
Domain theory and
denotational semantics

by

Tom de Jong

Lecture notes and exercises for the
Midlands Graduate School (MGS)

2–6 April 2023, Birmingham, UK

0 1 2 3 . . .

⊥

School of Computer Science
University of Nottingham

February–March 2023

Abstract

Denotational semantics aims to understand computer programs by assigning math-
ematical meaning to the syntax of a programming language. In this course we will
study a simple functional programming language called PCF. Notably, this language
has general recursion through a fixed point operator. This means a simple denotational
semantics based on sets is not suitable. Instead, we interpret the types of PCF as certain
partially ordered sets leading to domain theory and Scott’s model of PCF in particular.
The central theorems of soundness and computational adequacy, formulated and proved
by Plotkin, then tell us that a PCF program computes to a value if and only if their
interpretations in the model are equal.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

Acknowledgements

It is my pleasure to thank Martín Escardó who introduced me to the beautiful subjects
of denotational semantics and domain theory. I am also grateful for his comments on
earlier drafts of these notes.

Additionally, I wish to express my sincere thanks to the teaching assistants Ayberk
Tosun and Josh Chen for proof-reading and suggesting several revisions.

Finally, I am grateful to theMGS 2023 participants Florian Frank, Jonas Forster, Matt
Russell and Paul Levy whose comments have led to improvements in these notes.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

Contents

Abstract i

Acknowledgements ii

Contents iii

1 Introduction 1
1.1 Aims . 1
1.2 Exercises . 2
1.3 References . 2
1.4 Further reading . 2

2 PCF and its operational semantics 3
2.1 PCF . 3
2.2 Big-step operational semantics . 6
2.3 List of exercises . 8

3 Denotational semantics and domain theory 9
3.1 Towards domain theory . 10
3.2 Basic definitions and the least fixed point theorem 10
3.3 Products: interpreting contexts . 14
3.4 Exponentials: interpreting function types 16
3.5 List of exercises . 18

4 The Scott model of PCF 19
4.1 Towards soundness . 22
4.2 Soundness . 23
4.3 List of exercises . 24

5 Computational adequacy 25
5.1 The logical relation . 26
5.2 Applicative approximation . 27
5.3 Proving computational adequacy . 28
5.4 List of exercises . 30

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

Contents iv

Bibliography 32

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

Chapter 1

Introduction

Denotational semantics, as pioneered by Scott and Strachey [Sco70; SS71], aims to
understand and reason about computer programs by assigning mathematical meaning
to the syntax of a programming language.

While other choices for denotational semantics are possible, e.g. using games [Abr97;
Hyl97] or realizability [Lon95], these notes employ a denotational semantics based on
domain theory to study the functional programming language PCF [Plo77; Sco93].

The syntax (the types and terms) of PCF will be interpreted as certain kinds of
partially ordered sets and so-called continuous maps between them. But a programming
language is more than just its syntax: it should compute. The operational semantics of
PCF specify its computational behaviour by determining a reduction strategy for terms.

Following [Esc07a], we might summarise as:

Operational semantics is about how we compute.
Denotational semantics is about what we compute.

The central theorems of soundness and computational adequacy, formulated and
proved by Plotkin [Plo77], then tell us that a PCF program computes to a value if
and only if the denotational semantics of the program and the value are equal. Put
differently, we might say that the operational and denotational semantics of PCF are
“in sync”.

1.1 Aims

We hope that these notes provide a self-contained and accessible introduction to domain-
theoretic denotational semantics for graduate students in theoretical computer science.

Domain theory [AJ94; GHK+03] is a fruitful mathematical subject with applica-
tions outside the semantics of programming languages, e.g. in algebra, higher-type
computability [LN15] and topology [GHK+03].

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

1.2. Exercises 2

For some, domain theory may be fairly abstract however, and for this reason we have
chosen to motivate the domain-theoretic definitions and constructions by appealing to
its application of modelling the programming language PCF.

In our investigations we are not only introduced to basic domain theory, but, when
proving computational adequacy, also to the fundamental technique of logical relations.

Moreover, although no knowledge of category theory is required for these notes,
there are several exercises touching on category theory which hopefully provide an
illustration of abstract categorical concepts for those already familiar with category
theory, or, alternatively, might encourage those unfamiliar to study it.

More generally, we hope that this course will be taken up as an invitation to explore
thewonderful interplay betweenmathematics and computer science. A striking example
of this is Escardó’s collection of “seemingly impossible” programs that perform fast
exhaustive search on infinite datatypes (see [Esc07b] and the references therein). While
the programs can be understood without knowledge of domain theory, their conception
and proofs of correctness do rely on domain theory and topology.

