
	

[Type	text]	 	 [Type	text]	

DSpectrumGUI	–	Rapid	Reverse	Engineering	Guide	
	

Table	of	Contents	

DSpectrumGUI	–	Rapid	Reverse	Engineering	Guide	..	1	
Capturing	transmissions	...	2	
Preparation	/	Setup	..	5	
Rapid	Reverse	Engineering	...	14	
Transmitting	the	signal	...	19	
	
	 	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 2 of 21	

Capturing	transmissions	
	

Capture-1	:	 	Connect	the	RTL-SDR	dongle	to	your	computer.	
Capture-2	:	 	Open	a	new	terminal	window	and	type:	

	
osmocom_fft	

	
Capture-3	:	 Press	enter.	

	
A	window	similar	to	the	following	should	have	spawned.	

	

	
	

Capture-4	:	 Enter	the	desired	frequency	in	the	Center	Frequency	field.	
Note:	the	frequency	needs	to	be	off-center	otherwise	the	“DC	
Spike”	(shown	in	red	in	the	screenshot	below)	will	overlap	
with	the	signal	we	are	trying	to	capture.	

	

	
	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 3 of 21	

With	a	little	trial-and-error,	we	can	determine	an	appropriate	
offset	to	use.	In	this	particular	example,	we	ended	up	with	
434.2Mhz	being	a	good	frequency	to	tune	into	to	capture	a	
clean	signal	on	434.24Mhz.	This	placed	the	signal	to	the	right	
of	the	DC	Spike	without	overlapping	it.	
	
Tip:	Make	sure	you	press	the	Enter	button	after	editing	any	
field	in	osmocom,	otherwise	your	changes	won’t	be	picked	
up.	If	any	fields	have	a	pale	pink	background	colour,	you	
haven’t	pressed	the	enter	button	and	it	will	ignore	your	
change.	

	

	
	

Capture-5	:	 We	also	need	to	modify	the	file	name	so	that	it	describes	
which	device	we	are	capturing	and	what	button	was	pressed	
to	avoid	any	later	confusion.	Note	that	the	f%F,	s%S,	and	t%T	
fields	in	the	name	record	the	frequency,	sample	rate,	and	
timestamp	of	the	transmission	respectively.	It’s	a	good	idea	
to	leave	those	parts	of	the	filename	intact	and	just	replace	the	
string	“name”	with	a	more	descriptive	string.	In	this	case,	our	
full	file	name	was:	“/tmp/remote-blue-arm-f%F-s%S-
t%T.cfile”		

	
Capture-6	:	 With	osmocom	appropriately	configured,	press	the	REC	

button,	wait	for	your	transmission	(if	you	have	access	to	the	
remote,	push	the	button	you	trying	to	capture	now).	After	the	
transmission,	press	the	REC	button	again	to	stop	recording	
and	save	the	transmission.	In	our	case,	the	file	will	be	saved	
in	the	/tmp/	directory	as	shown	in	the	screenshot	above.	

	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 4 of 21	

Capture-7	:	 Repeat	steps	Capture-5	and	Capture-6	as	appropriate.	For	
example,	in	this	scenario	we	need	to	capture	at	least	the	‘arm’	
and	‘disarm’	button	presses	for	both	remotes.	 	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 5 of 21	

Preparation	/	Setup	
	

Prep-1	:	 Navigate	to	the	DSpectrumGUI	web	application	(e.g.	
http://localhost:3001).		
	

Prep-2	:	 Authenticate	with	the	default	credentials	(username:	
user@example.com,	password:	password).	

	
Prep-3	:	 Click	“New	Device”	and	fill	out	the	form	with	the	information	

you	have	on	hand	about	the	device	you	are	reversing.	You	
should	have	at	least	the	Frequency	and	a	Name	at	this	stage.	
You	may	also	have	an	FCC	ID.	

	
A	device	should	be	thought	of	as	a	type	of	device	(e.g.	
Wireless	Alarm	System).		
	

	

	
	
	

Prep-4	:	 Units	are	individual	instances	of	the	device	(e.g.	2	remotes	
came	with	this	alarm	system)	that	you	would	like	to	compare	
the	signals	of.	
	
Press	the	“Add	Unit”	button.		
	

