <+4>: and esp,0xfffffff0

0x08048412 <+7>: push DWORD PTR [ecx-0x4]

0x08048415 <+10>: push ebp

0x08048416 <+11>: mov ebp,esp

0x08048418 <+13>: push ecx

0x08048419 <+14>: sub esp,0x4

164 operating system: from 0 to 1

5 printf("Hello World!\n");

0x0804841c <+17>: sub esp,0xc

0x0804841f <+20>: push 0x80484c0

0x08048424 <+25>: call 0x80482e0 <puts@plt>

0x08048429 <+30>: add esp,0x10

6 return 0;

0x0804842c <+33>: mov eax,0x0

7 }

0x08048431 <+38>: mov ecx,DWORD PTR [ebp-0x4]

0x08048434 <+41>: leave

0x08048435 <+42>: lea esp,[ecx-0x4]

0x08048438 <+45>: ret

End of assembler dump.

Now the high level source (in green text) is included as part of the

assembly dump. Each line is backed by the corresponding assembly

code below it.

Example 6.2.10. If the option /r is added, raw instructions in hex

are included, just like how objdump displays assembly code by default:

(gdb) disassemble /rs main

Output Dump of assembler code for function main:

hello.c:

4 {

0x0804840b <+0>: 8d 4c 24 04 lea ecx,[esp+0x4]

0x0804840f <+4>: 83 e4 f0 and esp,0xfffffff0

0x08048412 <+7>: ff 71 fc push DWORD PTR [ecx-0x4]

0x08048415 <+10>: 55 push ebp

0x08048416 <+11>: 89 e5 mov ebp,esp

0x08048418 <+13>: 51 push ecx

0x08048419 <+14>: 83 ec 04 sub esp,0x4

5 printf("Hello World!\n");

0x0804841c <+17>: 83 ec 0c sub esp,0xc

runtime inspection and debug 165

0x0804841f <+20>: 68 c0 84 04 08 push 0x80484c0

0x08048424 <+25>: e8 b7 fe ff ff call 0x80482e0 <puts@plt>

0x08048429 <+30>: 83 c4 10 add esp,0x10

6 return 0;

0x0804842c <+33>: b8 00 00 00 00 mov eax,0x0

7 }

0x08048431 <+38>: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]

0x08048434 <+41>: c9 leave

0x08048435 <+42>: 8d 61 fc lea esp,[ecx-0x4]

0x08048438 <+45>: c3 ret

End of assembler dump.

Example 6.2.11. A function in a specific file can also be specified:

(gdb) disassemble /sr ’hello.c’::main

Output Dump of assembler code for function main:

hello.c:

4 {

0x0804840b <+0>: 8d 4c 24 04 lea ecx,[esp+0x4]

0x0804840f <+4>: 83 e4 f0 and esp,0xfffffff0

0x08048412 <+7>: ff 71 fc push DWORD PTR [ecx-0x4]

0x08048415 <+10>: 55 push ebp

0x08048416 <+11>: 89 e5 mov ebp,esp

0x08048418 <+13>: 51 push ecx

0x08048419 <+14>: 83 ec 04 sub esp,0x4

5 printf("Hello World!\n");

0x0804841c <+17>: 83 ec 0c sub esp,0xc

0x0804841f <+20>: 68 c0 84 04 08 push 0x80484c0

0x08048424 <+25>: e8 b7 fe ff ff call 0x80482e0 <puts@plt>

0x08048429 <+30>: 83 c4 10 add esp,0x10

6 return 0;

0x0804842c <+33>: b8 00 00 00 00 mov eax,0x0

7 }

166 operating system: from 0 to 1

0x08048431 <+38>: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]

0x08048434 <+41>: c9 leave

0x08048435 <+42>: 8d 61 fc lea esp,[ecx-0x4]

0x08048438 <+45>: c3 ret

End of assembler dump.

The filename must be included in a single quote, and the function

must be prefixed by double colons e.g. ’hello.c’::main to specify

disassembling of the function main in the file hello.c.

6.2.6 Command: x

This command examines the content of a given memory range.

Example 6.2.12. We can examine the raw content of main:

(gdb) x main

Output 0x804840b <main>: 0x04244c8d

By default, without any argument, the command only prints the

content of a single memory address. In this case, that is the starting

memory address of main.

Example 6.2.13. With format arguments, the command can print a

range of memory in a specific format.

(gdb) x/20b main

Output 0x804840b <main>: 0x8d 0x4c 0x24 0x04 0x83 0xe40xf0 0xff

0x8048413 <main+8>: 0x71 0xfc 0x55 0x89 0xe5 0x510x83 0xec

0x804841b <main+16>: 0x04 0x83 0xec 0x0c

/20b main argument means that the command prints 20 bytes,

where main starts in memory.

The general form for format argument is: /<repeated count><format

letter>

runtime inspection and debug 167

If the repeated count is not supplied, by default gdb supplies the

count as 1. The format letter is one the following value:

Letter Description

o Print the memory content in octal format.

x Print the memory content in hex format.

d Print the memory content in decimal format.

u Print the memory content in unsigned decimal format.

t Print the memory content in binary format.

f Print the memory content in float format.

a Print the memory content as memory addresses.

i Print the memory content as a series of assembly instructions, similar to disassemble command.

c Print the memory content as an array of ASCII characters.

s Print the memory content as a string
Depends on the circumstance, certain format is advantageous

than the others. For example, if a memory region contains floating-

point numbers, then it is better to use the format f than viewing the

number as separated 1-byte hex numbers.

6.2.7 Command: print/p

Examining raw memory is useful but usually it is better to have

a more human-readable output. This command does precisely the

task: it pretty-prints an expression. An expression can be a global

variable, a local variable in current stack frame, a function, a register,

a number...

6.3 Runtime inspection of a program

The main use of a debugger is to examine the state of a program,

when it is running. gdb provides a set of useful commands for retrie-

ving useful runtime information.

6.3.1 Command: run

This command starts running the program.

Example 6.3.1. Run the hello program:

168 operating system: from 0 to 1

(gdb) r

Output Starting program: /tmp/hello

Hello World!

[Inferior 1 (process 1002) exited normally]

The program runs successfully and printed the message “Hello

World”. However, it would not be useful if all gdb can do is run a

program.

6.3.2 Command: break/b

This command sets a breakpoint at a location in the high-level source

code. When gdb runs to a specific location marked by a breakpoint,

it stops executing for a programmer to inspect the current state of a

program.

Example 6.3.2. A breakpoint can be set on a line as displayed by an

editor. Suppose we want to set a breakpoint at line 3 of the program,

which is the start of main function:

hello.c

1 #include <stdio.h>

2

3 int main(int argc, char *argv[])

4 {

5 printf("Hello World!\n");

6 return 0;

7 }

When running a program, instead of running from start to finish,

gdb stopped at line 3:

(gdb) b 3

runtime inspection and debug 169

Output Breakpoint 1 at 0x400535: file hello.c, line 3.

(gdb) r

Output Starting program: /tmp/hello

Breakpoint 1, main (argc=1, argv=0x7fffffffdfb8) at hello.c:5

5 printf("Hello World!\n");

The breakpoint is at line 3, but gdb stopped line 5. The reason is

that line 3 does not contain code, but a function signature; gdb only

stops where it can execute code. The code in the function starts at

line 5, the call to printf, so gdb stops there.

Example 6.3.3. Line of code is not always the reliable way to specify

a breakpoint, as the source code can be changed. What if gdb should

always stop at main function? In this case, a better method is to use

the function name directly:

b main

Then, regardless of how the source code changes, gdb always stops

at the main function.

Example 6.3.4. Sometimes, the debugging program does not contain

debug info, or gdb is debugging assembly code. In that case, a memory

address can be specified as a stop point. To get the function address,

print command can be used:

(gdb) print main

Output $3 = {int (int, char **)} 0x400526 <main>

Knowing the address of main, we can easily set a breakpoint with a

memory address:

170 operating system: from 0 to 1

b *0x400526

Example 6.3.5. gdb can also set breakpoint in any source file. Sup-

pose that hello program is composed not just one file but many files

e.g. hello1.c, hello2.c, hello3.c... In that case, simply add the

filename before either a line number:

b hello.c:3

Example 6.3.6. A function name in a specific file can also be set:

b hello.c:main

6.3.3 Command: next/n

This command executes the current line and stops at the next line.

When the current line is a function call, steps over it.

Example 6.3.7. After setting a breakpoint at main, run a program

and stop at the first printf:

(gdb) r

Output Starting program: /tmp/hello

Breakpoint 1, main (argc=1, argv=0x7fffffffdfb8) at hello.c:5

5 printf("Hello World!\n");

Then, to proceed to the next statement, we use the next command:

(gdb) n

Output Hello World!

6 return 0;

runtime inspection and debug 171

In the output, the first line shows the output produced after execu-

ting line 5; then, the next line shows where gdb stops currently, which

is line 6.

6.3.4 Command: step/s

This command executes the current line and stops at the next line.

When the current line is a function call, steps into it to the first next

line in the called function.

Example 6.3.8. Suppose we have a new function add1: 1 Why should we add a new function
and function call instead of using
the existing printf call? Stepping
into shared library functions is tricky
because to make debugging works,
the debug info must be installed and
loaded. It is not worth the trouble for
demonstrating this simple command.

hello.c

#include <stdio.h>

int add(int a, int b) {

return a + b;

}

int main(int argc, char *argv[])

{

add(1, 2);

printf("Hello World!\n");

return 0;

}

If step command is used instead of next on the function call

printf, gdb steps inside the function:

(gdb) r

Output Starting program: /tmp/hello

Breakpoint 1, main (argc=1, argv=0xffffd154) at hello.c:11

11 add(1, 2);

172 operating system: from 0 to 1

(gdb) s

Output add (a=1, b=2) at hello.c:6

6 return a + b;

After executing the command s, gdb stepped into the add function

where the first statement is a return.

6.3.5 Command: ni

At the core, gdb operates on assembly instruction. Source line by

line debugging is simply an enhancement to make it friendlier for

programmers. Each statement in C translates to one or more assembly

instruction, as shown with objdump and disassemble command. With

the debug info available, gdb knows how many instructions belong to

one line of high-level code; line by line debugging is just a execution of

assembly instructions of a line when moving from the current line to

the next.

This command executes the one assembly instruction belongs to

the current line. Until all assembly instructions of the current line are

executed, gdb will not move to the next line. If the current instruction

is a call, step over it to the next instruction.

Example 6.3.9. When breakpoint is on the printf call and ni is

used, it steps through each assembly instruction:

(gdb) disassemble /s main

Output Dump of assembler code for function main:

hello.c:

4 {

0x0804840b <+0>: lea ecx,[esp+0x4]

0x0804840f <+4>: and esp,0xfffffff0

0x08048412 <+7>: push DWORD PTR [ecx-0x4]

runtime inspection and debug 173

0x08048415 <+10>: push ebp

0x08048416 <+11>: mov ebp,esp

0x08048418 <+13>: push ecx

0x08048419 <+14>: sub esp,0x4

5 printf("Hello World!\n");

0x0804841c <+17>: sub esp,0xc

0x0804841f <+20>: push 0x80484c0

0x08048424 <+25>: call 0x80482e0 <puts@plt>

0x08048429 <+30>: add esp,0x10

6 return 0;

=> 0x0804842c <+33>: mov eax,0x0

7 }

0x08048431 <+38>: mov ecx,DWORD PTR [ebp-0x4]

0x08048434 <+41>: leave

0x08048435 <+42>: lea esp,[ecx-0x4]

0x08048438 <+45>: ret

End of assembler dump.

(gdb) r

Output Starting program: /tmp/hello

Breakpoint 1, main (argc=1, argv=0xffffd154) at hello.c:5

5 printf("Hello World!\n");

(gdb) ni

Output 0x0804841f 5 printf("Hello World!\n");

(gdb) ni

Output 0x08048424 5 printf("Hello World!\n");

174 operating system: from 0 to 1

(gdb) ni

Output Hello World!

0x08048429 5 printf("Hello World!\n");

(gdb)

Output 6 return 0;

Upon entering ni, gdb executes current instruction and display the

next instruction. That’s why from the output, gdb only displays 3 ad-

dresses: 0x0804841f, 0x08048424 and 0x08048429. The instruction at

0x0804841c, which is the first instruction of printf, is not displayed

because it is the first instruction that gdb stopped at. Assume that

gdb stopped at the first instruction of printf at 0x0804841c, the

current instruction can be displayed using x command:

(gdb) x/i $eip

Output => 0x804841c <main+17>: sub esp,0xc

6.3.6 Command: si

Similar to ni, this command executes the current assembly instruction

belongs to the current line. But if the current instruction is a call,

step into it to the first next instruction in the called function.

Example 6.3.10. Recall that the assembly code generated from

printf contains a call instruction:

(gdb) disassemble /s main

runtime inspection and debug 175

Output Dump of assembler code for function main:

hello.c:

4 {

0x0804840b <+0>: lea ecx,[esp+0x4]

0x0804840f <+4>: and esp,0xfffffff0

0x08048412 <+7>: push DWORD PTR [ecx-0x4]

0x08048415 <+10>: push ebp

0x08048416 <+11>: mov ebp,esp

0x08048418 <+13>: push ecx

0x08048419 <+14>: sub esp,0x4

5 printf("Hello World!\n");

0x0804841c <+17>: sub esp,0xc

0x0804841f <+20>: push 0x80484c0

0x08048424 <+25>: call 0x80482e0 <puts@plt>

0x08048429 <+30>: add esp,0x10

6 return 0;

=> 0x0804842c <+33>: mov eax,0x0

7 }

0x08048431 <+38>: mov ecx,DWORD PTR [ebp-0x4]

0x08048434 <+41>: leave

0x08048435 <+42>: lea esp,[ecx-0x4]

0x08048438 <+45>: ret

End of assembler dump.

We try instruction by instruction stepping again, but this time by

running si at 0x08048424, where call resides:

(gdb) si

Output 0x0804841f 5 printf("Hello World!\n");

(gdb) si

176 operating system: from 0 to 1

Output 0x08048424 5 printf("Hello World!\n");

(gdb) x/i $eip

Output => 0x8048424 <main+25>: call 0x80482e0 <puts@plt>

(gdb) si

Output 0x080482e0 in puts@plt ()

The next instruction right after 0x8048424 is the first instruction at

0x080482e0 in puts function. In other words, gdb stepped into puts

instead of stepping over it.

6.3.7 Command: until

This command executes until the next line is greater than the current

line.

Example 6.3.11. Suppose we have a function that execute a long

loop:

hello.c

#include <stdio.h>

int add1000() {

int total = 0;

for (int i = 0; i < 1000; ++i){

total += i;

}

printf("Done adding!\n");

runtime inspection and debug 177

return total;

}

int main(int argc, char *argv[])

{

add1000(1, 2);

printf("Hello World!\n");

return 0;

}

Using next command, we need to press 1000 times for finishing the

loop. Instead, a faster way is to use until:

(gdb) b add1000

Output Breakpoint 1 at 0x8048411: file hello.c, line 4.

(gdb) r

Output Starting program: /tmp/hello

Breakpoint 1, add1000 () at hello.c:4

4 int total = 0;

(gdb) until

Output 5 for (int i = 0; i < 1000; ++i){

(gdb) until

Output 6 total += i;

178 operating system: from 0 to 1

(gdb) until

Output 5 for (int i = 0; i < 1000; ++i){

(gdb) until

Output 8 printf("Done adding!\n");

Executing the first until, gdb stopped at line 5 since line 5 is

greater than line 4.

Executing the second until, gdb stopped at line 6 since line 6 is

greater than line 5.

Executing the third until, gdb stopped at line 5 since the loop still

continues. Because line 5 is less than line 6, with the fourth until,

gdb kept executing until it does not go back to line 5 anymore and

stopped at line 8. This is a great way to skip over loop in the middle,

instead of setting unneeded breakpoint.

Example 6.3.12. until can be supplied with an argument to expli-

citly execute to a specific line:

(gdb) r

Output Starting program: /tmp/hello

Breakpoint 1, add1000 () at hello.c:4

4 int total = 0;

(gdb) until 8

Output add1000 () at hello.c:8

8 printf("Done adding!\n");

runtime inspection and debug 179

6.3.8 Command: finish

This command executes until the end of a function and displays the

return value. finish is actually just a more convenient version of

until.

Example 6.3.13. Using the add1000 function from the previous

example and use finish instead of until:

(gdb) r

Output Starting program: /tmp/hello

Breakpoint 1, add1000 () at hello.c:4

4 int total = 0;

(gdb) finish

Output Run till exit from #0 add1000 () at hello.c:4

Done adding!

0x08048466 in main (argc=1, argv=0xffffd154) at hello.c:15

15 add1000(1, 2);

Value returned is $1 = 499500

6.3.9 Command: bt

This command prints the backtrace of all stack frames. A backtrace is backtrace
a list of currently active functions:

Example 6.3.14. Suppose we have a chain of function calls:

hello.c

void d(int d) { };

void c(int c) { d(0); }

void b(int b) { c(1); }

void a(int a) { b(2); }

180 operating system: from 0 to 1

int main(int argc, char *argv[])

{

a(3);

return 0;

}

bt can visualize such a chain in action:

(gdb) b a

Output Breakpoint 1 at 0x8048404: file hello.c, line 9.

(gdb) r

Output Starting program: /tmp/hello

Breakpoint 1, a (a=3) at hello.c:9

9 void a(int a) { b(2); }

(gdb) s

Output b (b=2) at hello.c:7

7 void b(int b) { c(1); }

(gdb) s

Output c (c=1) at hello.c:5

5 void c(int c) { d(0); }

(gdb) s

runtime inspection and debug 181

Output d (d=0) at hello.c:3

3 void d(int d) { };

(gdb) bt

Output #0 d (d=0) at hello.c:3

#1 0x080483eb in c (c=1) at hello.c:5

#2 0x080483fb in b (b=2) at hello.c:7

#3 0x0804840b in a (a=3) at hello.c:9

#4 0x0804841b in main (argc=1, argv=0xffffd154) at hello.c:13

Most-recent calls are placed on top and least-recent calls are near

the bottom. In this case, d is the most current active function, so it

has the index 0. Next is c, the 2nd active function, has the index 1

and so on with function b, function a, and finally function main at the

bottom, the least-recent function. That is how we read a backtrace.