1.2 Exercises

The exercises are interspersed in the text, but each chapter ends with a list of its
exercises for reference. There are 25 exercises in total.

1.3 References

Our treatment is largely based on Streicher’s account [Str06], although we have in-
cluded several examples and proofs in an attempt to make our notes more accessible.
Moreover, at times, we deviate from Streicher’s treatment and follow Hart’s Agda
formalisation [Har20] instead, e.g. we only consider well-typed terms and no “raw”
terms and include Lemma 5.10.

Hart’s Agda formalisation is the result of a final-year MSci project building on
our constructive and predicative account of domain theory in the topical univalent
foundations (also known as homotopy type theory) [dJon22]. For accessibility reasons,
these notes use a classical set-theoretic foundation however.

1.4 Further reading

A natural resource for further reading is the aforementioned textbook [Str06]. Addition-
ally, one may wish to consult the textbooks [Win93; Gun92] or the lecture notes [Plo83;
PWF12] for more on domain-theoretic denotational semantics. For more on general
domain theory, we recommend [AJ94; GHK+03].

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

Chapter 2

PCF and its operational semantics

PCF (Programming Computable Functions) [Plo77] is a call-by-name [Gun92; Rie93]
typed functional programming language with general recursion. We can think of PCF
as a simpler, well-behaved fragment of a modern functional programming language
such as Haskell [Mar+10]. The point of PCF is not to be a particularly convenient or
rich programming language. Instead, it’s meant to be a simple and principled language
enabling us to study it from a mathematical viewpoint without having to deal with
complex features that you might find in modern, real-world programming languages.
The techniques that we will employ could, with some effort, be extended to more
complex programming languages however, see e.g. [Plo83].

At the same time, it should be mentioned that PCF is not quite a toy language
and has a rather rich theory. For example, it captures Kleene–Kreisel higher-type
computability [LN15] and an extension of PCF—with parallel-or and ∃ (see [Str06] for
details)—can simulate recursively defined datatypes (such as trees and lists) [Str94].

2.1 PCF

We describe the syntax of PCF and its small-step operational semantics which describe
how to compute in PCF.

Definition 2.1 (Types of PCF, nat, 𝜎 ⇒ 𝜏). The types of PCF are inductively defined
as:

(i) nat is the base type of PCF, and
(ii) if 𝜎 and 𝜏 are types of PCF, then we have the function type 𝜎 ⇒ 𝜏 .

Moreover, as usual, we will write 𝜎 ⇒ 𝜏 ⇒ 𝜌 for 𝜎 ⇒ (𝜏 ⇒ 𝜌).

From now on, such inductive definitions will be presented in the following style:

nat is a type of PCF
𝜎 is a type of PCF 𝜏 is a type of PCF

(𝜎 ⇒ 𝜏) is a type of PCF

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

2.1. PCF 4

For each type 𝜎 , we assume to have a countably infinite set of typed variables,
typically denoted by x : 𝜎 , y : 𝜎 , or x1 : 𝜎 , x2 : 𝜎 , etc.

Definition 2.2 (Context, Γ). A context Γ is a list of variables:

Γ = [x0 : 𝜎0, x1 : 𝜎1, . . . , x𝑛−1 : 𝜎𝑛−1] .

For 𝑛 = 0, we get the empty context: an empty list with no variables.

We are now ready to define the (well-typed) terms of PCF.

Definition 2.3 (Terms of PCF, Γ ⊢ 𝑀 : 𝜎). We inductively define the terms 𝑀 of
type 𝜎 in context Γ, written Γ ⊢ 𝑀 : 𝜎 , by the following clauses:

Γ, x : 𝜎,Δ ⊢ x : 𝜎
Γ, x : 𝜎 ⊢ 𝑀 : 𝜏

Γ ⊢ (𝜆 x : 𝜎 . 𝑀) : 𝜎 ⇒ 𝜏

Γ ⊢ 𝑀 : 𝜎 ⇒ 𝜏 Γ ⊢ 𝑁 : 𝜎
Γ ⊢ 𝑀 (𝑁) : 𝜏

Γ ⊢ 𝑀 : 𝜎 ⇒ 𝜎
Γ ⊢ fix𝜎 (𝑀) : 𝜎

Γ ⊢ zero : nat
Γ ⊢ 𝑀 : nat
Γ ⊢ succ(𝑀) : nat

Γ ⊢ 𝑀 : nat
Γ ⊢ pred(𝑀) : nat

Γ ⊢ 𝑀 : nat Γ ⊢ 𝑁1 : nat Γ ⊢ 𝑁2 : nat
Γ ⊢ ifzero(𝑀, 𝑁1, 𝑁2) : nat

When Γ is the empty context, we simply write ⊢ 𝑀 : 𝜎 and we call𝑀 a closed term
or a program. Note that programs do not contain any free variables.
We will often write𝑀 𝑁 instead of𝑀 (𝑁) to ease readability.