Prep-5	:	 Type	in	a	short	but	descriptive	name	for	your	unit.	In	this	
example,	one	of	the	remotes	was	blue	and	the	other	was	
silver,	so	I	named	the	first	unit	“Remote	#1	Blue”,	and	the	
other	unit	“Remote	#2	Silver”.		

	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 6 of 21	

	
	

Prep-6	:	 Click	the	link	to	one	of	the	new	units	you	added	–	it	should	
have	appeared	just	below	the	“Create”	button	you	pressed.	
	

Prep-7	:	 On	the	Unit	show	page,	click	“Add	New	Capture”	in	the	
“Actions”	block	on	the	right.	

	

	
	

Prep-8	:	 An	instance	of	Inspectrum	will	spawn	for	you.	Open	your	first	
capture	file	for	this	device.	

	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 7 of 21	

	
	

Prep-9	:	 Scroll	to	the	right	until	you	find	your	signal.	You	will	likely	
find	that	the	same	‘packet’	is	repeated	numerous	times.	These	
should	be	identical.	Center	one	of	packets	in	the	screen.	

	

	
	

Prep-10	:	 Drag	the	“Zoom”	slider	slowly	to	increase	the	size	of	the	
packet	if	necessary.	

	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 8 of 21	

	
	

Prep-11	:	 Type	a	number	into	the	“Symbols”	field	on	the	left.	If	in	doubt,	
choose	a	low	number	like	5	–	lower	numbers	are	usually	
easier	to	start	off	with.	In	the	picture	below,	I	started	with	25.	

	

	
	
	

Prep-12	:	 Drag	the	“Power	min”	slider	slowly	until	the	background	
noise	fades	away	and	you	are	left	with	a	crisp	representation	
of	the	signal	you	are	interested	in,	as	shown	in	the	below	
picture.	

	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 9 of 21	

	
	

Prep-13	:	 Line	up	the	start	of	the	grid	(drag	the	unbroken	line	on	the	
left	of	the	grid	overlay)	to	line	up	perfectly	with	the	start	of	
the	first	pulse.	Then	increase	the	number	of	bits	(on	the	left	
panel)	and	drag	the	unbroken	white	line	on	the	right	of	the	
grid	overlay,	until	you	have	covered	the	symbols.	Line	them	
up	so	that	the	shortest	possible	symbols/spaces	are	perfectly	
encapsulated	in	a	single	grid.	See	below.	

	

	
	

Here	is	another	copy	of	the	above	picture,	zoomed	in	so	that	
you	can	see	that	the	grid	overly	is	aligned	as	perfectly	as	
possible	with	the	symbols.	

	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 10 of 21	

	
	

Prep-14	:	 Once	the	grid	overlay	is	as	perfect	as	you	can	make	it,	make	a	
note	of	the	Symbol	rate	on	the	left	side	panel	(e.g.	the	Symbol	
Rate	here	was	2.214).		
	

Prep-15	:	 Right	click	near	the	pulses	and	select	“Add	derived	plot”	>	
“Add	amplitude	plot”.	

	
	

	
	

Prep-16	:	 A	red	line	should	have	appeared	towards	above	the	pulses.	
Drag	the	red	line	down	so	that	it’s	sitting	on	top	of	your	
pulses.	

	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 11 of 21	

	
	

Prep-17	:	 A	set	of	green,	vertical	rectangles	that	line	up	with	the	pulses	
should	have	appeared	at	the	bottom.	Right	click	inside	this	
section	and	then	click	“Extract	symbols…”	

	

	
	

Prep-18	:	 Inspectrum	will	close	by	itself	and	you	will	be	presented	with	
a	form	in	DSpectrumGUI.	Enter	a	name	that	describes	the	
context	(in	this	case,	the	button	that	was	pressed	–	‘arm’).	
	

Prep-19	:	 Scroll	down	and	look	at	the	encoding	tables.	In	our	example,	
DSpectrumGUI	flagged	that	the	modulation	type	is	likely	to	be	
PWM	77/25,	however,	it	seems	we	needed	to	capture	some	of	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 12 of 21	

the	“empty	space”	at	the	end	in	Inspectrum	for	this	to	be	valid	
PWM.		DSpectrumGUI	identified	this	error	for	us,	and	
corrected	for	it	by	adding	the	required	number	of	0s	at	the	
end.	