6.3.10 Command: up

This command goes up one frame earlier the current frame.

Example 6.3.15. Instead of staying in d function, we can go up to c

function and look at its state:

(gdb) bt

Output #0 d (d=0) at hello.c:3

#1 0x080483eb in c (c=1) at hello.c:5

#2 0x080483fb in b (b=2) at hello.c:7

#3 0x0804840b in a (a=3) at hello.c:9

#4 0x0804841b in main (argc=1, argv=0xffffd154) at hello.c:13

(gdb) up

182 operating system: from 0 to 1

Output #1 0x080483eb in c (c=1) at hello.c:3

3 void b(int b) { c(1); }

The output displays the current frame is moved to c and where the

call to c is made, which is in function b at line 3.

6.3.11 Command: down

Similar to up, this command goes down one frame later then the

current frame.

Example 6.3.16. After inspecting c function, we can go back to d:

(gdb) bt

Output #0 d (d=0) at hello.c:3

#1 0x080483eb in c (c=1) at hello.c:5

#2 0x080483fb in b (b=2) at hello.c:7

#3 0x0804840b in a (a=3) at hello.c:9

#4 0x0804841b in main (argc=1, argv=0xffffd154) at hello.c:13

(gdb) up

Output #1 0x080483eb in c (c=1) at hello.c:3

3 void b(int b) { c(1); }

(gdb) down

Output #0 d (d=0) at hello.c:1

1 void d(int d) { };

runtime inspection and debug 183

6.3.12 Command: info registers

This command lists the current values in commonly used registers.

This command is useful when debugging assembly and operating

system code, as we can inspect the current state of the machine.

Example 6.3.17. Executing the command, we can see the commonly

used registers:

(gdb) info registers

Output eax 0xf7faddbc -134554180

ecx 0xffffd0c0 -12096

edx 0xffffd0e4 -12060

ebx 0x0 0

esp 0xffffd0a0 0xffffd0a0

ebp 0xffffd0a8 0xffffd0a8

esi 0xf7fac000 -134561792

edi 0xf7fac000 -134561792

eip 0x804841c 0x804841c <main+17>

eflags 0x286 [PF SF IF]

cs 0x23 35

ss 0x2b 43

ds 0x2b 43

es 0x2b 43

fs 0x0 0

gs 0x63 99

The above registers suffice for writing our operating system in later

part.

6.4 How debuggers work: A brief introduction

6.4.1 How breakpoints work

When a programmer places a breakpoint somewhere in his code, what

actually happens is that the first opcode of the first instruction of a

184 operating system: from 0 to 1

statement is replaced with another instruction, int 3 with opcode

CCh:

83 ec 0c → cc ec 0c
sub esp,0x4 int 3

Figure 6.4.1: Opcode replace-
ment, with int 3

int 3 only costs a single byte, making it efficient for debugging.

When int 3 instruction is executed, the operating system calls its

breakpoint interrupt handler. The handler then checks what process

reaches a breakpoint, pauses it and notifies the debugger it has paused

a debugged process. The debugged process is only paused and that

means a debugger is free to inspect its internal state, like a surgeon

operates on an anesthetic patient. Then, the debugger replaces the

int 3 opcode with the original opcode and executes the original

instruction normally.

cc ec 0c → 83 ec 0c
int 3 sub esp,0x4

Figure 6.4.2: Restore the ori-
ginal opcode, after int 3 was
executed

Example 6.4.1. It is simple to see int 3 in action. First, we add an

int 3 instruction where we need gdb to stop:

hello.c

#include <stdio.h>

int main(int argc, char *argv[])

{

asm("int 3");

printf("Hello World\n");

return 0;

}

int 3 precedes printf, so gdb is expected to stop at printf. Next,

we compile with debug enable and with Intel syntax:

$ gcc -masm=intel -m32 -g hello.c -o hello

Finally, start gdb:

runtime inspection and debug 185

$ gdb hello

Running without setting any breakpoint, gdb stops at printf call,

as expected:

(gdb) r

Output Starting program: /tmp/hello

Program received signal SIGTRAP, Trace/breakpoint trap.

main (argc=1, argv=0xffffd154) at hello.c:6

6 printf("Hello World\n");

The blue text indicates that gdb encountered a breakpoint, and

indeed it stopped at the right place: the printf call, where int 3

preceded it.

6.4.2 Single stepping

When breakpoint is implemented, it is easy to implement single step-

ping: a debugger simply places another int 3 opcode in the next in-

struction. So, when a programmer sets a breakpoint at an instruction,

the next instruction is automatically set by the debugger, thus enable

instruction by instruction debugging. Similarly, source line by line

debugging is just the placements of the very first opcodes in the two

statements with two int 3 opcodes.

6.4.3 How a debugger understands high level source code

DWARF is a debugging file format used by many compilers and

debuggers to support source level debugging. DWARF contains infor-

mation that maps between entities in the executable binary with the

source files. A program entity can either be data or code. A DIE, or

Debugging Information Entry, is a description of a program entity. Debugging Information En-
tryA DIE consists of a tag, which specifies the entity that the DIE des-

cribes, and a list of attributes that describes the entity. Of all the

186 operating system: from 0 to 1

attributes, these two attributes enables source-level debugging:

� Where the entity appears in the source files: which

file and which line the entity appears.

� Where the entity appears in the executable binary:

in which memory address the entity is loaded at runtime. With the

precise address, gdb can retrieve correct value for a data entity, or

place a correct breakpoint and stop accordingly for a code entity.

Without the information of these addresses, gdb would not know

where the entities are to inspect them.

hello.c DIE
Line 1
Line 2

⇒ Line 3
Line 5
Line 6

#include <stdio.h>

int main(int argc, char *argv[])
..........
..........

→

....

....
main in hello.c is at
0x804840b in hello
....
....

↓↑

hello (at 0x804840b)
...8d 4c 24 04 83 e4 f0
ff 71 fc

Figure 6.4.3: Source-binary
mapping with DIEIn addition to DIEs, another binary-to-source mapping is the line

number table. The line number table maps between a line in the source

code and at which memory address is the start of the line in the

executable binary.

In sum, to successfully enable source-level debugging, a debugger

needs to know the precise location of the source files and the load

addresses at runtime. Address matching, between the image layout

of the ELF binary and the address where it is loaded, is extremely

important since debug information relies on correct loading address at

runtime. That is, it assumes the addresses as recorded in the binary

image at compile-time the same as at runtime e.g. if the load address

for .text section is recorded in the executable binary at 0x800000,

runtime inspection and debug 187

then when the binary actually runs, .text should really be loaded at

0x800000 for gdb to be able to correctly match running instructions

with high-level code statement. Address mismatching makes debug

information useless, as actual code at one address is displayed as code

at another address. Without this knowledge, we will not be able to

build an operating system that can be debugged with gdb.

Example 6.4.2. When an executable binary contains debug info,

readelf can display such information in a readable format. Using the

good old hello world program:

hello.c

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello World\n");

return 0;

}

and compile with debug info:

$ gcc -m32 -g hello.c -o hello

With the binary ready, we can look at the line number table with

the command:

$ readlelf -wL hello

-w option prints all the debug information. In combination with its

sub-option, only specific information is displayed. For example, with

-L, only the line number table is displayed:

188 operating system: from 0 to 1

Output Decoded dump of debug contents of section .debug_line:

CU: hello.c:

File name Line number Starting address

hello.c 6 0x804840b

hello.c 7 0x804841c

hello.c 9 0x804842c

hello.c 10 0x8048431

From the above output:

CU shorts for Compilation Unit, a separately compiled source file. In

the example, we only have one file, hello.c.

File name displays the filename of the current compilation unit.

Line number is the line number in the source file of which the line

is not an empty line. In the example, line 8 is an empty line, so it

does not appear.

Starting address is the memory address where the line actually starts

in the executable binary.

With such crystal clear information, this is how gdb is able to set a

breakpoint on a line easily. For placing breakpoints on variables and

functions, it is time to look at the DIEs. To get the DIEs information

from an executable binary, run the command:

$ readlelf -wi hello

-wi option lists all the DIE entries. This is one typical DIE entry:

<0>: Abbrev Number: 1 (DW_TAG_compile_unit)

<c> DW_AT_producer : (indirect string, offset: 0xe): GNU C11 5.4.0 20160609 -masm=intel -m32 -mtune=generic -march=i686 -g -fstack-protector-strong

<10> DW_AT_language : 12 (ANSI C99)

<11> DW_AT_name : (indirect string, offset: 0xbe): hello.c

<15> DW_AT_comp_dir : (indirect string, offset: 0x97): /tmp

<19> DW_AT_low_pc : 0x804840b

<1d> DW_AT_high_pc : 0x2e

runtime inspection and debug 189

<21> DW_AT_stmt_list : 0x0

Red This left-most number indicates the current nesting level of a

DIE entry. 0 is the outer-most level DIE with its entity is the

compilation unit. This means subsequent DIE entries with higher

nesting level are all the children of this tag, the compilation unit. It

makes sense, as all the entities must originate from a source file.

Blue These numbers in hex format indicate the offsets into .debug_info

section. Each meaningful information is displayed along with its

offset. When an attribute references to another attribute, the offset

is used to precisely identify the referenced attribute.

Green These names with DW_AT_ prefix are the attributes attached to

a DIE that describe an entity. Notable attributes:

DW_AT_name

DW_AT_comp_dir The filename of the compilation unit and the

directory where compilation occurred. Without the filename

and the path, gdb would not be able to display the high-level

source, despite the availability of the debug info. Debug info only

contains the mapping between source and binary, not the source

code itself.

DW_AT_low_pc

DW_AT_high_pc The start and end of the current entity, which

is the compilation unit, in the executable binary. The value in

DW_AT_low_pc is the starting address. DW_AT_high_pc is the size

of the compilation unit, when adding up to DW_AT_low_pc re-

sults in the end address of the entity. In this example, code com-

piled from hello.c starts at 0x804840b and end at 0x804840b + 0x2e = 0x8048439.

To really make sure, we verify with objdump:

Output int main(int argc, char *argv[])

{

804840b: 8d 4c 24 04 lea ecx,[esp+0x4]

804840f: 83 e4 f0 and esp,0xfffffff0

8048412: ff 71 fc push DWORD PTR [ecx-0x4]

190 operating system: from 0 to 1

8048415: 55 push ebp

8048416: 89 e5 mov ebp,esp

8048418: 51 push ecx

8048419: 83 ec 04 sub esp,0x4

printf("Hello World\n");

804841c: 83 ec 0c sub esp,0xc

804841f: 68 c0 84 04 08 push 0x80484c0

8048424: e8 b7 fe ff ff call 80482e0 <puts@plt>

8048429: 83 c4 10 add esp,0x10

return 0;

804842c: b8 00 00 00 00 mov eax,0x0

}

8048431: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]

8048434: c9 leave

8048435: 8d 61 fc lea esp,[ecx-0x4]

8048438: c3 ret

8048439: 66 90 xchg ax,ax

804843b: 66 90 xchg ax,ax

804843d: 66 90 xchg ax,ax

804843f: 90 nop

It is true: main starts at 804840b and end at 8048439, right

after the ret instruction at 8048438. The instructions af-

ter 8048439 are just padding bytes inserted by gcc for align-

ment, which do not belong to main. Note that the output from

objdump shows much more code past main. It is not counted, as

the code is outside of hello.c, added by gcc for the operating

system. hello.c contains only one function: main and this is

why hello.c also starts and ends the same as main.

Pink This number displays the abbreviation form of a tag. An abbre-

viation is the form of a DIE. When debug info is displayed with

-wi, the DIEs are displayed with their values. -wa option shows

abbreviations in the .debug_abbrev section:

runtime inspection and debug 191

Output Contents of the .debug_abbrev section:

Number TAG (0x0)

1 DW_TAG_compile_unit [has children]

DW_AT_producer DW_FORM_strp

DW_AT_language DW_FORM_data1

DW_AT_name DW_FORM_strp

DW_AT_comp_dir DW_FORM_strp

DW_AT_low_pc DW_FORM_addr

DW_AT_high_pc DW_FORM_data4

DW_AT_stmt_list DW_FORM_sec_offset

DW_AT value: 0 DW_FORM value: 0

.... more abbreviations

The output is similar to a DIE output, with only attribute names

and without any value. We can also say an abbreviation is a type of

a DIE, as an abbreviation represents the structure of a particular

DIE. Many DIEs share the same abbreviation, or structure, thus

they are of the same type. An abbreviation number specifies which

type a DIE is in the abbreviation table above. Abbreviations

improve encoding efficiency (reduce binary size) because each

DIE needs not to carry their structure information as pairs of

attribute-value2, but simply refers to an abbreviation for correct 2 For example, data format such as
YAML or JSON encodes its attri-
bute names along with its values.
This simplifies encoding, but with
overhead.

decoding.

Here are all the DIEs of hello represented as a tree:

In the figure 6.4.4, DW_TAG_subprogram represents a function such

as main. Its children are the DIEs of argc and argv. With such

precise information, matching source to binary is an easy job for gdb.

If more than one compilation units exist in an executable binary,

the DIE entries are sorted according to the compilation order from

gcc. For example, suppose we have another test.c source file3 and 3 It can contain anything. Just a
sample file.

compile it together with hello:

$ gcc -masm=intel -m32 -g test.c hello.c -o hello

192 operating system: from 0 to 1

<0>: Abbrev Number: 1 (DW_TAG_compile_unit)
 <c> DW_AT_producer : (indirect string, offset: 0xe): GNU C11
5.4.0 20160609 -masm=intel -m32 -mtune=generic -march=i686 -g
-fstack-protector-strong
 <10> DW_AT_language : 12 (ANSI C99)
 <11> DW_AT_name : (indirect string, offset: 0xbe): hello.c
 <15> DW_AT_comp_dir : (indirect string, offset: 0x97): /tmp
 <19> DW_AT_low_pc : 0x804840b
 <1d> DW_AT_high_pc : 0x2e
 <21> DW_AT_stmt_list : 0x0

<1><2c>: Abbrev Number: 2 (DW_TAG_base_type)
 <2d> DW_AT_byte_size : 1
 <2e> DW_AT_encoding : 8 (unsigned char)
 <2f> DW_AT_name : (indirect string, offset: 0x84): unsigned char

<1><25>: Abbrev Number: 2 (DW_TAG_base_type)
 <26> DW_AT_byte_size : 4
 <27> DW_AT_encoding : 7 (unsigned)
 <28> DW_AT_name : (indirect string, offset: 0x77): unsigned int

<1><33>: Abbrev Number: 2 (DW_TAG_base_type)
 <34> DW_AT_byte_size : 2
 <35> DW_AT_encoding : 7 (unsigned)
 <36> DW_AT_name : (indirect string, offset: 0xa1): short unsigned int

 <1><3a>: Abbrev Number: 2 (DW_TAG_base_type)
 <3b> DW_AT_byte_size : 4
 <3c> DW_AT_encoding : 7 (unsigned)
 <3d> DW_AT_name : (indirect string, offset: 0x72): long unsigned int

..many more base type entries

 <1><7f>: Abbrev Number: 5 (DW_TAG_subprogram)
 <80> DW_AT_external : 1
 <80> DW_AT_name : (indirect string, offset: 0x92): main
 <84> DW_AT_decl_file : 1
 <85> DW_AT_decl_line : 3
 <86> DW_AT_prototyped : 1
 <86> DW_AT_type : <0x4f>
 <8a> DW_AT_low_pc : 0x804840b
 <8e> DW_AT_high_pc : 0x2e
 <92> DW_AT_frame_base : 1 byte block: 9c (DW_OP_call_frame_cfa)
 <94> DW_AT_GNU_all_tail_call_sites: 1
 <94> DW_AT_sibling : <0xb5>

 <2><98>: Abbrev Number: 6 (DW_TAG_formal_parameter)
 <99> DW_AT_name : (indirect string, offset: 0x9c): argc
 <9d> DW_AT_decl_file : 1
 <9e> DW_AT_decl_line : 3
 <9f> DW_AT_type : <0x4f>
 <a3> DW_AT_location : 2 byte block: 91 0 (DW_OP_fbreg: 0)

 <2><a6>: Abbrev Number: 6 (DW_TAG_formal_parameter)
 <a7> DW_AT_name : (indirect string, offset: 0xcf): argv
 <ab> DW_AT_decl_file : 1
 <ac> DW_AT_decl_line : 3
 <ad> DW_AT_type : <0xb5>
 <b1> DW_AT_location : 2 byte block: 91 4 (DW_OP_fbreg: 4)

Figure 6.4.4: DIE entries visuali-
zed as a tree

runtime inspection and debug 193

Then, the all DIE entries in test.c are displayed before the DIE

entries in hello.c:

<0>: Abbrev Number: 1 (DW_TAG_compile_unit)

<c> DW_AT_producer : (indirect string, offset: 0x0): GNU C11 5.4.0 20160609

-masm=intel -m32 -mtune=generic -march=i686 -g -fstack-protector-strong

<10> DW_AT_language : 12 (ANSI C99)

<11> DW_AT_name : (indirect string, offset: 0x64): test.c

<15> DW_AT_comp_dir : (indirect string, offset: 0x5f): /tmp

<19> DW_AT_low_pc : 0x804840b

<1d> DW_AT_high_pc : 0x6

<21> DW_AT_stmt_list : 0x0

<1><25>: Abbrev Number: 2 (DW_TAG_subprogram)

<26> DW_AT_external : 1

<26> DW_AT_name : bar

<2a> DW_AT_decl_file : 1

<2b> DW_AT_decl_line : 1

<2c> DW_AT_low_pc : 0x804840b

<30> DW_AT_high_pc : 0x6

<34> DW_AT_frame_base : 1 byte block: 9c (DW_OP_call_frame_cfa)

<36> DW_AT_GNU_all_call_sites: 1

....after all DIEs in test.c listed....

<0><42>: Abbrev Number: 1 (DW_TAG_compile_unit)

<43> DW_AT_producer : (indirect string, offset: 0x0): GNU C11 5.4.0 20160609

-masm=intel -m32 -mtune=generic -march=i686 -g -fstack-protector-strong

<47> DW_AT_language : 12 (ANSI C99)

<48> DW_AT_name : (indirect string, offset: 0xc5): hello.c

<4c> DW_AT_comp_dir : (indirect string, offset: 0x5f): /tmp

<50> DW_AT_low_pc : 0x8048411

<54> DW_AT_high_pc : 0x2e

<58> DW_AT_stmt_list : 0x35

....then all DIEs in hello.c are listed....

Part II

Groundwork

7
Bootloader

A bootloader loads an OS, or an application 1 that runs and commu- 1 Many embedded devices don’t use
an OS. In embedded systems, the
bootloader is simply included in boot
firmware and no bootloader is needed.

nicate directly with hardware. To run an OS, the first thing to write

is a bootloader. In this chapter, we are going to write a rudimentary

bootloader, as our main focus is writing an operating system, not a

bootloader. More interestingly, this chapter will present related tools

and techniques that are applicable for writing a bootloader as well as

an operating system.

7.1 x86 Boot Process

After the POST process finished, the CPU’s program counter is

set to the address FFFF:0000h for executing BIOS code. BIOS -
Basic Input/Output System is a firmware that performs hardware

initialization and provides a set of generic subroutines to control

input/output devices. The BIOS checks all available storage devices

(floppy disks and hard disks) if any device is bootable, by examining

the last two bytes of the first sector whether it has the boot record

signature of 0x55, 0xAA. If so, the BIOS loads the first sector to the

address 7C00h, set the program counter to that address and let the

CPU executing code from there.

The first sector is called Master Boot Record, or MBR. The

198 operating system: from 0 to 1

program in the first sector is called MBR Bootloader.

7.2 Using BIOS services

BIOS provides many basic services for controlling the hardware at the

boot stage. A service is a group of routines that controls a particular

hardware device, or returns information of current system. Each

service is given an interrupt number. To call a BIOS routine, an

int instruction must be used with an interrupt number. Each BIOS

service defines its own numbers for its routines; to call a routine, a

specific number must be written to a register required by each service.

The list of all BIOS interrupts is available with Ralf Brown’s Interrupt

List at: http://www.cs.cmu.edu/~ralf/files.html.

BIOS Bootloader OS
Figure 7.2.1: The boot process.

Example: Interrupt call 13h (diskette service) requires number of

sectors to read, track number, sector number, head number and

drive number to read from a storage device. The content of the

sector is stored in memory at the address defined by the pair of

registers ES:BX. The parameters are stored in registers like this:

1 ; Store sector content in the buffer 10FF:0000

2 mov dx, 10FFh

3 mov es, dx

4 xor bx, bx

5 mov al, 2 ; read 2 sector

6 mov ch, 0 ; read track 0

7 mov cl, 2 ; 2nd sector is read

8 mov dh, 0 ; head number

9 mov dl, 0 ; drive number. Drive 0 is floppy drive.

10 mov ah, 0x02 ; read floppy sector function

11 int 0x13 ; call BIOS - Read the sector

http://www.cs.cmu.edu/~ralf/files.html

bootloader 199

The BIOS is only available in real mode. However, when switching

to protected mode, then BIOS will not be usable anymore and the

operating system code is responsible for controlling hardware devices.

This is when the operating system stands on its own: it must provide

its own kernel drivers for talking to hardware.

7.3 Boot process

1. BIOS transfers control to MBR bootloader by jumping to 0000:7c00h,

where bootloader is assumed to exist already.

2. Setup machine environment for booting by properly initialize

segment registers to enable flat memory model.

3. Load the kernel:

(a) Read kernel from disk.

(b) Save it somewhere in the main memory.

(c) Jump to the starting code address of the kernel and execute.

4. If error occurs, print a message to notify users something went

wrong and halt.

7.4 Example Bootloader

Here is a simple bootloader that does nothing, except not crashing

the machine but halt it gracefully. If the virtual machine does not

halt but text repeatedly flashing, it means the bootloader does not

load properly and the machine crashed. The machine crashed because

it keeps executing until the near end of physical memory (1MB in

real mode), which is FFFF:0000h, which starts the whole BIOS boot

process all over again. This is effectively a reset, but not fully, since

machine environment from previous run is still reserved. For that

reason, it is called a warm reboot. The opposite of warm reboot is cold
reboot, in which the machine environment is reset to initial settings

when the computer starts from a powerless state.

200 operating system: from 0 to 1

bootloader.asm

1 ;**

2 ; bootloader.asm

3 ; A Simple Bootloader

4 ;**

5 org 0x7c00

6 bits 16

7 start: jmp boot

8

9 ;; constant and variable definitions

10 msg db "Welcome to My Operating System!", 0ah, 0dh, 0h

11

12 boot:

13 cli ; no interrupts

14 cld ; all that we need to init

15 hlt ; halt the system

16

17 ; We have to be 512 bytes. Clear the rest of the bytes with

0

18 times 510 - ($-$$) db 0

19 dw 0xAA55 ; Boot Signiture

7.5 Compile and load

We compile the code with nasm and write it to a disk image:

$ nasm -f bin bootloader.asm -o bootloader

Then, we create a 1.4 MB floppy disk and:

$ dd if=/dev/zero of=disk.img bs=512 count=2880

bootloader 201

Output 2880+0 records in

2880+0 records out

1474560 bytes (1.5 MB, 1.4 MiB) copied, 0.00625622 s, 236 MB/s

Then, we write the bootloader to the 1stsector:

$ dd conv=notrunc if=bootloader of=disk.img bs=512

count=1 seek=0

Output 1+0 records in

1+0 records out

512 bytes copied, 0.000102708 s, 5.0 MB/s

The option conv=notrunc preserves the original size of the floppy

disk. Without this option, the 1.4 MB disk image will be completely

replaced by the new disk.img with only 512 bytes, and we do not

want that happens.

In the past, developing an operating system is complicated because

a programmer needs to understand specific hardware he is using. Even

though x86 was ubiquitous, the minute differences between models

made some code written for a machine not run on another. Further, if

you use the same physical computer you write your operating system

take very long between runs, and also difficult to debug. Fortunately,

today we can uniformly produce a virtual machine with a particular

specification and avoid the incompatibility issue altogether, thus

making an OS easier to write and test since everyone can reproduce

the same machine environment.

We will be using QEMU, a generic and open source machine emu-

lator and virtualizer. QEMU can emulate various types of machine,

not limited to x86_64 only. Debug is easy since you can connect GDB

to a virtual machine to debug code that runs on it, through QEMU’s

built-in GDB server. QEMU can use disk.img as a boot device e.g. a

floppy disk:

202 operating system: from 0 to 1

$ qemu-system-i386 -machine q35 -fda disk.img -gdb

tcp::26000 -S

� With option -machine q35, QEMU emulates a q35 machine model

from Intel.2. 2 The following command lists all
supported emulated machines from
QEMU:

qemu-system-i386 -machine help

� With option -fda disk.img, QEMU uses disk.img as a floppy

disk image.

� With option -gdb tcp::26000, QEMU allows gdb to connect to

the virtual machine for remote debugging through a tcp socket with

port 26000.

� With option -S, QEMU waits for gdb to connect before it starts

running.

After the command is executed, a new console window that displays

the screen output of the virtual machine. Open another terminal, run

gdb and set the current architecture to i386, since we are running in

16-bit mode:

(gdb) set architecture i8086

Output warning: A handler for the OS ABI "GNU/Linux" is not built into this configuration

of GDB. Attempting to continue with the default i8086 settings.

The target architecture is assumed to be i8086

Then, connect gdb to the waiting virtual machine with this com-

mand:

(gdb) target remote localhost:26000

Output Remote debugging using localhost:26000

0x0000fff0 in ?? ()

bootloader 203

Then, place a breakpoint at 0x7c00:

(gdb) b *0x7c00

Output Breakpoint 1 at 0x7c00

Note the before the memory address. Without the asterisk, gdb

treats the address as a symbol in a program rather than an address.

Then, for convenience, we use a split layout for viewing the assembly

code and registers together:

(gdb) layout asm

(gdb) layout reg

Finally, run the program:

(gdb) c

If the virtual machine successfully runs the bootloader, this is what

the QEMU screen should look like:

7.5.1 Debugging

If, for some reason, the sample bootloader cannot get to such screen

and gdb does not stop at 0x7c00, then the following scenarios are

likely:

� The bootloader is invalid: the message “Boot failed: not a

bootable disk” appears for floppy disk booting. Make sure the boot

signature is at the last 2 bytes of the 512-byte first sector.

� The machine cannot find a boot disk: the message “Boot

failed: not a bootable disk” appears for floppy disk booting. Make

sure the bootloader is correctly written to the first sector. It can be

verify by check the disk with hd:

204 operating system: from 0 to 1

Figure 7.5.1: Boot succeeded.

$ hd disk.img | less

If the first 512 bytes are all zeroes, then it is likely that the bootloa-

der is incorrectly written to another sector.

� The machine crashes: When such scenario happens, it re-

set back to the beginning at FFFF:0000h. If the QEMU machine

starts without waiting for gdb, then the console output window

keeps flashing as the machine is repeatedly reset. It is likely some

instruction in the bootloader code causing the fault.

Exercise 7.5.1. Print a welcome message

We loaded the bootloader successfully. But, it needs to do so-

mething useful other than halting our machine. The easiest thing to

do is printing something on screen, like how an introduction to all

programming language starts with “Hello World”. Our bootloader

prints “Welcome to my operating system”3. In this part, we will build 3 Or whatever message you want.

bootloader 205

a simple I/O library that allows us to set a cursor anywhere on the

screen and print text there.

First, create a file io.asm for I/O related routines. Then, write the

following routines:

1. MovCursor

Purpose: Move a cursor to a specific location on screen and re-

member this location.

Parameters:

� bh = Y coordinate

� bl = X coordinate.

Return: None

2. PutChar

Purpose: Print a character on screen, at the cursor position previ-

ously set by MovCursor .

Parameters:

� al = Character to print

� bl = text color

� cx = number of times the character is repeated

Return: None

3. Print

Purpose: Print a string.

Parameters:

� ds:si = Zero terminated string

Return: None

Test the routines by putting each in the bootloader source, compile

and run. To debug, run GDB and set a breakpoint at a specific rou-

tine. The end result is that Print should display a welcome message

on screen.

206 operating system: from 0 to 1

7.6 Loading a program from bootloader

Now that we get the feel of how to use the BIOS services, it is time for

something more complicated. We will place our kernel on 2nd sector

onward, and our bootloader reads 30 sectors starting from 2nd sector.

Why 30 sectors? Our kernel will grow gradually, so we will preserve 30

sectors and save us time for modifying the bootloader each time the

kernel size expands another sector.

The primary responsibility of a bootloader is to read an operating

system from some storage device e.g. hard disk, then loads it into

main memory and transfer the control to the loaded operating sy-

stem, similar to how the BIOS reads and loads a bootloader. At the

moment, our bootloader does nothing more than just an assembly

program loaded by the BIOS. To make our bootloader a real one, it

must perform well the above two tasks: read and load an operating

system.

7.6.1 Floppy Disk Anatomy

To read from a storage device, we must understand how the device

works, and the provided interface for controlling it. First of all, a

floppy disk is a storage device, similar to RAM, but can store infor-

mation even when a computer is turned off, thus is called persistent persistent storage device
storage device. A floppy disk also a persistent storage device, thus it

provides a storage space up to 1.4 MB, or 1,474,560 bytes. When rea-

ding from a floppy disk, the smallest unit that can be read is a sector,
a group of 512 contiguous bytes. A group of 18 sectors is a track. Each
side of a floppy disk consists of 80 tracks. A floppy drive is required to

read a floppy disk. Inside a floppy drive contains an arm with 2 heads,
each head reads a side of a floppy drive; head 0 writes the upper side

and head 1 writes the lower side of a floppy disk.

Figure 7.6.1: Sector and Track.
Track

Sector

When a floppy drive writes data to a brand new floppy disk, track 0

on the upper side is written first, by head 0. When the upper track 0

is full, the lower track 0 is used by head 1. When both the upper and

lower side of a track 0 are full, it goes back to head 0 for writing data

again, but this time the upper side of track 1 and so on, until no space

bootloader 207

left on the device. The same procedure is also applied for reading data

from floppy disk.
Figure 7.6.2: Floppy disk platter
with 2 sides.

Head 0

Head 1

7.6.2 Read and load sectors from a floppy disk

First, we need to a sample program for writing into the 2nd sector, so

we can experiment with floppy disk reading:

sample.asm

1 ;**

2 ; sample.asm

3 ; A Sample Program

4 ;**

5 mov eax, 1

6 add eax, 1

Such a program is good enough. To simplify and for the purpose

of demonstration, we will use the same floppy disk that holds the

bootloader to hold our operating system. The operating system image

starts from the 2nd sector, as the 1st sector is already in use by the

bootloader. We compile and write it to the 2nd sector with dd:

$ nasm -f bin sample.asm -o sample

$ dd if=sample of=disk.img bs=512 count=1 seek=0

1st sector 2nd sector 30th sector
bootloader sample (empty)

Figure 7.6.3: The bootloader and
the sample program on floppy disk.

Next, we need to fix the bootloader for reading from the floppy

disk and load a number of arbitrary sectors. Before doing so, a basic

understanding of floppy disk is required. To read data from disk,

interrupt 13 with AH = 02 is a routine for reading sectors from disk

into memory:

AH = 02

AL = number of sectors to read (1-128 dec.)

CH = track/cylinder number (0-1023 dec., see below)

208 operating system: from 0 to 1

CL = sector number (1-17 dec.)

DH = head number (0-15 dec.)

DL = drive number (0=A:, 1=2nd floppy, 80h=drive 0, 81h=drive 1)

ES:BX = pointer to buffer

Return:

AH = status (see INT 13,STATUS)

AL = number of sectors read

CF = 0 if successful

= 1 if error

Apply the above routine, the bootloader can read the 2nd sector:

bootloader.asm

1 ;**

2 ; Bootloader.asm

3 ; A Simple Bootloader

4 ;**

5 org 0x7c00

6 bits 16

7 start: jmp boot

8

9 ;; constant and variable definitions

10 msg db "Welcome to My Operating System!", 0ah, 0dh, 0h

11

12 boot:

13 cli ; no interrupts

14 cld ; all that we need to init

15

16 mov ax, 0x50

17

18 ;; set the buffer

19 mov es, ax

20 xor bx, bx

21

22 mov al, 2 ; read 2 sector

23 mov ch, 0 ; track 0

bootloader 209

24 mov cl, 2 ; sector to read (The second sector)

25 mov dh, 0 ; head number

26 mov dl, 0 ; drive number

27

28 mov ah, 0x02 ; read sectors from disk

29 int 0x13 ; call the BIOS routine

30 jmp 0x50:0x0 ; jump and execute the sector!

31

32 hlt ; halt the system

33

34 ; We have to be 512 bytes. Clear the rest of the bytes

with 0

35 times 510 - ($-$$) db 0

36 dw 0xAA55 ; Boot Signiture

The above code jumps to the address 0x50:00 (which is 0x500).

To test the code, load it on a QEMU virtual machine and connect

through gdb, then place a breakpoint at 0x500. If gdb stops at the

address, with the assembly listing is the same code as in sample.asm,

then the bootloader successfully loaded the program. This is an

important milestone, as we ensure that our operating system are

loaded and ran properly.

7.7 Improve productivity with scripts

7.7.1 Automate build with GNU Make

Up to this point, the whole development process felt repetitive: whe-

never a change is made, the same commands are entered again. The

commands are also complex. Ctrl+r helps, but it still feels tedious.

GNU Make is a program that controls and automates the process

of building a complex software. For a small program, like a single

C source file, invoking gcc is quick and easy. However, soon your

software will be more complex, with multiples spanning multiple

directories, it is a chore to manually build and link files. To solve

210 operating system: from 0 to 1

such problem, a tool was created to automate away this problem and

is called a build system. GNU Make is one such of tools. There are

various build systems out there, but GNU Make is the most popular in

Linux world, as it is used for building the Linux kernel.

For a comprehensive introduction to make, please refer to the

official Introduction to Make: https://www.gnu.org/software/

make/manual/html_node/Introduction.html#Introduction. And

that’s enough for our project. You can also download the manual

in different formats e.g. PDF from the official manual page: https:

//www.gnu.org/software/make/manual/ .

With Makefile, we can build simpler commands and save time:

Makefile

1 all: bootloader bootdisk

2

3 bootloader:

4 nasm -f bin bootloader.asm -o bootloader.o

5

6 kernel:

7 nasm -f bin sample.asm -o bootloader.o

8

9 bootdisk: bootloader.o kernel.o

10 dd if=/dev/zero of=disk.img bs=512 count=2880

11 dd conv=notrunc if=bootloader.o of=disk.img bs=512

count=1 seek=0

12 dd conv=notrunc if=sample.o of=disk.img bs=512 count=1

seek=1

Now, with a single command, we can build from start to finish a

disk image with a bootloader at 1stsector and the sample program at

2ndsector:

$ make bootdisk

https://www.gnu.org/software/make/manual/html_node/Introduction.html#Introduction
https://www.gnu.org/software/make/manual/html_node/Introduction.html#Introduction
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/

bootloader 211

Output nasm -f bin bootloader.asm -o bootloader.o

nasm -f bin sample.asm -o bootloader.o

dd if=/dev/zero of=disk.img bs=512 count=2880

2880+0 records in

2880+0 records out

1474560 bytes (1.5 MB, 1.4 MiB) copied, 0.00482188 s, 306 MB/s

dd conv=notrunc if=bootloader.o of=disk.img bs=512 count=1 seek=0

0+1 records in

0+1 records out

10 bytes copied, 7.0316e-05 s, 142 kB/s

dd conv=notrunc if=sample.o of=disk.img bs=512 count=1 seek=1

0+1 records in

0+1 records out

10 bytes copied, 0.000208375 s, 48.0 kB/s

Looking at the Makefile, we can see a few problems:

First, the name disk.img are all over the place. When we want to

change the disk image name e.g. floppy_disk.img, all the places with

the name disk.img must be changed manually. To solve this problem,

we use a variable, and every appearance of disk.img is replaced with

the reference to the variable. This way, only one place that is changed

- the variable definition - all other places are updated automatically.