	
A	correctly	taken	capture	would	have	included	3	cells	
containing	whitespace	(or	0s)	at	the	end,	as	demonstrated	in	
the	pictures	below.	

	
	
	

	
	

Here	is	a	zoomed	in	picture	showing	the	last	few	pulses	more	
clearly.	

	

	
	
	
	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 13 of 21	

Prep-20	:	 DSpectrumGUI	told	us	that	the	encoding	is	PWM	75/25,	and	
Inspectrum	told	us	the	Symbol	Rate	is	2.214	once	we	had	the	
grid	perfectly	set	up.		The	baudrate	is	Inspectrum’s	symbol	
rate	multiplied	by	1000.	So,	the	baudrate	in	this	example	is	
2214.	

	
Update	the	device	field	in	DSpectrumGUI.	

	

	
	
	
	 	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 14 of 21	

Rapid	Reverse	Engineering	
	

Reversing-1	:	 Now	that	we’ve	got	all	our	captures	in	place,	we’re	ready	to	
begin	the	fun	part	–	making	sense	of	the	data	and	learning	
how	to	create	our	own	valid	transmissions!	

	
Click	on	the	“View	Reversing	Worksheet”	link	on	the	right.	

	

	
	

The	Reverse	Engineering	Worksheet	is	similar	to	the	device	
page,	but	it	only	shows	us	the	information	we	need	for	
manual	analysis.	It	also	has	some	features	that	allow	us	to	
visualize	the	packet	structure	and	make	some	notes	about	
our	observations.		
	
If	the	device	is	a	reasonably	basic	one,	we	should	have	
enough	information	at	the	end	of	this	process	to	learn	how	to	
generate	our	own	valid	signals	to	transmit	via	a	tool	called	
RFCat	and	our	Yard-Stick	One	device.	

	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 15 of 21	

	

	
	

Reversing-2	:	 Scroll	down	and	start	defining	sections.	As	this	is	an	alarm	
system	and	the	remote	has	numerous	buttons,	we	can	
assume	we’re	expecting	to	find	that	each	remote	transmits	its	
own	ID,	and	also	changes	the	signal	to	represent	which	
button	was	pressed.		

	
We	don’t	need	any	of	these	answers	yet	though,	let’s	make	
the	table	look	a	little	easier	to	analyse	at	a	glance	by	defining	
our	sections.	When	in	doubt,	it	is	a	good	idea	to	break	the	
packet	up	into	8bit	(1byte)	chunks	and	see	if	that	works	out.		

	
In	programming	languages,	counting	starts	from	Zero.	In	
developing	this	program	I	have	made	a	decision	to	do	the	
same.	So	the	first	8	bits	starts	at	bit	position	‘0’	and	ends	at	
bit	position	‘7’.	Fill	out	the	form	with	this	information	and	
pick	a	colour	for	each	section.	

	

	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 16 of 21	

	
In	this	example,	there	was	a	single	bit	left	over	at	the	end.	We	
define	a	section	for	that	also,	making	the	start	position	and	
the	end	position	have	the	same	value	(24).	
	
You	should	now	be	left	with	something	that	looks	a	little	like	
this.	

	

	
	

Reversing-3	:	 We	start	making	observations	about	the	data.	As	we	go,	we	
should	click	‘edit’	for	each	section	and	update	it	with	a	new	
name	and	notes	as	appropriate.	

	
The	first	section	seems	to	change	when	a	different	remote	is	
used,	but	it	doesn’t	seem	to	change	if	a	different	button	is	
pressed	on	the	same	remote.	We	can	deduce	that	this	is	the	
device	ID.		
	
The	second	section	seems	to	also	contain	part	of	the	device	
ID.	
	
The	third	section	seems	to	change	when	a	different	button	is	
pressed	(e.g.	‘arm’)	but	it	doesn’t	change	when	a	different	
remote	is	used	with	the	same	kind	of	button.	This	must	
represent	the	Function	ID.	
	
Update	each	section	as	appropriate.	

	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 17 of 21	

		
Reversing-4	:	 We	have	another	look	at	the	above,	and	try	to	look	out	for	any	

other	useful	information.	We	realize	there’s	little	point	to	
separating	the	first	two	sections,	so	we	delete	one	of	them.	
We	now	edit	the	remaining	Device	ID	section	so	that	it	covers	
the	whole	16bit	(2byte)	range.	