The following variables are added:

BOOTLOADER=bootloader.o

OS=sample.o

DISK_IMG=disk.img.o

The second problem is, the name bootloader and sample ap-

pears as part of the filenames of the source files e.g. bootloader.asm

and sample.asm, as well as the filenames of the binary files e.g.

bootloader and sample. Similar to disk.img, when a name chan-

ged, every reference of that name must also be changed manually for

both the names of the source files and the names of the binary files

e.g. if we change bootloader.asm to loader.asm, then the object

212 operating system: from 0 to 1

file bootloader.o needs changing to loader.o. To solve this pro-

blem, instead of changing filenames manually, we create a rule that

automatically generate the filenames of one extension to another. In

this case, we want any source file that starts with .asm to have its

equivalent binary files, without any extension e.g. bootloader.asm

→ bootloader.o. Such transformation is common, so GNU Make

provides built-in functions: wildcard and patsubst for solving such

problems:

BOOTLOADER_SRCS := $(wildcard *.asm)

BOOTLOADER_OBJS := $(patsubst %.asm, %.o, $(BOOTLOADER_SRCS

))

wildcard matches any .asm file in the current directory, then

assigned the list of matched files into the variable BOOTLOADER_SRCS.

In this case, BOOTLOADER_SRCS is assigned the value:

bootloader.asm sample.asm

patsubst substitutes any filename starts with .asm into a filename .o

e.g. bootloader.asm → bootloader.o. After patsubsts runs, we get

a list of object files in BOOTLOADER_OBJS:

bootloader.o sample.o

Finally, a recipe for building from .asm to .o are needed:

%.o: %.asm

nasm -f bin $< -o $@

� $< is a special variable that refers to the input of the recipe: %.asm.

� $@ is a special variable that refers to the output of the recipe: %.o.

When the recipe is executed, the variables are replaced with the

actual values. For example, if a transformation is bootloader.asm →

bootloader.o, then the actual command executed when replace the

placeholders in the recipe is:

bootloader 213

nasm -f bin bootloader.asm -o bootloader.o

With the recipe, all the .asm files are built automatically with the

nasm command into .o files and we no longer need a separate recipe

for each object files. Putting it all together with the new variables, we

get a better Makefile:

Makefile

1 BOOTLOADER=bootloader.o

2 OS=sample.o

3 DISK_IMG=disk.img

4

5 BOOTLOADER_SRCS := $(wildcard *.asm)

6 BOOTLOADER_OBJS := $(patsubst %.asm, %.o, $(BOOTLOADER_SRCS

))

7

8 all: bootdisk

9

10 %.o: %.asm

11 nasm -f bin $< -o $@

12

13 bootdisk: $(BOOTLOADER_OBJS)

14 dd if=/dev/zero of=$(DISK_IMG) bs=512 count=2880

15 dd conv=notrunc if=$(BOOTLOADER) of=$(DISK_IMG) bs=512

count=1 seek=0

16 dd conv=notrunc if=$(OS) of=$(DISK_IMG) bs=512 count=1

seek=1

From here on, any .asm file is compiled automatically, without an

explicit recipe for each file.

The object files are in the same directory as the source files, making

it more difficult when working with the source tree. Ideally, object files

and source files should live in different directories. We want a better

organized directory layout like Figure 7.7.1.

Figure 7.7.1: A better project
layout

.

bootloader

bootloader.asm

Makefile

build

bootloader

bootloader.o

disk.img

os

sample.o

Makefile

os

Makefile

sample.asm

The layout can be displayed with tree

command:
$ tree

bootloader/ directory holds bootloader source files; os/ holds

operating system source files that we are going to write later; build/

214 operating system: from 0 to 1

holds the object files for both the bootloader, the os and the final disk

image disk.img. Notice that bootloader/ directory also has its own

Makefile. This Makefile will be responsible for building everything in

bootloader/ directory, while the top-level Makefile is released from

the burden of building the bootloader, but only the disk image. The

content of the Makefile in bootloader/ directory should be:

bootloader/Makefile

1 BUILD_DIR=../build/bootloader

2

3 BOOTLOADER_SRCS := $(wildcard *.asm)

4 BOOTLOADER_OBJS := $(patsubst %.asm, $(BUILD_DIR)/%.o, $(

BOOTLOADER_SRCS))

5

6 all: $(BOOTLOADER_OBJS)

7

8 $(BUILD_DIR)/%.o: %.asm

9 nasm -f bin $< -o $@

Figure 7.7.2: Makefile in
bootloader/

.

bootloader

bootloader.asm

Makefile

build

bootloader

bootloader.o

disk.img

os

sample.o

Makefile

os

Makefile

sample.asm

Basically everything related to the bootloader in the top-level Ma-

kefile are extracted into this Makefile. When make runs this Makefile,

bootloader.o should be built and put into ../build/ directory. As

a good practice, all references to ../build/ go through BUILD_DIR

variable. The recipe for transforming from .asm → .o is also updated

with proper paths, else it will not work.

� %.asm refers to the assembly source files in the current directory.

� $(BUILD_DIR)/%.o refers to the output object files in the build

directory in the path ../build/.

The entire recipe implements the transformation from <source_file.asm>

→ ../build/<object_file.o>. Note that all paths must be correct.

If we try to build object files in a different directory e.g. current di-

rectory, it will not work since there is no such recipe exists to build

objects at such a path.

We also create a similar Makefile for os/ directory:

Figure 7.7.3: Makefile in os/

.

bootloader

bootloader.asm

Makefile

build

bootloader

bootloader.o

disk.img

os

sample.o

Makefile

os

Makefile

sample.asm

bootloader 215

os/Makefile

1 BUILD_DIR=../build/os

2

3 OS_SRCS := $(wildcard *.asm)

4 OS_OBJS := $(patsubst %.asm, $(BUILD_DIR)/%.o, $(OS_SRCS))

5

6 all: $(OS_OBJS)

7

8 $(BUILD_DIR)/%.o: %.asm

9 nasm -f bin $< -o $@

For now, it looks almost identical to the Makefile for bootloader. In

the next chapter, we will update it for C code. Then, we update the

top-level Makefile:

Figure 7.7.4: Top-level Makefile

.

bootloader

bootloader.asm

Makefile

build

bootloader

bootloader.o

disk.img

os

sample.o

Makefile

os

Makefile

sample.asm

Makefile

1 BUILD_DIR=build

2 BOOTLOADER=$(BUILD_DIR)/bootloader/bootloader.o

3 OS=$(BUILD_DIR)/os/sample.o

4 DISK_IMG=disk.img

5

6 all: bootdisk

7

8 .PHONY: bootdisk bootloader os

9

10 bootloader:

11 make -C bootloader

12

13 os:

14 make -C os

15

16 bootdisk: bootloader os

17 dd if=/dev/zero of=$(DISK_IMG) bs=512 count=2880

18 dd conv=notrunc if=$(BOOTLOADER) of=$(DISK_IMG) bs=512

count=1 seek=0

216 operating system: from 0 to 1

19 dd conv=notrunc if=$(OS) of=$(DISK_IMG) bs=512 count=1

seek=1

The build process is now truly modularized:

� bootloader and os builds are now delegated to child Makefile

of respective components. -C option tells make to execute with a

Makefile in a supplied directory. In this case, the directories are

bootloader/ and os/.

� The target all of the top-level Makefile is only responsible for

bootdisk target, which is the primary target of this Makefile.

In many cases, a target is not always a filename, but is just a name

for a recipe to be always executed when requested. If a filename is of

the same name as a target and the file is up-to-date, make does not

execute the target. To solve this problem, .PHONY specifies that some

targets are not files. All phony targets will then run when requested,

regardless of files of the same names.

To save time entering the command for starting up a QEMU virtual

machine, we also add a target to the top-level Makefile:

qemu:

qemu-system-i386 -machine q35 -fda $(DISK_IMG) -gdb tcp

::26000 -S

One last problem is project cleaning. At the moment, object files

need removing manually and this is a repetitive process. Instead,

let the Makefile of each component takes care of cleaning its object

files, then top-level Makefile performs project cleaning by calling the

component Makefile to do the jobs. Each Makefile is added with a

clean target at the end:

� Bootloader Makefile:

clean:

rm $(BUILD_DIR)/*

bootloader 217

� OS Makefile:

clean:

rm $(BUILD_DIR)/*

� Top-level Makefile:

clean:

make -C bootloader clean

make -C os clean

Simply invoking make clean at the project root, all object files the are

removed.

7.7.2 GNU Make Syntax summary

GNU Make, at its core, is a domain-specific language for build au-

tomation. As any programming language, it needs a way to define

data and code. In a Makefile, variables carry data. A variable value is

either hard coded or evaluated from invoking a shell such as Bash. All

variable values in Make has the same type: a string of text. Number 3

is not a number, but textual representation of the symbol 3. Here are

common ways how to define data in a Makefile:

Syntax Description

A = 1

B = 2

C = $$(expr $(A) + $(B))

⇒ A is 1, B is 2, C is 3.

Declare a variable and assign a textual value to it.

the double dollar sign $$ means the enclosing

expression evaluating by a shell, defined by

/bin/sh. In this case, the enclosing expression is

(expr $(A) + $(B)) and is evaluated by Bash.

PATH = /bin

PATH := $PATH:/usr/bin

⇒ PATH is /bin/:/usr/bin

Declare a variable and assign to it. However, the

difference is that the = syntax does not allow refer

to a variable to use itself as a value in the right

hand side, while this syntax does.

218 operating system: from 0 to 1

PATH = /bin

PATH += /usr/bin

⇒ PATH is /bin/:/usr/bin

Append a new value at the end of a variable.

Equivalent to:

PATH := $PATH:/usr/bin

CFLAGS ?= -o

⇒ CFLAGS is assigned the value -o if it was

not defined.

This syntax is called conditional reference. Set a

variable to a value if it is undefined. This is useful

if a user wants to supply different value for a

variable from the command line e.g. add debugging

option to CFLAGS. Otherwise, Make uses the default

defined by ?=.

SRCS = lib1.c lib2.c main.c

OBJS := $(SRC:.o=.c)

⇒ OBJS has the value lib1.o lib2.o

main.o

This syntax is called substitution reference. A

part of referenced variable is replaced with

something else. In this case, all the .c extension is

replaced by .o extension, thus creating a list of

object files for OBJS variable from the list of source

files from SRCS variable.

Code in GNU Make is a collection of recipes that it can run. Each

recipe is analogous to a function in a programming language, and

can be called like a regular function. Each recipe carries a series of

shell commands to be executed by a shell e.g. Bash. A recipe has the

following format:

target: prerequisites

command

Each target is analogous to a function name. Each prerequisite

is a call another target. Each command is one of Make’s built-in

commands or a command that is executable by a shell. All prerequi-

sites must be satisfied before entering main body of target; that is,

each prerequisite must not return any error. If any error is returned,

Make terminates the whole build process and prints an error on the

command line.

bootloader 219

Each time make runs, by default if no target is supplied, it starts

with all target, go through every prerequisites and finally the body of

all. all is analogous to main in other programming languages. Howe-

ver, if make is given a target, it will start from that target instead of

main. This feature is useful to automate multiple aspects in a project.

For example, one target is for building the project, one target is for

generating the documents e.g. test reports, another target for running

the whole test suite and all runs every main targets.

7.7.3 Automate debugging steps with GDB script

For the convenience, we save GDB configuration to .gdbinit file

at the project root directory. This configuration is just a collection

of GDB commands and a few extra commands. When gdb runs, it

first loads the .gdbinit file at home directory, then the .gdbinit

file at the current directory. Why shouldn’t we put commands in

~/.gdbinit? Because these commands are specific to only this projec

e.g. not all programs are required a remote connection.

Our first configuration:

.gdbinit

1 define hook-stop

2 # Translate the segment:offset into a physical address

3 printf "[%4x:%4x] ", $cs, $eip

4 x/i $cs*16+$eip

5 end

The above script displays the memory address in [segment:offset]

format, which is necessary for debugging our bootloader and operating

system code.

It is better to use Intel syntax:

set disassembly-flavor intel

The following commands set a more convenient layout for debugging

assembly code:

220 operating system: from 0 to 1

layout asm

layout reg

We are currently debugging bootloader code, so it is a good idea to

first set it to 16-bit:

set architecture i8086

Every time the QEMU virtual machine starts, gdb must always con-

nect to port 26000. To avoid the trouble of manually connecting to

the virtual machine, add the command:

target remote localhost:26000

Debugging the bootloader needs a breakpoint at 0x7c00, where our

bootloader code starts:

b *0x7c00

Now, whenever gdb starts, it automatically set correct architecture ba-

sed on code, automatically connects to the virtual machine4, displays 4 The QEMU virtual machine should
have already been started before
starting gdb.output in a convenient layout and set a necessary breakpoint. All that

need to do is run the program.

8
Linking and loading on bare metal

Relocation is the process of replacing symbol references with its ac- Relocation
tual symbolic definitions in an object file. A symbol reference is the

memory address of a symbol.

If the definition is hard to understand, consider a similar analogy:

house relocation. Suppose that a programmer bought a new house

and the new house is empty. He must buy furnitures and appliances to

fulfill daily needs and thus, he made a list of items to buy, and where

to place them. To visualize the placements of new items, he draws a

blueprint of the house and the respective places of all items. He then

travels to the shops to buy goods. Whenever he visit a shop and sees

matched items, he tells the shop owner to note them down. After done

selecting, he tells the shop owner to pick up a brand new item instead

of the objects on display, then give the address for delivering the goods

to his new house. Finally, when the goods arrive, he places the items

where he planned at the beginning.

Now that house relocation is clear, object relocation is similar:

� The list of items represents the relocation table, where the memory

location for each symbol (item) is predetermined.

� Each item represents a pair of symbol definition and its symbol
address.

222 operating system: from 0 to 1

� Each shop represents a compiled object file.

� Each item on display represents a symbol definition and references

in the object file.

� The new address, where all the goods are delivered, represents the

final executable binary or the final object file. Since the items on

display are not for sale, the shop owner delivers brand new goods

instead. Similarly, the object files are not merged together, but

copied all over a new file, the object/executable file.

� Finally, the goods are placed in the positions according to the

shopping list made from the beginning. Similarly, the symbol

definitions are placed appropriately in its respective section and the

symbol references of the final object/executable file are replaced

with the actual memory addresses of the symbol definitions.

8.1 Understand relocations with readelf

Earlier, when we explore object sections, there exists sections that

begins with .rel. These sections are relocation tables that maps

between a symbol and its location in the final object file or the final

executable binary1. 1 A .rel section is equivalent to a list
of items in the house analogy.

Suppose that a function foo is defined in another object file, so

main.c declares it as extern:

main.c

int i;

void foo();

int main(int argc, char *argv[])

{

i = 5;

foo();

return 0;

}

void foo() {}

linking and loading on bare metal 223

When we compile main.c as object file with this command:

$ gcc -m32 -masm=intel -c main.c

Then, we can inspect the relocation tables with this command:

$ readelf -r main.o

The output:

Output Relocation section ’.rel.text’ at offset 0x1cc contains 2 entries:

Offset Info Type Sym.Value Sym. Name

00000013 00000801 R_386_32 00000004 i

0000001c 00000a02 R_386_PC32 0000002e foo

Relocation section ’.rel.eh_frame’ at offset 0x1dc contains 2 entries:

Offset Info Type Sym.Value Sym. Name

00000020 00000202 R_386_PC32 00000000 .text

0000004c 00000202 R_386_PC32 00000000 .text

8.1.1 Offset

An offset is the location into a section of a binary file, where the offset
actual memory address of a symbol definition is replaced. The section

with .rel prefix determines which section to offset into. For example,

.rel.text is the relocation table of symbols whose address needs

correcting in .text section, at a specific offset into .text section. In

the example output:

Output 0000001c 00000a02 R_386_PC32 0000002e foo

The blue number indicates there exists a reference of symbol foo

that is 1c bytes into .text section. To see it clearer, we recompile

main.c with option -g into the file main_debug.o, then run objdump

on it and got:

224 operating system: from 0 to 1

Output Disassembly of section .text:

00000000 <main>:

int i;

void foo();

int main(int argc, char *argv[])

{

0: 8d 4c 24 04 lea ecx,[esp+0x4]

4: 83 e4 f0 and esp,0xfffffff0

7: ff 71 fc push DWORD PTR [ecx-0x4]

a: 55 push ebp

b: 89 e5 mov ebp,esp

d: 51 push ecx

e: 83 ec 04 sub esp,0x4

i = 5;

11: c7 05 00 00 00 00 05 mov DWORD PTR ds:0x0,0x5

18: 00 00 00

foo();

1b: e8 fc ff ff ff call 1c <main+0x1c>

return 0;

20: b8 00 00 00 00 mov eax,0x0

}

25: 83 c4 04 add esp,0x4

28: 59 pop ecx

29: 5d pop ebp

2a: 8d 61 fc lea esp,[ecx-0x4]

2d: c3 ret

....irrelevant content omitted....

The byte at 1b is the opcode e8, the call instruction; byte at 1c is

the value fc. Why is the operand value for e8 is 0xfffffffc, which is

equivalent to -4, but the translated instruction call 1c?

linking and loading on bare metal 225

8.1.2 Info

Info specifies index of a symbol in the symbol table and the type of

relocation to perform.

Output 0000001c 00000a02 R_386_PC32 0000002e foo

The pink number is the index of symbol foo in the symbol table,

and the green number is the relocation type. The numbers are written

in hex format. In the example, 0a means 10 in decimal, and symbol

foo is indeed at index 10:

Output 10: 0000002e 6 FUNC GLOBAL DEFAULT 1 foo

8.1.3 Type

Type represents the type value in textual form. Looking at the type of

foo:

Output 0000001c 00000a02 R_386_PC32 0000002e foo

The green number is type in its numeric form, and R_386_PC32 is

the name assigned to that value. Each value represents a relocation

method of calculation. For example, with the type R_386_PC32, the

following formula is applied for relocation (Inteli386 psABI):

Relocated Offset = S + A− P

To understand the formula, it is necessary to understand symbol

values.

8.1.4 Sym.Value

This field shows the symbol value. A symbol value is a value assigned

to a symbol, whose meaning depends on the Ndx field:

A symbol whose section index is COMMON, its symbol value

holds alignment constraints.

226 operating system: from 0 to 1

Example 8.1.1. In the symbol table, the variable i is identified as

COM (uninitialized variable):2 2 The command for listing symbol
table is (assume the object file is
hello.o):

readelf -s hello.o
Output Symbol table ’.symtab’ contains 16 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 00000000 0 NOTYPE LOCAL DEFAULT UND

1: 00000000 0 FILE LOCAL DEFAULT ABS hello2.c

2: 00000000 0 SECTION LOCAL DEFAULT 1

3: 00000000 0 SECTION LOCAL DEFAULT 3

4: 00000000 0 SECTION LOCAL DEFAULT 4

5: 00000000 0 SECTION LOCAL DEFAULT 5

6: 00000000 0 SECTION LOCAL DEFAULT 7

7: 00000000 0 SECTION LOCAL DEFAULT 8

8: 00000000 0 SECTION LOCAL DEFAULT 10

9: 00000000 0 SECTION LOCAL DEFAULT 12

10: 00000000 0 SECTION LOCAL DEFAULT 14

11: 00000000 0 SECTION LOCAL DEFAULT 15

12: 00000000 0 SECTION LOCAL DEFAULT 13

13: 00000004 4 OBJECT GLOBAL DEFAULT COM i

14: 00000000 46 FUNC GLOBAL DEFAULT 1 main

15: 0000002e 6 FUNC GLOBAL DEFAULT 1 foo

so its symbol value is a memory alignment for assigning a pro-

per memory address that conforms to the alignment in the final

memory address. In the case of i, the value is 4, so the starting

memory address of i in the final binary file will be a multiple of 4.

A symbol whose Ndx identifies a specific section, its

symbol value holds a section offset.

Example 8.1.2. In the symbol table, main and foo belong to

section 1:

Output 14: 00000000 46 FUNC GLOBAL DEFAULT 1 main

15: 0000002e 6 FUNC GLOBAL DEFAULT 1 foo

which is .text3 section4: 3 .text holds program code and
read-only data.
4 The command for listing sections is
(assume the object file is hello.o):

readelf -S hello.o

linking and loading on bare metal 227

Output There are 20 section headers, starting at offset 0x558:

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .text PROGBITS 00000000 000034 000034 00 AX 0 0 1

[2] .rel.text REL 00000000 000414 000010 08 I 18 1 4

[3] .data PROGBITS 00000000 000068 000000 00 WA 0 0 1

[4] .bss NOBITS 00000000 000068 000000 00 WA 0 0 1

[5] .debug_info PROGBITS 00000000 000068 000096 00 0 0 1

..... remaining output omitted for clarity....

In the final executable and shared object files, instead

of the above values, a symbol value holds a memory address.

Example 8.1.3. After compiling hello.o into the final executable

hello, the symbol table now contains the memory address for each

symbol5: 5 The command to compile the object
file hello.o into the executable hello:

gcc -g -m32 -masm=intel hello.o -o hello
Output Symbol table ’.symtab’ contains 75 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 00000000 0 NOTYPE LOCAL DEFAULT UND

1: 08048154 0 SECTION LOCAL DEFAULT 1

2: 08048168 0 SECTION LOCAL DEFAULT 2

3: 08048188 0 SECTION LOCAL DEFAULT 3

....output omitted...

64: 08048409 6 FUNC GLOBAL DEFAULT 14 foo

65: 0804a020 0 NOTYPE GLOBAL DEFAULT 26 _end

66: 080482e0 0 FUNC GLOBAL DEFAULT 14 _start

67: 08048488 4 OBJECT GLOBAL DEFAULT 16 _fp_hw

68: 0804a01c 4 OBJECT GLOBAL DEFAULT 26 i

69: 0804a018 0 NOTYPE GLOBAL DEFAULT 26 __bss_start

70: 080483db 46 FUNC GLOBAL DEFAULT 14 main

...ouput omitted...

Unlike the values of the symbols foo, i and main as in the hello.o

228 operating system: from 0 to 1

object file, the complete memory addresses are in place.

Now it suffices to understand relocation types. Previously, we men-

tioned the type R_386_PC32. The following formula is applied for

relocation (Inteli386 psABI):

Relocated Offset = S + A− P

where

S represents the value of the symbol. In the final executable binary, it

is the address of the symbol.

A represents the addend, an extra value added to the value of a

symbol.

P Represents the memory address to be fixed.

Relocate Offset is the distance between a relocating location6 and 6 where the referenced memory
address is to be fixed.

the actual memory location of a symbol definition, or a memory

address.

But why do we waste time in calculating a distance instead of repla-

cing with a direct memory address? The reason is that x86 architec-

ture does not use employ any addressing mode that uses an absolute

memory address, as listed in table 4.5.2. All addressing modes in x86

are relative. In some assembly language, an absolute address can be

used simply because it is a syntactic sugar that is later transformed

into one of the relative addressing mode provided by the x86 hardware

by the assembler.

Example 8.1.4. For the foo symbol:

Output 0000001c 00000a02 R_386_PC32 0000002e foo

The distance between the usage of foo in main.o and its definition,

applying the formula S + A− P is: 2e + 0− 1c = 12. That is, the

place where memory fixing starts is 0x12 or 18 bytes away from the

linking and loading on bare metal 229

definition of the symbol foo. However, to make an instruction works

properly, we must also subtract 4 from 0x12 and results in 0xe. Why

the extra -4? Because the relative address starts at the end of an

instruction, not the address where memory fixing starts. For that
reason, we must also exclude the 4 bytes of the overwritten address.

Indeed, looking at the objdump output of the object file hello.o:

Output Disassembly of section .text:

00000000 <main>:

0: 8d 4c 24 04 lea ecx,[esp+0x4]

4: 83 e4 f0 and esp,0xfffffff0

7: ff 71 fc push DWORD PTR [ecx-0x4]

a: 55 push ebp

b: 89 e5 mov ebp,esp

d: 51 push ecx

e: 83 ec 04 sub esp,0x4

11: c7 05 00 00 00 00 05 mov DWORD PTR ds:0x0,0x5

18: 00 00 00

1b: e8 fc ff ff ff call 1c <main+0x1c>

20: b8 00 00 00 00 mov eax,0x0

25: 83 c4 04 add esp,0x4

28: 59 pop ecx

29: 5d pop ebp

2a: 8d 61 fc lea esp,[ecx-0x4]

2d: c3 ret

0000002e <foo>:

2e: 55 push ebp

2f: 89 e5 mov ebp,esp

31: 90 nop

32: 5d pop ebp

33: c3 ret

The place where memory fixing starts is after the opcode e8, with

the mock value fc ff ff ff, which is -4 in decimal. However, the

assembly code, the value is displayed as 1c. the memory address right

after e8. The reason is that the instruction e8 starts at 1b and ends

230 operating system: from 0 to 1

at 207. -4 means 4 bytes backward from the end of instruction, that 7 The end of an instruction is the
memory address right after its last
operand. The whole instruction e8
spans from the address 1b to the
address 1f.

is: 20− 4 = 1c. After linking, the output of the final executable file is

displayed with the actual memory fixing:

Output 080483db <main>:

80483db: 8d 4c 24 04 lea ecx,[esp+0x4]

80483df: 83 e4 f0 and esp,0xfffffff0

80483e2: ff 71 fc push DWORD PTR [ecx-0x4]

80483e5: 55 push ebp

80483e6: 89 e5 mov ebp,esp

80483e8: 51 push ecx

80483e9: 83 ec 04 sub esp,0x4

80483ec: c7 05 1c a0 04 08 05 mov DWORD PTR ds:0x804a01c,0x5

80483f3: 00 00 00

80483f6: e8 0e 00 00 00 call 8048409 <foo>

80483fb: b8 00 00 00 00 mov eax,0x0

8048400: 83 c4 04 add esp,0x4

8048403: 59 pop ecx

8048404: 5d pop ebp

8048405: 8d 61 fc lea esp,[ecx-0x4]

8048408: c3 ret

08048409 <foo>:

8048409: 55 push ebp

804840a: 89 e5 mov ebp,esp

804840c: 90 nop

804840d: 5d pop ebp

804840e: c3 ret

804840f: 90 nop

In the final output, the opcode e8 previously at 1b now starts

at the address 80483f6. The mock value fc ff ff ff is replaced

with the actual value 0e 00 00 00 using the same calculating met-

hod from its object file: opcode e8 is at 80483f6. The definition

of foo is at 8048409. The offset from the next address after e8 is

8048409 + 0− 80483f7− 4 = 0e. However, for readability, the assem-

bly is displayed as call 8048409 <foo>, since GNU as8 assembler 8 Or any current assembler in use
today.

linking and loading on bare metal 231

allows specifying the actual memory address of a symbol definition.

Such address is later translated into relative addressing mode, saving

the programmer the trouble of calculating offset manually.

8.1.5 Sym. Name

This field displays the name of a symbol to be relocated. The named

symbol is the same as written in a high level language such as C.

8.2 Crafting ELF binary with linker scripts

A linker is a program that combines separated object files into a final linker
binary file. When gcc is invoked, it runs ld underneath to turn object

files into the final executable file..

A linker script is a text file that instructs how a linker should linker script
combine object files. When gcc runs, it uses its default linker script

to build the memory layout of a compiled binary file. Standardized

memory layout is called object file format e.g. ELF includes program

headers, section headers and their attributes. The default linker script

is made for running in the current operating system environment9. 9 To view the default script, use
--verbose option:

ld --verbose
Running on bare metal, the default script cannot be used as it is not

designed for such environment. For that reason, a programmer needs

to supply his own linker script for such environments.

Every linker script consists of a series of commands with the follo-

wing format:

COMMAND

{

sub-command 1

sub-command 2

.... more sub-command....

}

232 operating system: from 0 to 1

Each sub-command is specific to only the top-level command. The

simplest linker script needs only one command: SECTION, that consu-

mes input sections from object files and produces output sections of

the final binary file10. 10 Recall that sections are chunks of
code or data, or both.

8.2.1 Example linker script

Here is a minimal example of a linker script:

main.lds

SECTIONS /* Command */

{

. = 0x10000; /* sub-command 1 */

.text : { *(.text) } /* sub-command 2 */

. = 0x8000000; /* sub-command 3 */

.data : { *(.data) } /* sub-command 4 */

.bss : { *(.bss) } /* sub-command 5 */

}

Code Dissection:

Code Description
SECTION Top-level command that declares a list of custom program

sections. ld provides a set of such commands.
. = 0x10000; Set location counter to the address 0x10000. Location counter

specifies the base address for subsequent commands. In this
example, subsequent commands will use 0x10000 onward.

.text : { *(.text) } Since location counter is set to 0x10000, the output .text in
the final binary file will starts at the address 0x10000. This
command combines all .text sections from all object files with
*(.text) syntax into a final .text section. The * is the
wildcard which matches any file name.

. = 0x8000000; Again, the location counter is set to 0x8000000. Subsequent
commands will use this address for working with sections.

.data : { *(.data) } All .data section are combined into one .data section in the
final binary file.

.bss : { *(.bss) } All .bss section are combined into one .bss section in the final
binary file.

The addresses 0x10000 and 0x8000000 are called Virtual Memory
Address. A virtual memory address is the address where a section is virtual memory address

linking and loading on bare metal 233

loaded in memory when a program runs. To use the linker script, we

save it as a file e.g. main.lds11; then, we need a sample program in a 11 .lds is the extension for linker
script.

file, e.g. main.c:

main.c

void test() {}

int main(int argc, char *argv[])

{

return 0;

}

Then, we compile the file and explicitly invoke ld with the linker

script:

$ gcc -m32 -g -c main.c

$ ld -m elf_i386 -o main -T main.lds main.o

In the ld command, the options are similar to gcc:

Option Description

-m Specify object file format that ld produces. In the example, elf_i386 means a 32-bit ELF

is to be produced.

-o Specify the name of the final executable binary.

-T Specify the linker script to use. In the example, it is main.lds.
The remaining input is a list of object files for linking. After the

command ld is executed, the final executable binary - main - is produ-

ced. If we try running it:

$./main

Segmentation fault

The reason is that when linking manually, the entry address must

be explicitly set, or else ld sets it to the start of .text section by

default. We can verify from the readelf output:

$ readelf -h main

234 operating system: from 0 to 1

Output ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2’s complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: Advanced Micro Devices X86-64

Version: 0x1

Entry point address: 0x10000

Start of program headers: 64 (bytes into file)

Start of section headers: 2098144 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 3

Size of section headers: 64 (bytes)

Number of section headers: 14

Section header string table index: 11

The entry point address is set to 0x10000, which is the beginning of

.text section. Using objdump to examine the address:

$ objdump -z -M intel -S -D prog | less

we see that the address 0x10000 does not start at main function

when the program runs:

Output Disassembly of section .text:

00010000 <test>:

int a = 5;

int i;

void test(){}

linking and loading on bare metal 235

10000: 55 push ebp

10001: 89 e5 mov ebp,esp

10003: 90 nop

10004: 5d pop ebp

10005: c3 ret

00010006 <main>:

int main(int argc, char *argv[])

{

10006: 55 push ebp

10007: 89 e5 mov ebp,esp

return 0;

10009: b8 00 00 00 00 mov eax,0x0

}

1000e: 5d pop ebp

1000f: c3 ret

The start of .text section at 0x10000 is the function test, not

main! To enable the program to run at main properly, we need to

set the entry point in the linker script with the following line at the

beginning of the file:

ENTRY(main)

Recompile the executable binary file main again. This time, the out-

put from readelf is different:

Output ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

Class: ELF32

Data: 2’s complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: Intel 80386

236 operating system: from 0 to 1

Version: 0x1

Entry point address: 0x10006

Start of program headers: 52 (bytes into file)

Start of section headers: 9168 (bytes into file)

Flags: 0x0

Size of this header: 52 (bytes)

Size of program headers: 32 (bytes)

Number of program headers: 3

Size of section headers: 40 (bytes)

Number of section headers: 14

Section header string table index: 11

The program now executes code at the address 0x10006 when it

starts. 0x10006 is where main starts! To make sure we really starts at

main, we run the program with gdb, set two breakpoints at main and

test functions:

$ gdb ./main

Output output omitted

Reading symbols from ./main...done.

(gdb) b test

Output Breakpoint 1 at 0x10003: file main.c, line 1.

(gdb) b main

Output Breakpoint 2 at 0x10009: file main.c, line 5.

(gdb) r

linking and loading on bare metal 237

Output Starting program: /tmp/main

Breakpoint 2, main (argc=-11493, argv=0x0) at main.c:5

5 return 0;

As displayed in the output, gdb stopped at the 2nd breakpoint first.

Now, we run the program normally, without gdb:

$./main

Segmentation fault

We still get a segmentation fault. It is to be expected, as we ran a

custom binary without C runtime support from the operating system.

The last statement in the main function: return 0, simply returns

to a random place12. The C runtime ensures that the program exit 12 Return address is above the current
ebp. However, when we enter main, no
return value is pushed on the stack.
So, when return is executed, it simply
retrieves any value above ebp and use
as a return address.

properly. In Linux, the _exit() function is implicitly called when

main returns. To fix this problem, we simply change the program to

exit properly:

hello.c

1 void test() {}

2 int main(int argc, char *argv[])

3 {

4 asm("mov eax, 0x1\n"

5 "mov ebx, 0x0\n"

6 "int 0x80");

7 }

Inline assembly is required because interrupt 0x80 is defined for

system calls in Linux. Since the program uses no library, there is

no other way to call system functions, aside from using assembly.

However, when writing our operating system, we will not need such

code, as there is no environment for exiting properly yet.

Now that we can precisely control where the program runs initially,

it is easy to bootstrap the kernel from the bootloader. Before we move

on to the next section, note how readelf and objdump can be applied

238 operating system: from 0 to 1

to debug a program even before it runs.

8.2.2 Understand the custom ELF structure

In the example, we manage to create a runnable ELF executable

binary from a custom linker script, as opposed to the default one

provided by gcc. To make it convenient to look into its structure:

$ readelf -e main

-e option is the combination of 3 options -h -l -S:

Output ELF header output omitted

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .text PROGBITS 00010000 001000 000010 00 AX 0 0 1

[2] .eh_frame PROGBITS 00010010 001010 000058 00 A 0 0 4

[3] .debug_info PROGBITS 00000000 001068 000087 00 0 0 1

[4] .debug_abbrev PROGBITS 00000000 0010ef 000074 00 0 0 1

[5] .debug_aranges PROGBITS 00000000 001163 000020 00 0 0 1

[6] .debug_line PROGBITS 00000000 001183 000038 00 0 0 1

[7] .debug_str PROGBITS 00000000 0011bb 000078 01 MS 0 0 1

[8] .comment PROGBITS 00000000 001233 000034 01 MS 0 0 1

[9] .shstrtab STRTAB 00000000 00133a 000074 00 0 0 1

[10] .symtab SYMTAB 00000000 001268 0000c0 10 11 10 4

[11] .strtab STRTAB 00000000 001328 000012 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

LOAD 0x001000 0x00010000 0x00010000 0x00068 0x00068 R E 0x1000

GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x10

Section to Segment mapping:

linking and loading on bare metal 239

Segment Sections...

00 .text .eh_frame

01

The structure is incredibly simple. Both the segment and section

listings can be contained within one screen. This is not the case

with default ELF executable binary. From the output, there are

only 11 sections, and only two are loaded at runtime: .text and

.eh_frame because both section are assigned with an actual memroy

addresses, 0x10000 and 0x10010 respectively. The remaining sections

are assigned with 0 in the final executable binary13, which mean they 13 As opposed to the object files,
where memory addresses are always 0
and only assigned with actual values
in the linking process.

are not loaded at runtime. It makes sense, as those sections are related

to versioning14, debugging15 and linking16. 14 It is the .comment section. It can
be viewed with the comment readelf
-p .comment main.
15 The ones starts with .debug prefix.
16 The symbol tables and string table.

The program segment header table is even simpler. It only contains

2 segments: LOAD and GNU_STACK. By default, if the linker script does

not supply the instructions for building program segments, ld provides

reasonable default segments. As in this case, .text should be in

the LOAD segment. GNU_STACK segment is a GNU extension used by

the Linux kernel to control the state of the program stack. We will

not need this segment, along with .eh_frame, which is for exception

handling, as we write our own operating system from scratch. To

achieve these goals, we will need to create our own program headers

instead of letting ld handles the task, and instruct ld to remove

.eh_frame.