	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 18 of 21	

	
	
	 	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 19 of 21	

Transmitting	the	signal	
	

Xmit-1	:	 Scroll	down	until	you	find	the	“Generate	Binary”	form.	This	
will	allow	us	to	generate	or	own	binary	by	taking	“sections”	
out	of	specific	captures.		
	
This	way,	if	we	had	a	“disarm”	message	for	Remote	B,	but	
only	an	“arm”	message	for	Remote	A,	and	needed	to	transmit	
a	“disarm”	signal	impersonating	Remote	A,	we	could	just	
cherry	pick	the	components	that	we	need	to	form	our	
transmission.	

	

	
	

Xmit-2	:	 Select	Remote	A’s	Device	ID,	and	the	Function	Code	from	
Remote	B,	and	press	“Generate	Binary”.	

	
We	now	have	the	binary,	and	even	the	code,	that	we	need	to	
type	into	RFCat	in	order	to	disarm	Remote	B’s	alarm	system.	

	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 20 of 21	

	
	
	

Xmit-3	:	 Connect	the	Yard	Stick	One	to	your	computer.	
	

Xmit-4	:	 Open	a	new	terminal	window	and	type:	
	

rfcat		-r	
	

This	should	open	up	an	interactive	command-line	
application.	DSpectrum	has	already	provided	you	with	the	
code	to	use	here.	You	can	simply	copy	and	paste	it	and	see	if	
it	works.	

	
Go	back	to	DSpectrumGUI’s	“Generate	Binary”	result.	That	
page	should	display	the	RFCat	code	required	towards	the	
bottom	of	the	page.	

	
Xmit-5	:	 Copy	and	paste	the	code	(the	lines	should	start	with	‘d’),	and	

paste	them	into	RFCat.	
	

Xmit-6	:	 Hopefully,	when	you	hit	enter	on	the	final	line	(d.RFxmit…),	
the	alarm	system	was	disarmed.	

	
	 	

/dspectrum/		 	 								Rapid	Reverse	Engineering	Guide																																
																								by	nullwolf	
	

Page 21 of 21	

The	code	we	copied	and	pasted	looks	similar	to	the	example	below.	
	
d.setMdmModulation(MOD_ASK_OOK)	
d.setFreq(433920000)	
d.setMdmSyncMode(0)	
d.setMdmDRate(2214)	
d.RFxmit('PACKET_AS_HEXCODE_HERE\x00\x00\x00\x00'*5)		
	
Here	is	a	very	brief	explanation	of	what	the	above	code	means.	
	
The	string	“PACKET_AS_HEXCODE_HERE”	is	replaced	by	the	hex	code	you’d	like	
to	transmit.	The	“\x00”	is	a	null	byte	which	effectively	represents	a	gap	in	our	
transmission.	4	null	bytes	is	usually	a	sufficient	gap	to	serve	as	a	packet	
separator.	We	are	repeating	our	packet	5	times,	because	we	noted	that	the	
packets	were	repeated	by	the	remote.	This	happens	to	increase	the	likelihood	
that	the	transmission	will	be	received	by	the	target	device,	even	if	there	is	
momentary	interference	at	that	frequency.	
	
The	MdmDRate	is	the	baud	rate	we	noted	earlier.	Inspectrum’s	Symbol	Rate	is	
represented	differently	than	the	baud	rate	as	it	is	expressed	in	Inspectrum.	
Shifting	the	decimal	place	3	places	to	the	right	of	the	Symbol	Rate	value	will	give	
us	the	correct	baud	rate	to	use	in	RFCat.	
	
Setting	MdmSyncMode	ensures	that	RFCat	doesn’t	prefix	a	sync-word	to	the	data	
we’d	like	to	send	out.	Sync-words	are	also	commonly	referred	to	as	a	“preamble”.	
This	is	used	by	some	devices	to	let	the	receiver	know	to	expect	a	packet.	Our	
example	device	doesn’t	have	a	preamble	/	sync-word,	so	we	set	this	value	to	‘0’	
to	prevent	RFCat	from	sending	one,	which	it	does	by	default.		
	
	