8.2.3 Manipulate the program segments

First, we need to craft our own program header table by using the

following syntax:

PHDRS

{

<name> <type> [FILEHDR] [PHDRS] [AT (address)]

[FLAGS (flags)] ;

}

240 operating system: from 0 to 1

PHDRS command, similar to SECTION command, but for declaring a

list of custom program segments with a predefined syntax.

name is the header name for later referenced by a section declared in

SECTION command.

type is the ELF segment type, as described in section Section 5.5,

with added prefix PT_. For example, instead of NULL or LOAD as

displayed by readelf, it is PT_NULL or PT_LOAD.

Example 8.2.1. With only name and type, we can create any number

of program segments. For example, we can add the NULL program

segment and remove the GNU_STACK segment:

main.lds

1 PHDRS

2 {

3 null PT_NULL;

4 code PT_LOAD;

5 }

6

7 SECTIONS

8 {

9 . = 0x10000;

10 .text : { *(.text) } :code

11 . = 0x8000000;

12 .data : { *(.data) }

13 .bss : { *(.bss) }

14 }

The content of PHDRS command tells that the final executable bi-

nary contains 2 program segments: NULL and LOAD. The NULL segment

is given the name null and LOAD segment given the name code to

signify this LOAD segment contains program code. Then, to put a

section into a segment, we use the syntax :<phdr>, where phdr is the

linking and loading on bare metal 241

name given to a segment earlier. In this example, .text section is put

into code segment. We compile and see the result (assuming main.o

compiled earlier remains):

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output Elf file type is EXEC (Executable file)

Entry point 0x10000

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

NULL 0x000000 0x00000000 0x00000000 0x00000 0x00000 0x4

LOAD 0x001000 0x00010000 0x00010000 0x00010 0x00010 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text .eh_frame

Those 2 segments are now NULL and LOAD instead of LOAD and

GNU_STACK.

Example 8.2.2. We can add as many segments of the same type, as

long as they are given different names:

main.lds

1 PHDRS

2 {

3 null1 PT_NULL;

4 null2 PT_NULL;

5 code1 PT_LOAD;

6 code2 PT_LOAD;

7 }

8

9 SECTIONS

10 {

242 operating system: from 0 to 1

11 . = 0x10000;

12 .text : { *(.text) } :code1

13 .eh_frame : { *(.eh_frame) } :code2

14 . = 0x8000000;

15 .data : { *(.data) }

16 .bss : { *(.bss) }

17 }

After amending the PHDRS content earlier with this new segment

listing, we put .text into code1 segment and .eh_frame into code2

segment, we compile and see the new segments:

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output Elf file type is EXEC (Executable file)

Entry point 0x10000

There are 4 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

NULL 0x000000 0x00000000 0x00000000 0x00000 0x00000 0x4

NULL 0x000000 0x00000000 0x00000000 0x00000 0x00000 0x4

LOAD 0x001000 0x00010000 0x00010000 0x00010 0x00010 R E 0x1000

LOAD 0x001010 0x00010010 0x00010010 0x00058 0x00058 R 0x1000

Section to Segment mapping:

Segment Sections...

00

01

02 .text

03 .eh_frame

Now .text and .eh_frame are in different segments.

FILEHDR is an optional keyword, when added specifies that a pro-

linking and loading on bare metal 243

gram segment includes the ELF file header of the executable binary.

However, this attribute should only added for the first program

segment, as it drastically alters the size and starting address of a

segment because the ELF header is always at the beginning of a

binary file, recall that a segment starts at the address of its first

content, which is in most of the cases (except for this case, which is

the file header), the first section.

Example 8.2.3. Adding the FILEHDR keyword changes the size of

NULL segment:

main.lds

PHDRS

{

null PT_NULL FILEHDR;

code PT_LOAD;

}

..... content is the same

We link it again and see the result:

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output Elf file type is EXEC (Executable file)

Entry point 0x10000

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

NULL 0x000000 0x00000000 0x00000000 0x00034 0x00034 R 0x4

LOAD 0x001000 0x00010000 0x00010000 0x00068 0x00068 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

244 operating system: from 0 to 1

01 .text .eh_frame

In previous examples, the file size and memory size of the NULL

section are always 0, now they are both 34 bytes, which is the size of

an ELF header.

Example 8.2.4. If we assign FILEHDR to a non-starting segment, its

size and starting address changes significantly:

main.lds

PHDRS

{

null PT_NULL;

code PT_LOAD FILEHDR;

}

..... content is the same

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output Elf file type is EXEC (Executable file)

Entry point 0x10000

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

NULL 0x000000 0x00000000 0x00000000 0x00000 0x00000 0x4

LOAD 0x000000 0x0000f000 0x0000f000 0x01068 0x01068 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text .eh_frame

The size of the LOAD segment in the previous example is only 0x68,

the same size as the total sizes of .text and .eh_frame sections in it.

But now, it is 0x01068, got 0x1000 bytes larger. What is the reason

linking and loading on bare metal 245

for these extra bytes? A simple answer: segment alignment. From

the output, the alignment of this segment is 0x1000; it means that

regardless of which address is the start of this segment, it must be

divisible by 0x1000. For that reason, the starting address of LOAD is

0xf000 because it is divisible by 0x1000.

Another question arises: why is the starting address 0xf000 instead

of 0x10000? .text is the first section, which starts at 0x10000, so

the segment should start at 0x10000. The reason is that we include

FILEHDR as part of the segment, it must expand to include the ELF

file header, which is at the very start of an ELF executable binary.

To satisfy this constraint and the alignment constraint, 0xf000 is the

closest address. Note that the virtual and physical memory addresses

are the addresses at runtime, not the locations of the segment in the

file on disk. As the FileSiz field shows, the segment only consumes

0x1068 bytes on disk. Figure 8.2.1 illustrates the difference between

the memory layouts with and without FILEHDR keyword.

246 operating system: from 0 to 1

0x34

0x1000

0x1068

0x0

0x10000

0x10068

File

Memory

.text .eh_frame

ELF header

.text .eh_frame

0x0

0xFFFFFFFF

0x1590

Loaded contentLOAD segment

(a) Without FILEHDR.

0x34

0x1000

0x1068

0x0

0x10000

0x10068

0xf000

File

Memory

.text .eh_frame

ELF header ELF header

.text .eh_frame

0x0

0xFFFFFFFF

0xf034

0x1590

Loaded contentLOAD segment

(b) With FILEHDR.

Figure 8.2.1: LOAD segment on
disk and in memory.

linking and loading on bare metal 247

PHDRS is an optional keyword, when added specifies that a pro-

gram segment is a program segment header table.

Example 8.2.5. The first segment of the default executable binary

generated by gcc is a PHDR since the program segment header table

appears right after the ELF header. It is also a convenient segment to

put the ELF header into using the FILEHDR keyword. We replace the

unused NULL segment earlier with a PHDR segment:

main.lds

PHDRS

{

headers PT_PHDR FILEHDR PHDRS;

code PT_LOAD FILEHDR;

}

..... content is the same

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output Elf file type is EXEC (Executable file)

Entry point 0x10000

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x001000 0x00010000 0x00010000 0x00068 0x00068 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text .eh_frame

As shown in the output, the first segment is of type PHDR. Its size is

0x74, which includes:

248 operating system: from 0 to 1

� 0x34 bytes for ELF header.

� 0x40 bytes for the program segment header table, with 2 entries,

each is 0x20 bytes (32 bytes) in length.

The above number is consistent with ELF header output:

Output ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

Class: ELF32

....... output omitted

Size of this header: 52 (bytes) --> 0x34 bytes

Size of program headers: 32 (bytes) --> 0x20 bytes each program header

Number of program headers: 2 --> 0x40 bytes in total

Size of section headers: 40 (bytes)

Number of section headers: 12

Section header string table index: 9

AT (address) specifies the load memory address where the seg-

ment is placed. Every segment or section has a virtual memory
address and a load memory address:

� A virtual memory address is a starting address of a segment virtual memory address
or a section when a program is in memory and running. The

memory address is called virtual because it does not map to the

actual memory cell that corresponds to the address number, but

any random memory cell, which depends on how the underlying

operating system translates the address. For example, the virtual

memory address 0x1 might map to the memory cell with the

physical address 0x1000.

� A load memory address is the physical memory address, where a load memory address
program is loaded but not yet running.

The load memory address is specified by AT syntax. Normally

both types of addresses are the same, and the physical address can

linking and loading on bare metal 249

be ignored. They differ when loading and running are purposely

divided into two distinct phases that require different address

regions.

For example, a program can be designed to load into a ROM17 17 Read-Only Memory

at a fixed address. But when loading into RAM for a bare-metal

application or an operating system to use, the program needs a load

address that accommodates the addressing scheme of the target

application or operating system.

Example 8.2.6. We can specify a load memory address for the

segment LOAD with AT syntax:

main.lds

PHDRS

{

headers PT_PHDR FILEHDR PHDRS AT(0x500);

code PT_LOAD;

}

..... content is the same

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output Elf file type is EXEC (Executable file)

Entry point 0x4000

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000500 0x00074 0x00074 R 0x4

LOAD 0x001000 0x00004000 0x00002000 0x00068 0x00068 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

250 operating system: from 0 to 1

01 .text .eh_frame

It depends on an operating system whether to use the address or

not. For our operating system, the virtual memory address and load

are the same, so an explicit load address is none of our concern.

FLAGS (flags) assigns permissions to a segment. Each flag is an

integer that represents a permission and can be combined with OR

operations. Possible values:

Permission Value Description

R 1 Readable

W 2 Writable

E 4 Executable

Example 8.2.7. We can create a LOAD segment with Read, Write

and Execute permissions enabled:

main.lds

PHDRS

{

headers PT_PHDR FILEHDR PHDRS AT(0x500);

code PT_LOAD FILEHDR FLAGS(0x1 | 0x2 | 0x4);

}

..... content is the same

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output Elf file type is EXEC (Executable file)

Entry point 0x0

There are 2 program headers, starting at offset 52

linking and loading on bare metal 251

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000500 0x00074 0x00074 R 0x4

LOAD 0x001000 0x00000000 0x00000000 0x00010 0x00010 RWE 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text .eh_frame

LOAD segment now gets all the RWE permissions, as shown above.

Finally, we want to remove the .eh_frame or any unwanted section,

we add a special section called /DISCARD/:

main.lds

... program segment header table remains the same ...

SECTIONS

{

/* . = 0x10000; */

.text : { *(.text) } :code

. = 0x8000000;

.data : { *(.data) }

.bss : { *(.bss) }

/DISCARD/ : { *(.eh_frame) }

}

Any section putting in /DISCARD/ disappears in the final executable

binary:

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

252 operating system: from 0 to 1

Output Elf file type is EXEC (Executable file)

Entry point 0x0

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000500 0x00074 0x00074 R 0x4

LOAD 0x001000 0x00000000 0x00000000 0x00010 0x00010 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text

As can be seen, .eh_frame is nowhere to be found.

8.3 C Runtime: Hosted vs Freestanding

The purpose of .init, .init_array, .fini_array and .preinit_array

section is to initialize a C Runtime environment that supports the C

standard libraries. Why does C need a runtime environment, when it

is supposed to be a compiled language? The reason is that many of

the standard functions depend on the underlying operating system,

which is of itself a big runtime environment. For example, I/O related

functions such as reading from keyboard with gets(), reading from

file with open(), printing on screen with printf(), managing system

memory with malloc(), free(), etc.

A C implementation cannot provide such routines without a run-

ning operating system, which is a hosted environment. A hosted
environment is a runtime environment that:

� provides a default implementation of C libraries that includes

system-dependent data and routines.

� perform resource allocations to prepare an environment for a pro-

gram to run.

This process is similar to the hardware initialization process:

linking and loading on bare metal 253

� When first powered up, a desktop computer loads its basic system

routines from a read-only memory stored on the motherboard.

� Then, it starts initializing an environment, such as setting default

values for various registers in CPU and devices, before executing

the any code.

In contrast, a freestanding environment is an environment that does

not provide system-dependent data and routines. As a consequence,

almost no C library exists and the environment can run code compiled

written from pure C syntax. For a free standing environment to

become a host environment, it must implement standard C system

routines. But for a conforming freestanding environment, it only needs

these header files available: <float.h>, <limits.h>, <stadarg.h>

and <stddef.h> (according to GCC manual).

For a typical desktop x86 program, C runtime environment is ini-

tialized by a compiler so a program runs normal. However, for an

embedded platform where a program runs directly on it, this is not the

case. The typical C runtime environment used in desktop operating

systems cannot be used on the embedded platforms, because archi-

tectural differences and resource constraints. As such, the software

writer must implement a custom C runtime environment suitable for

the targeted platform. For the embedded platform,

In writing our operating system, the first step is to create a frees-

tanding environment before creating a hosted one.

8.4 Debuggable bootloader on bare metal

Currently, the bootloader is compiled as a flat binary file. Although

gdb can display the assembly code, it is not always the same as the

source code. In the assembly source code, there exists variable names

and labels. These symbols are lost when compiled as a flat binary

file, making debugging more difficult. Another issue is the mismatch

between the written assembly source code and the displayed assembly

source code. The written code might contain higher level syntax that

is assembler-specific and is generated into lower-level assembly code

254 operating system: from 0 to 1

as displayed by gdb. Finally, with debug information available, the

command next/n and prev/p can be used instead of ni and si.

To enable debug information, we modify the bootloader Makefile:

1. The bootloader must be compiled as a ELF binary. Open the

Makefile in bootloader/ directory and change this line under

$(BUILD_DIR)/%.o: %.asm recipe:

nasm -f bin $< -o $@

to this line:

nasm -f elf $< -F dwarf -g -o $@

In the updated recipe, bin format is replaced with elf format to

enable debugging information to be properly produced.-F option

specifies the debug information format, which is dwarf in this

case. Finally, -g option causes nasm to actually generate debug

information in selected format.

2. Then, ld consumes the ELF bootloader binary and produces anot-

her ELF bootloader binary, with proper starting memory address

of .text section that match the actual address of the bootloader at

runtime, when QEMU virtual machine loads it at 0x7c00. We need

ld because when compiled by nasm, the starting address is assumed

to be 0, not 0x7c00.

3. Finally, we use objcopy to separate extract only the flat binary con-

tent as the original bootloader by adding this line to $(BUILD_DIR)/%.o:

%.asm:

objcopy -O binary $(BUILD_DIR)/bootloader.o.elf $@

objcopy, as its name implies, is a program that copies and trans-

lates object files. Here, we copy the original ELF bootloader and

translate it into a flat binary file.

linking and loading on bare metal 255

The updated recipe should look like:

$(BUILD_DIR)/%.o: %.asm

nasm -f elf $< -F dwarf -g -o $@

ld -m elf_i386 -T bootloader.lds $@ -o $@.elf

objcopy -O binary $(BUILD_DIR)/bootloader.o.elf $@

Now we test the bootloader with debug information available:

1. Start the QEMU machine:

$ make qemu

2. Start gdb with the debug information stored in bootloader.o.elf:

$ gdb build/bootloader/bootloader.o.elf

After getting into gdb, press the Enter key and if the sample

.gdbinit section 7.7.3 is used, the output should look like:

Output ---Type <return> to continue, or q <return> to quit---

[f000:fff0] 0x0000fff0 in ?? ()

Breakpoint 1 at 0x7c00: file bootloader.asm, line 6.

(gdb)

gdb now understand where the instruction at address 0x7c00 is in

the assembly source file, thanks to the debug information.

8.5 Debuggable program on bare metal

The process of building a debug-ready executable binary is similar to

that of a bootloader, except more involved. Recall that for a debugger

to work properly, its debugging information must contain correct

address mappings between memory addresses and the source code.

gcc stores such mapping information in DIE entries, in which it tells

256 operating system: from 0 to 1

gdb at which code address corresponds to a line in a source file, so

that breakpoints work properly.

But first, we need a sample C source file, a very simple one:

os.c

void main() {}

Because this is a free standing environment, standard libraries that

involve system functions such as printf() would not work, because a

C runtime does not exist. At this stage, the goal is to correctly jump

to main with source code displayed properly in gdb, so no fancy C

code is needed yet.

The next step is updating os/Makefile:

BUILD_DIR=../build_os

OS=$(BUILD_DIR)/os

CFLAGS+=-ffreestanding -nostdlib -gdwarf-4 -m32 -ggdb3

OS_SRCS := $(wildcard *.c)

OS_OBJS := $(patsubst %.c, $(BUILD_DIR)/%.o, $(OS_SRCS))

all: $(OS)

$(BUILD_DIR)/%.o: %.c

gcc $(CFLAGS) -m32 -c $< -o $@

$(OS): $(OS_OBJS)

ld -m elf_i386 -Tos.lds $(OS_OBJS) -o $@

clean:

rm $(OS_OBJS)

We updated the Makefile with the following changes:

� Add a CFLAGS variable for passing options to gcc.

linking and loading on bare metal 257

� Instead of the rule to build assembly source code earlier, it is

replaced with a C version with a recipe to build C source files. The

CFLAGS variable makes the gcc command in the recipe looks cleaner

regardless how many options are added.

� Add a linking command for building the final executable binary of

the operating system with a custom linker script os.lds.

Everything looks good, except for the linker script part. Why is it

needed? The linker script is required for controlling at which physical

memory address the operating system binary appears in the memory,

so the linker can jump to the operating system code and execute it.

To complete this requirement, the default linker script used by gcc

would not work as it assumes the compiled executable runs inside an

existing operating system, while we are writing an operating system

itself.

The next question is, what will be the content in the linker script?

To answer this question, we must understand what goals to achieve

with the linker script:

� For the bootloader to correctly jump to and execute the operating

system code.

� For gdb to debug correctly with the operating system source code.

To achieve the goals, we must devise a design of a suitable memory

layout for the operating system. Recall that the bootloader developed

in chapter 7 can already load a simple binary compiled from the

sample Assembly program sample.asm. To load the operating system,

we can simply throw binary compiled from sample.asm with the

binary compiled from os.c above.

If only it is that simple. The idea is correctly, but not enough. The

goals implies the following constraints:

1. The operating system code is written in C and compiled as an

ELF executable binary. It means, the bootloader needs to retrieve

correct entry address from the ELF header.

258 operating system: from 0 to 1

2. To debug properly with gdb, the debug info must contain correct

mappings between instruction addresses and source code.

Thanks to the understanding of ELF and DWARF acquire in the

earlier chapters, we can certainly modify the bootloader and create

an executable binary that satisfy the above constraint. We will solve

these problems one by one.

8.5.1 Loading an ELF binary from a bootloader

Earlier we examined that an ELF header contains a entry address of a

program. That information is 0x18 bytes away from the beginning of

an ELF header, according to man elf :

typedef struct {

unsigned char e_ident[EI_NIDENT];

uint16_t e_type;

uint16_t e_machine;

uint32_t e_version;

ElfN_Addr e_entry;

ElfN_Off e_phoff;

ElfN_Off e_shoff;

uint32_t e_flags;

uint16_t e_ehsize;

uint16_t e_phentsize;

uint16_t e_phnum;

uint16_t e_shentsize;

uint16_t e_shnum;

uint16_t e_shstrndx;

} ElfN_Ehdr;

The offset from the start of the struct to the start of e_entry is:

� 16 bytes of e_ident[EI_NIDENT]:

#define EI_NIDENT 16

� 2 bytes of e_type

linking and loading on bare metal 259

� 2 bytes of e_machine

� 4 bytes of e_version

Offset = 16 + 2 + 2 + 4 = 24 = 0x18

e_entry is of type ElfN_Addr, in which N is either 32 or 64. We are

writing 32-bit operating system, in this case N = 32 and so ElfN_Addr

is Elf32_Addr, which is 4 bytes long.

Example 8.5.1. With any program, such as this simple one:

hello.c

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("hello␣world!\n");

return 0;

}

We can retrieve the entry address with a human-readable presenta-

tion using readelf:

$ gcc hello.c -o hello

$ readelf -h hello

Output ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

.... output omitted

Entry point address: 0x400430

.... output omitted

Or in raw binary with hd:

260 operating system: from 0 to 1

$ hd hello | less

Output 00000000 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 |.ELF............|

00000010 02 00 3e 00 01 00 00 00 30 04 40 00 00 00 00 00 |..>.....0.@.....|

.........

The offset 0x18 is the start of the least-significant byte of e_entry,

which is 0x30, followed by 04 40 00, together in reverse makes the

address 0x00400430.

Now that we know where the position of the entry address in the

ELF header, it is easy to modify the bootloader made in section 7.6.2

to retrieve and jump to the address:

bootloader.asm

;**

; Bootloader.asm

; A Simple Bootloader

;**

bits 16

start: jmp boot

;; constant and variable definitions

msg db "Welcome to My Operating System!", 0ah, 0dh, 0h

boot:

cli ; no interrupts

cld ; all that we need to init

mov ax, 50h

;; set the buffer

mov es, ax

xor bx, bx

linking and loading on bare metal 261

mov al, 2 ; read 2 sector

mov ch, 0 ; we are reading the second sector past us,

; so its still on track

0

mov cl, 2 ; sector to read (The second sector)

mov dh, 0 ; head number

mov dl, 0 ; drive number. Remember Drive 0 is floppy

drive.

mov ah, 0x02 ; read floppy sector function

int 0x13 ; call BIOS - Read the sector

jmp [500h + 18h] ; jump and execute the sector!

hlt ; halt the system

; We have to be 512 bytes. Clear the rest of the bytes

with 0

times 510 - ($-$$) db 0

dw 0xAA55 ; Boot Signiture

It is as simple as that! First, we load the operating system binary

at 0x500, then we retrieve the entry address at the offset 0x18 from

0x500, by first calculating the expression 500h + 18h = 518h to get the

actual in-memory address, then retrieve the content by dereference it.

The first part is done. For the next part, we need to build an ELF

operating system image for the bootloader to load. The first step is to

create a linker script:

main.lds

ENTRY(main);

PHDRS

{

headers PT_PHDR FILEHDR PHDRS;

code PT_LOAD;

262 operating system: from 0 to 1

}

SECTIONS

{

.text 0x500: { *(.text) } :code

.data : { *(.data) }

.bss : { *(.bss) }

/DISCARD/ : { *(.eh_frame) }

}

The script is straight-forward and remains almost the same as

before. The only differences are:

� main are explicitly specified as the entry point by specifying

ENTRY(main).

� .text is explicitly specified with 0x500 as its virtual memory ad-
dress since we load the operating system image at 0x500.

After putting the script, we compile with make and it should work

smoothly:

$ make clean; make

$ readelf -l build/os/os

Output Elf file type is EXEC (Executable file)

Entry point 0x500

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x000500 0x00000500 0x00000500 0x00040 0x00040 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text

linking and loading on bare metal 263

All looks good, until we run it. We begin by starting the QEMU

virtual machine:

$ make qemu

Then, start gdb and load the debug info (which is also in the same

binary file) and set a breakpoint at main:

(gdb) symbol-file build/os/os

Reading symbols from build/os/os...done.

(gdb) b main

Breakpoint 2 at 0x500

Then we start the program:

(gdb) symbol-file build/os/os

Reading symbols from build/os/os...done.

(gdb) b main

Breakpoint 2 at 0x500

Keep the programming running until it stops at main:

(gdb) c

Continuing.

[0:7c00]

Breakpoint 1, 0x00007c00 in ?? ()

(gdb) c

Continuing.

[0: 500]

Breakpoint 2, main () at main.c:1

At this point, we switch the layout to the C source code instead of

the registers:

(gdb) layout split

264 operating system: from 0 to 1

layout split creates a layout that consists of 3 smaller windows:

� Source window at the top.

� Assembly window in the middle.

� Command window at the bottom.

After the command, the layout should look like this:

Output
main.c

B+> 1 void main(){}

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

B+> 0x500 <main> jg 0x547

0x502 <main+2> dec sp

0x503 <main+3> inc si

0x504 <main+4> add WORD PTR [bx+di],ax

0x506 add WORD PTR [bx+si],ax

0x508 add BYTE PTR [bx+si],al

0x50a add BYTE PTR [bx+si],al

0x50c add BYTE PTR [bx+si],al

0x50e add BYTE PTR [bx+si],al

linking and loading on bare metal 265

0x510 add al,BYTE PTR [bx+si]

0x512 add ax,WORD PTR [bx+si]

0x514 add WORD PTR [bx+si],ax

0x516 add BYTE PTR [bx+si],al

0x518 add BYTE PTR [di],al

0x51a add BYTE PTR [bx+si],al

0x51c xor al,0x0

0x51e add BYTE PTR [bx+si],al

remote Thread 1 In: main L1 PC: 0x500

[f000:fff0] 0x0000fff0 in ?? ()

Breakpoint 1 at 0x7c00

(gdb) symbol-file build/os/os

Reading symbols from build/os/os...done.

(gdb) b main

Breakpoint 2 at 0x500: file main.c, line 1.

(gdb) c

Continuing.

[0:7c00]

Breakpoint 1, 0x00007c00 in ?? ()

(gdb) c

Continuing.

[0: 500]

Breakpoint 2, main () at main.c:1

(gdb) layout split

(gdb)

Something wrong is going on here. It is not the generated assembly

code for function call as it is known in section 4.9.5. It is definitely

wrong, verified with objdump:

$ objdump -D build/os/os | less

266 operating system: from 0 to 1

Output /home/tuhdo/workspace/os/build/os/os: file format elf32-i386

Disassembly of section .text:

00000500 <main>:

500: 55 push %ebp

501: 89 e5 mov %esp,%ebp

503: 90 nop

504: 5d pop %ebp

505: c3 ret

.... remaining output omitted

The assembly code of main is completely different. This is why

understanding assembly code and its relation to high-level languages

are important. Without the knowledge, we would have used gdb as a

simple source-level debugger without bother looking at the assembly

code from the split layout. As a consequence, the true cause of the

non-working code could never been discovered.

8.5.2 Debugging the memory layout

What is the reason for the incorrect Assembly code in main displayed

by gdb? There can only be one cause: the bootloader jumped to the

wrong addresses. But why was the address wrong? We made the

.text section at address 0x500, in which main code is in the first byte

for executing, and instructed the bootloader to retrieve the address at

the offset 0x18, then jump to the entry address.

Figure 8.5.1: Memory state after
loading 2nd sector.

0x500

Memory

ELF header

.text

0x0

0xFFFFFFFF

Loaded content

Then, it might be possible for the bootloader to load the operating

system address at the wrong address. But then, we explicitly set the

load address to 50h:00, which is 0x500, and so the correct address

was used. After the bootloader loas the 2nd sector, the in-memory

state should look like the figure 8.5.1:

What is the reason for the incorrect Assembly code in main dis-

played by gdb? There can only be one cause: the bootloader jumped

to the wrong addresses. But why was the address wrong? We made

the .text section at address 0x500, in which main code is in the

first byte for executing, and instructed the bootloader to retrieve the

linking and loading on bare metal 267

address at the offset 0x18, then jump to the entry address.

Then, it might be possible for the bootloader to load the operating

system address at the wrong address. But then, we explicitly set the

load address to 50h:00, which is 0x500, and so the correct address

was used. After the bootloader loads the 2nd sector, the in-memory

state should look like the figure 8.5.1.

Here is the problem: 0x500 is the start of the ELF header. The

bootloader actually loads the 2nd sector, which stores the executable

as a whole, to 0x500. Clearly, .text section, where main resides, is

far from 0x500. Since the in-memory entry address of the executable

binary is 0x500, .text should be at 0x500 + 0x500 = 0xa00. However,

the entry address recorded in the ELF header remains 0x500 and as a

result, the bootloader jumped there instead of 0xa00. This is one of

the issues that must be fixed.

The other issue is the mapping between debug info and the memory

address. Because the debug info is compiled with the assumed offset

0x500 that is the start of .text section, but due to actual loading, the

offset is pushed another 0x500 bytes, making the address actually is at

0xa00. This memory mismatch renders the debug info useless.

0x500

Memory

ELF header

.text

0x0

0xFFFFFFFF

Loaded content

Debug Info

.text

.text

Debug info is
supposed to be here

Figure 8.5.2: Wrong symbol-
memory mappings in debug info.

In summary, we have 2 problems to overcome:

� Fix the entry address to account for the extra offset when loading

268 operating system: from 0 to 1

into memory.

� Fix the debug info to account for the extra offset when loading into

memory.

First, we need to know the actual layout of the compiled executable

binary:l

$ readelf -l build/os/os

Output Elf file type is EXEC (Executable file)

Entry point 0x500

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x000500 0x00000500 0x00000500 0x00040 0x00040 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text

Notice the Offset and the VirtAddress fields: both have the same

value. This is problematic, as the entry address and the memory

addresses in the debug info depend on VirtAddr field, but the Offset

having the same value destroys the validity of VirtAddr18 because it 18 The offset is the distance in bytes
between the beginning of the file, the
address 0, to the beginning address of
a segment or a section.

means that the real in-memory address will always be greater than the

VirtAddr.

If we try to adjust the virtual memory address of the .text section

in the linker script os.lds, whatever value we set also sets the Offset

to the same value, until we set it to some value equal or greater than

0x1074:

Output Elf file type is EXEC (Executable file)

Entry point 0x1074

There are 2 program headers, starting at offset 52

linking and loading on bare metal 269

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x000074 0x00001074 0x00001074 0x00006 0x00006 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text

If we adjust the virtual address to 0x1073, both the Offset and

VirtAddr still share the same value:

Output Elf file type is EXEC (Executable file)

Entry point 0x1073

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x001073 0x00001073 0x00001073 0x00006 0x00006 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text

The key to answer such phenonemon is in the Align field. The

value 0x1000 indicates that the offset address of the segment should

be divisible by 0x1000, or if the distance between segment is divisible

by 0x1000, the linker removes such distance to save the binary size.

We can do some experiments to verify this claim19: 19 All the outputs are produced by the
command:

$ readelf -l build/os/os

� By setting the virtual address of .text to 0x0 to 0x73 (in os.lds),

the offset starts from 0x1000 to 0x1073, accordingly. For example,

by setting it to 0x0:

270 operating system: from 0 to 1

Output Elf file type is EXEC (Executable file)

Entry point 0x0

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x001000 0x00000000 0x00000000 0x00006 0x00006 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text

By default, if we do not specify any virtual address, the offset

stays at 0x1000 because 0x1000 is the perfect offset to satisfy the

alignment constraint. Any addition from 0x1 to 0x73 makes the

segment misaligned, but the linker keeps it anyway because it is

told so.

� By setting the virtual address of .text to 0x74 (in os.lds):

Output Elf file type is EXEC (Executable file)

Entry point 0x74

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x000074 0x00000074 0x00000074 0x00006 0x00006 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text

PHDR is 0x74 bytes in size, so if LOAD starts at 0x1074, the distance

between the PHDR segment and LOAD segment is 0x1074− 0x74 = 0x1000

bytes. To save space, it removes that extra 0x1000 bytes.

linking and loading on bare metal 271

� By setting the virtual address of .text to any value between 0x75

and 0x1073 (in os.lds), the offset takes the exact values specified,

as can be seen in the case of setting to 0x1073 above.

� By setting the virtual address of .text to any value equal or grea-

ter than 0x1074: it starts all over again at 0x74, where the distance

is equal to 0x1000 bytes.

Now we get a hint how to control the values of Offset and VirtAddr

to produce a desired binary layout. What we need is to change the

Align field to a value with smaller value for finer grain control. It

might work out with a binary layout like this:

Output Elf file type is EXEC (Executable file)

Entry point 0x600

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x000100 0x00000600 0x00000600 0x00006 0x00006 R E 0x100

Section to Segment mapping:

Segment Sections...

00

01 .text

The binary will look like figure 8.5.3 in memory:

If we set the Offset field to 0x100 from the beginning of the file

and the VirtAddr to 0x600, when loading in memory, the actual

memory of .text is 0x500 + 0x100 = 0x600; 0x500 is the memory

location where the bootloader loads into the physical memory and

0x100 is the offset from the end of ELF header to .text. The entry

address and the debug info will then take the value 0x600 from the

VirtAddr field above, which totally matches the actual physical layout.

We can do it by changing os.lds as follow:

main.lds

ENTRY(main);

272 operating system: from 0 to 1

0x600

Memory

ELF header

.text

0x0

0xFFFFFFFF

Loaded contentDebug Info

.text

0x500

0x100

Figure 8.5.3: A good binary
layout.

PHDRS

{

headers PT_PHDR FILEHDR PHDRS;

code PT_LOAD;

}

SECTIONS

{

.text 0x600: ALIGN(0x100) { *(.text) } :code

.data : { *(.data) }

.bss : { *(.bss) }

/DISCARD/ : { *(.eh_frame) }

}

The ALIGN keyword, as it implies, tells the linker to align a section,

thus the segment containing it. However, to make the ALIGN keyword

has any effect, automatic alignment must be disabled. According to

man ld:

linking and loading on bare metal 273

Output -n

--nmagic

Turn off page alignment of sections, and disable linking against shared

libraries. If the output format supports Unix style magic numbers, mark the

output as "NMAGIC"

That is, by default, each section is aligned by an operating system

page, which is 4096, or 0x1000 bytes in size. The -n or -nmagic

option disables this behavior, which is needed. We amend the ld

command used in os/Makefile:

os/Makefile

..... above content omitted

$(OS): $(OS_OBJS)

ld -m elf_i386 -nmagic -Tos.lds $(OS_OBJS) -o $@

Finally, we also need to update the top-level Makefile to write more

than one sector into the disk image for the operating system binary, as

its size exceeds one sector:

$ ls -l build/os/os

-rwxrwxr-x 1 tuhdo tuhdo 9060 Feb 13 21:37

build/os/os

We update the rule so that the sectors are automatically calculated:

os/Makefile

..... above content omitted

bootdisk: bootloader os

dd if=/dev/zero of=$(DISK_IMG) bs=512 count=2880

dd conv=notrunc if=$(BOOTLOADER) of=$(DISK_IMG) bs=512

count=1 seek=0

dd conv=notrunc if=$(OS) of=$(DISK_IMG) bs=512 count=$$

(($(shell stat --printf="%s" $(OS))/512)) seek=1

274 operating system: from 0 to 1

After updating the everything, recompiling the executable binary

and we get the desired offset and virtual memory at 0x100 and 0x600,

respectively:

Output Elf file type is EXEC (Executable file)

Entry point 0x600

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x000100 0x00000600 0x00000600 0x00006 0x00006 R E 0x100

Section to Segment mapping:

Segment Sections...

00

01 .text

8.5.3 Testing the new binary

First, we start the QEMU machine:

$ make qemu

In another terminal, we start gdb, loading the debug info and set a

breakpoint at main:

$ gdb

The following output should be produced:

Output ---Type <return> to continue, or q <return> to quit---

[f000:fff0] 0x0000fff0 in ?? ()

Breakpoint 1 at 0x7c00

Breakpoint 2 at 0x600: file main.c, line 1.

Then, let gdb runs until it hits the main function, then we change

to the split layout between source and assembly:

linking and loading on bare metal 275

(gdb) layout split

The final terminal output should look like this:

Output
main.c

B+> 1 void main(){}

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

B+> 0x600 <main> push bp

0x601 <main+1> mov bp,sp

0x603 <main+3> nop

0x604 <main+4> pop bp

0x605 <main+5> ret

0x606 aaa

0x607 add BYTE PTR [bx+si],al

0x609 add BYTE PTR [si],al

0x60b add BYTE PTR [bx+si],al

0x60d add BYTE PTR [bx+si],al

0x60f add BYTE PTR [si],al

276 operating system: from 0 to 1

0x611 add ax,bp

0x613 push ss

0x614 add BYTE PTR [bx+si],al

0x616 or al,0x67

0x618 adc al,BYTE PTR [bx+si]

0x61a add BYTE PTR [bx+si+0x2],al

remote Thread 1 In: main L1 PC: 0x600

(gdb) c

Continuing.

[0:7c00]

Breakpoint 1, 0x00007c00 in ?? ()

(gdb) c

Continuing.

[0: 600]

Breakpoint 2, main () at main.c:1

(gdb) layout split

Now, the displayed assembly is the same as in objdump, except the

registers are 16-bit ones. This is normal, as gdb is operating in 16-bit

mode, while objdump displays code in 32-bit mode. To make sure, we

verify the raw opcode by using x command:

(gdb) x/16xb 0x600

Output 0x600 <main>: 0x55 0x89 0xe5 0x90 0x5d 0xc3 0x37

0x00

0x608: 0x00 0x00 0x04 0x00 0x00 0x00 0x00 0x00

From the assembly window, main stops at the address 0x605. As

such, the corresponding bytes from 0x600 to 0x605 are highlighted in

red from the output of the command x/16xb 0x600. Then, the raw

opcode from the objdump output:

linking and loading on bare metal 277

$ objdump -z -M intel -S -D build/os/os | less

Output build/os/os: file format elf32-i386

Disassembly of section .text:

00000600 <main>:

void main(){}

600: 55 push ebp

601: 89 e5 mov ebp,esp

603: 90 nop

604: 5d pop ebp

605: c3 ret

Disassembly of section .debug_info:

...... output omitted

Both raw opcode displayed by the two programs are the same. In

this case, it proved that gdb correctly jumped to the address of main

for a proper debugging. This is an extremely important milestone.

Being able to debug in bare metal will help tremendously in writing

an operating system, as a debugger allows a programmer to inspect

the internal state of a running machine at each step to verify his

code, step by step, to gradually build up a solid understanding. Some

professional programmers do not like debuggers, but it is because

they understand their domain deep enough to not need to rely on a

debugger to verify their code. When encountering new domains, a

debugger is indispensable learning tool because of its verifiability.

However, even with the aid of debugger, writing an operating sy-

stem is still not a walk in the park. The debugger may give the access

to the machine at one point in time, but it does not give the cause. To

find out the root cause, is up to the ability of a programmer. Later in

the book, we will learn how to use other debugging techniques, such as

using QEMU logging facility to debug CPU exceptions.

Part III

Kernel Programming

9
x86 Descriptors

9.1 Basic operating system concepts

The first and foremost, OS manages hardware resources. It’s easy to

see the core features of an OS based on Von Neumann diagram:

CPU management: allows programs to share CPU for multitasking.

Memory management: allocates enough storage for programs to run.

Devices management: detects and communicates with different devices

Any OS should be good at the above fundamentals tasks.

Another important feature of an OS is to provide an software

interface layer, that hides away hardware interfaces, to interface with

applications that run on top of that OS. The benefits of such a layer:

� reusability: that is, the same software API can be reused across

programs, thus simplifying software development process

� separation of concerns: bugs appear either in application programs,

or in the OS; a programmer needs to isolate where the bugs are.

� simplify software development process: provides an easier to use

software interface layer with a uniform access to hardware resources

282 operating system: from 0 to 1

across devices, instead of directly using the hardware interface of a

particular device.

9.1.1 Hardware Abstraction Layer

There are so many hardware devices out there, so it’s best to leave

the hardware engineers how the devices talk to an OS. To achieve this

goal, the OS only provides a set of agreed software interfaces between

itself and the device driver writers and is called Hardware Abstraction
Layer.

In C, this software interface is implemented through a structure

function pointers.

[illustrate with Linux example]

9.1.2 System programming interface

System programming interfaces are standard interfaces that an OS

provides application programs to use its services. For example, if a

program wishes to read a file on disk, then it must call a function like

open() and let the OS handle the details of talking to the hard disk for

retrieving the file.

9.1.3 The need for an Operating System

In a way, OS is an overhead, but a necessary one, for a user to tell a

computer what to do. When resources in a computer system (CPU,

GPU, memory, hard drive...) became big and more complicated, it’s

tedious to manually manage all the resources.

Imagine we have to manually load programs on a computer with

3GB of RAM. We would have to load programs at various fix addres-

ses, and for each program a size must be manually calculated to avoid

wasting memory resource, and enough for programs to not overriding

each other.

Or, when we want to give computer input through the keyboard,

without an OS, an application also has to carry code to facilitate

the communication with keyboard hardware; each application then

handles such keyboard communication on its own. Why should there

x86 descriptors 283

be such duplications across applications for such standard feature? If

you write an accounting software, why should a programmer concern

writing a keyboard driver, totally irrelevant to the problem domain?

That’s why a crucial job of an OS is to hide the complexity of har-

dware devices, so a program is freed from the burden of maintaining

its own code for hardware communication by having a standardized

set of interfaces and thus, reduce potential bugs along with faster

development time.

To write an OS effectively, a programmer need to understand well

the underlying computer architecture that programmer are writing an

OS for. The first reason is, many OS concepts are supported by the

architecture e.g. the concepts of virtual memory are well supported

by x86 architecture. If the underlying computer architecture is not

well-understood, OS developers are doomed to reinvent it in your OS,

and such software-implemented solutions run slower than the hardware

version.

9.2 Drivers

Drivers are programs that enable an OS to communicate and use fea-

tures of hardware devices. For example, a keyboard driver enables an

OS to get input from keyboard; or a network driver allows a network

card to send and receive data packets to and from the Internet.

If you only write application programs, you may wonder how

can software control hardware devices? As mentioned in Chapter

2, through the hardware-software interface: by writing to a device’s

registers or to write to ports of a device, through the use of CPU’s

instructions.

9.3 Userspace and kernel space

Kernel space refers to the working environment of an OS that only

the kernel can access. Kernel space includes the direct communication

with hardware, or manipulate privileged memory regions (such as

kernel code and data).

284 operating system: from 0 to 1

In contrast, userspace refers to less privileged processes that run

above the OS, and is supervised by the OS. To access the kernel

facility, user program must go through the standardized system pro-

gramming interfaces provided by the OS.

9.4 Memory Segment

9.5 Segment Descriptor

9.6 Types of Segment Descriptors

9.6.1 Code and Data descriptors

9.6.2 Task Descriptor

9.6.3 Interrupt Descriptor

9.7 Descriptor Scope

9.7.1 Global Descriptor

9.7.2 Local Descriptor

9.8 Segment Selector

9.9 Enhancement: Bootloader with descriptors

10
Process

10.1 Concepts

10.2 Process

10.2.1 Task

A task is a unit of work that an OS needs to do, similar to how human

have tasks to do daily. From a user point of view, a task for a com-

puter to do can be web browsing, document editing, gaming, sending

and receiving emails... Since a CPU can only execute sequentially,

one instruction after another (fetching from main memory), there

must be some way to do many meaningful tasks at once. For that

reason, the computer must share the resources e.g. registers, stack,

memory... between tasks, since we have many tasks but single and

limited resources.

10.2.2 Process

Process is a data structure that keeps track of the execution state of

a task. Task is a general concept, and process is the implementation

of a task. In a general-purpose OS, a task is usually a program. For

example, when you run Firefox, a process structure is created to keep

286 operating system: from 0 to 1

track of where the stack and the heap allocated for firefox are, where

Firefox’s code area is and which instruction EIP is holding to execute

next... The typical process structure looks like this:

[insert process image]

Process is a virtual computer, but much more primitive than the

virtual machine in virtualization software like Virtual Box, and that’s

a good thing. Imagine having to run a full-fledged virtual machine

for every task; how wasteful of machine resources that would be.. In

the view of a running process, its code executes as if it runs directly

on hardware. Each process has its own set of register values, which

are kept tracked by the OS, and its own contiguous virtual memory

space (which is discontiguous in actual physical memory). The code in

a process is given virtual memory addresses to read and write from.

[illustrate: - a process looks like a mini Von Neumann - with

contiguous memory, each with a color; each cell of a process mapped

to distant memory cell in physical memory]

A process can run so much until the OS tells it to temporary stop

for other tasks to use the hardware resources. The suspended process

can then wait until further notice from the OS. This whole switching

process is so fast that a computer user think his computer actually

runs tasks in parallel. The program that does the switching between

tasks is called a *scheduler*.

10.2.3 Scheduler

An OS needs to perform a wide range of different functionalities, e.g.

web browsing, document editing, gaming... A scheduler decides which

tasks got to run before the others and, for how long, in an efficient

manner. Scheduler enables your computer to become a time sharing
system, because tasks share CPU execution time and no one process

can monopolize the CPU (in practice, it still happens regularly).

Without a scheduler, only a single task can be performed at a time.

process 287

10.2.4 Context switch

When a process is prepared to be switched out for another process

to take its place, certain hardware resources i.e. current open files,

current register values... must be backed up to later resume that

process’s execution.

10.2.5 Priority

Priority is an important metric for OS to decide which task is sche-

duled to run before the others to allocate appropriate CPU execution

time for each task.

10.2.6 Preemptive vs Non-preemptive

A preemptive OS can interrupt an executing process and switch to

another process.

A non-preemtive OS, a task runs until its completion.

10.2.7 Process states

State is a particular condition of a process, triggered by an action from

the scheduler. A process goes through various states during its life

cycle. A process typically has these states:

Run indicating CPU is executing code in this process.

Sleep (or Suspended): indicating CPU is executing some process else.

Destroyed: process is done and waiting to be destroyed completely.

10.2.8 procfs

10.3 Threads

Threads are units of work inside a process that shares the execution

environment. A process creates a whole new execution environment

with code of its own:

[illustration between process and thread, with each process is a big

rectangle box and threads nested boxes point to different code region]

288 operating system: from 0 to 1

Instead of creating a completely new process structure in memory,

OS simply let the thread uses some of the resources of the parent

process that created it. A thread has its own registers, program

counter, stack pointer, and its own call stack. Everything else is

shared between the threads, such as an address space, heap, static

data, and code segments, and file descriptors. Because thread simply

reuses existing resources and involve no context switching, it is much

faster to create and switch between processes.

However, note that the above scheme is just an implementation of

thread concept. You can completely treat thread the same as process

(hence you can call all processes threads and vice versa). Or you can

just back up some resources, whlie leaving some resources shared. It’s

up to the OS designer to distinguish between threads and processes.

Threads are usually implemented as a component of a process.

On Linux, a thread is simply a process that shares resources with

its parent process; for that reason, a Linux thread is also called *light-

weight process*. Or put it another way, a thread in Linux is merely

an implementation of a single-threaded process that execute its main

program code. A multi-threaded program in Linux is just a process

with shared with its single-threaded children processes, each points to

different code region of its parent process.

[TODO: turn the above table into a diagram]

On Windows, threads and processes are two separated entities, so

the above description for Linux does not apply. However, the general

idea: a thread shares the execution environment, holds.

10.4 Task: x86 concept of a process

10.5 Task Data Structure

10.5.1 Task State Segment

10.5.2 Task Descriptor

process 289

10.6 Process Implementation

10.6.1 Requirements

10.6.2 Major Plan

10.6.3 Stage 1: Switch to a task from bootloader

10.6.4 Stage 2: Switch to a task with one function from kernel

10.6.5 Stage 3: Switch to a task with many functions from kernel

To implement the concept of a process, a kernel needs to be able to

save and restore its machine states for different tasks.

Description

[Describe task switching mechanism involving LDT and GDT]

qasdfasdf asd

Constraints

Design

Implementation plan

10.7 Milestone: Code Refactor

11
Interrupt

12
Memory management

12.0.1 Address Space

Address space is the set of all addressable memory locations. There are

2 types of address spaces in physical memory address:

� One for memory:

� One for I/O:

Each process has its own address space to do whatever it wants, as

long as the physical memory is not exhausted. This address space is

called virtual memory.

12.0.2 Virtual Memory

Physical memory is a contagious memory locations that has a simple

mapping between a physical memory address and its corresponding

location in memory, decoded by memory controller. On the other

hand, *virtual memory* does not have direct mapping between a

memory address and the corresponding physical memory location,

even though it appears contagious from the view of an userspace

program. Instead, virtual memory address is translated by OS into

an actual physical memory address. For that reason, even addresses

294 operating system: from 0 to 1

appear next to each other in virtual memory space, they are scattered

through out the physical memory.

Why virtual memory is needed? Because virtual memory reduces

the complexity of programming, by giving each program an illusion

that it has its own separate "physical" memory to work with. Without

virtual memory, programs must know and agree with each other their

own memory regions to not accidentally destroy each other.

[illustration a world without virtual memory]

Virtual memory also enables a more secured OS, as application

programs cannot manipulate main memory directly, so malicious

programs won’t cause havocs by destroying main memory and possibly

hardware devices, by gaining access to hardware I/O ports.

Another benefit is that virtual memory can extend beyond physical

memory, by storing its data to hard disk. By swapping some of unused

memory (i.e. inactive memory of a sleeping process), the system

gains some free memory to continue running, so no data is destroyed.

Otherwise, the OS is forced to kill a random user process to free up

some memory, and you may lose unsaved work that belongs to the

killed process. However, this process can significantly slow down the

whole system because of Von Neumann bottleneck. In the old days,

when memory was scarce, it was useful.

13
File System

File system is a mechanism on how raw bytes in a storage device can

be meaningfully managed. That is, a group of bytes at specific loca-

tions in a storage device can be allocated for a purpose e.g. storing

raw ASCII document, and later the exact chunks of bytes can be re-

trieved correctly. File system manages many such groups of bytes. It’s

helpful to think a file system as a database that maps between high

level information and specific locations in a hard disk, similar to how

business information is mapped to a specific row in a table. The high

level information that is relevant to a file system is organized as *files*

and *directories*.

[illustration between a file system and a database table to see how

they are similar]

File is an entity that includes two components: metadata and the

actual raw data. Metadata is the information describes the properties

of the raw data associated with the file; raw data are real content

of a file. Directory is a file that holds a group of files and also child

directories. Together, they create a file hierarchy system as commonly

seen in Windows or Linux.

13.0.1 Example: Ex2 filesystem

Index

Abstraction, 26

Application-Specific Integrated

Circuit, 39

ASIC, 39

assembler, 22

backtrace, 179

bit field, 78

Bus, 40, 44

bus width, 44

capacitor, 44

Central Processing Unit, 41

chip, 15

chipset, 45

CMOS, 13
compiler, 24
computer, 33

Computer organization, 40

CPU, 40, 41

debugger, 155

Debugging Information Entry,
185

desktop computer, 34

domain expert, 4

ELF header, 110

embedded computer, 36

embedded programming, 37

executable binary, 109

execution environment, 48

fetch – decode – execute, 23,

41

Field Gate Programmable

Array, 38

FPGA, 38

freestanding environment, 253

function attribute, 130

functionally complete, 13

Hardware Description

Language, 38

hosted environment, 252

I/O Devices, 41

instruction set, 40

Instruction Set Architecture,

40

ISA, 40

linker, 231

298 operating system: from 0 to 1

linker script, 231

load memory address, 248

logic gate, 12

Machine language, 17

Memory, 40, 43

memory controller, 43

Memory Controller Hub, 43

Microcontroller, 36

mobile computer, 34

MOSFET, 12

motherboard, 45

netlist, 38

objdump, 50

object file, 109

offset, 120, 223

padding bytes, 75

PCB, 36

persistent storage device, 206

Port, 43

Printed Circuit Board, 36, 37

problem domain, 3

program header, 144

Program header table, 110

program header table, 144

program segment, 144

Registers, 42

Relocation, 221

requirements, 3

section, 50, 110

Section header table, 110

sector, 206

segment, 110

Segments and section, 110

server, 34

Software requirement

document, 6

Software specification, 8

storage device, 22

system-on-chip, 36

track, 206

transistor, 12

virtual memory address, 232,

248

Bibliography

G. H. Hardy. A Mathematician’s Apology, chapter 10, page 13. Univer-

sity of Alberta Mathematical Sciences Society, 2005.

Intel. IntelÂ® 64 and IA-32 Architectures Optimization Reference
Manual. Intel, 2016b.

Benjamin L. Kovitz. Practical Software Requirements, chapter 3,
page 53. Manning, 1999.

Charles Sanders Peirce. Collected Papers v. 4, chapter A Boolean

Algebra with One Constant. 1933.

John F. Wakerly. Digital Design: Principles and Practices, chapter 3,
page 86. Prentice Hall, 1999.

	Contents
	Preface
	I Preliminary
	1 Domain documents
	1.1 Problem domains
	1.2 Documents for implementing a problem domain
	1.3 Documents for writing an x86 Operating System

	2 From hardware to software: Layers of abstraction
	2.1 The physical implementation of a bit
	2.2 Beyond transistors: digital logic gates
	2.3 Beyond Logic Gates: Machine Language
	2.4 Abstraction

	3 Computer Architecture
	3.1 What is a computer?
	3.2 Computer Architecture
	3.3 x86 architecture
	3.4 Intel Q35 Chipset
	3.5 x86 Execution Environment

	4 x86 Assembly and C
	4.1 objdump
	4.2 Reading the output
	4.3 Intel manuals
	4.4 Experiment with assembly code
	4.5 Anatomy of an Assembly Instruction
	4.6 Understand an instruction in detail
	4.7 Example: jmp instruction
	4.8 Examine compiled data
	4.9 Examine compiled code

	5 The Anatomy of a Program
	5.1 Reference documents:
	5.2 ELF header
	5.3 Section header table
	5.4 Understand Section in-depth
	5.5 Program header table
	5.6 Segments vs sections

	6 Runtime inspection and debug
	6.1 A sample program
	6.2 Static inspection of a program
	6.3 Runtime inspection of a program
	6.4 How debuggers work: A brief introduction

	II Groundwork
	7 Bootloader
	7.1 x86 Boot Process
	7.2 Using BIOS services
	7.3 Boot process
	7.4 Example Bootloader
	7.5 Compile and load
	7.6 Loading a program from bootloader
	7.7 Improve productivity with scripts

	8 Linking and loading on bare metal
	8.1 Understand relocations with readelf
	8.2 Crafting ELF binary with linker scripts
	8.3 C Runtime: Hosted vs Freestanding
	8.4 Debuggable bootloader on bare metal
	8.5 Debuggable program on bare metal

	III Kernel Programming
	9 x86 Descriptors
	9.1 Basic operating system concepts
	9.2 Drivers
	9.3 Userspace and kernel space
	9.4 Memory Segment
	9.5 Segment Descriptor
	9.6 Types of Segment Descriptors
	9.7 Descriptor Scope
	9.8 Segment Selector
	9.9 Enhancement: Bootloader with descriptors

	10 Process
	10.1 Concepts
	10.2 Process
	10.3 Threads
	10.4 Task: x86 concept of a process
	10.5 Task Data Structure
	10.6 Process Implementation
	10.7 Milestone: Code Refactor

	11 Interrupt
	12 Memory management
	13 File System

	Index
	Biblography