The first three rules above will look familiar to someone who has seen the typed
𝜆-calculus before and basically say that we form functions that we can apply. The three
rules on the third row give us natural numbers with a predecessor constructor. We
illustrate the remaining rules, those for fix and ifzero, in Examples 2.7 and 2.8 below.

So far, we only have some terms, but we have not specified any computational
behaviour of those terms yet. Definition 2.5 defines a reduction strategy that specifies
the computational behaviour of PCF and should help us understand the intended
meaning of the terms.

Definition 2.4 (Numeral, 𝑛). For a natural number 𝑛 ∈ N, we define the numeral 𝑛
in PCF inductively: 0 := zero and𝑚 + 1 := succ 𝑚.

Definition 2.5 (Small-step operational semantics of PCF,𝑀 ▷ 𝑁). We inductively
define when a term𝑀 (small-step) reduces to another term 𝑁 (of the same type, in
the same context), written𝑀 ▷ 𝑁 , by the following inductive clauses:

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

5 Chapter 2. PCF and its operational semantics

(𝜆 x : 𝜎 . 𝑀)𝑁 ▷𝑀 [𝑁 /x] fix𝜎 𝑀 ▷𝑀 (fix𝜎 𝑀)

pred 0▷ 0 pred 𝑛 + 1▷ 𝑛

ifzero(0, 𝑀, 𝑁) ▷𝑀 ifzero(𝑛 + 1, 𝑀, 𝑁) ▷ 𝑁

𝑀1 ▷𝑀2
𝑀1 𝑁 ▷𝑀2 𝑁

𝑀1 ▷𝑀2
succ 𝑀1 ▷ succ 𝑀2

𝑀1 ▷𝑀2
pred 𝑀1 ▷ pred 𝑀2

𝑀1 ▷𝑀2
ifzero(𝑀1, 𝑁1, 𝑁2) ▷ ifzero(𝑀2, 𝑁1, 𝑁2)

Here𝑀 [𝑁 /𝑥] denotes the result of substituting 𝑁 for the variable x in𝑀 .

The final three rules are like congruence rules saying that you can reduce a term
succ𝑀 by reducing the inner term𝑀 . The reduction fix𝜎 𝑀▷𝑀 (fix𝜎 𝑀) corresponds
to the idea that fix𝜎 𝑀 is a fixed point of𝑀 : 𝜎 ⇒ 𝜎 . Alternatively, we can think of it as a
single unfolding of a recursive definition, as illustrated in Exercise 2.9 and Example 2.11.

Example 2.7. We can translate the program if (x + 1 == 0) then 5 else 3, writ-
ten in pseudocode, to the PCF program 𝜆 x : nat . ifzero(succ x, 5, 3).

The point of fix is that it gives us general recursion, as we will explain with an
example now.

Example 2.8 (Addition by 𝑛 in PCF). For a natural number 𝑛 ∈ N, consider addition
by 𝑛 as a recursively defined function:

add𝑛 : N →N

add𝑛 (0) := 𝑛,
add𝑛 (𝑘 + 1) := add𝑛 (𝑘) + 1.

We show how to write this function as a PCF program. We start by slightly rewriting
add𝑛 as:

add𝑛 (𝑚) :=
{
𝑛 if𝑚 = 0,
succ(add𝑛 (pred(𝑚))) else.

(∗)

Looking at the above, we see that we have most of the analogues readily available in
PCF: ifzero, succ and pred, as well as the numeral 𝑛.
We next define the program 𝐹 : (nat ⇒ nat) ⇒ (nat ⇒ nat) as follows:

𝐹 := 𝜆 f : (nat ⇒ nat) . 𝜆 y : nat . ifzero
(
y, 𝑛, succ(f(pred y))

)
.

In the program 𝐹 , the variable y plays the role of𝑚 in (∗) and f is like a placeholder
for the recursive call.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

2.2. Big-step operational semantics 6

Mirroring (∗) further, what we want is a program 𝑓 : nat ⇒ nat such that 𝑓 is “equal”
to 𝐹 𝑓 . That is, we want a fixed point of 𝐹 . Hence, we finally define add𝑛 as:

add𝑛 := fixnat⇒nat 𝐹 .

Exercise 2.9. Give sequences of small-step reductions showing that add𝑛 0 and
add𝑛 1 respectively compute to the numerals 𝑛 and 𝑛 + 1.

Exercise 2.10. Construct PCF programs add, mult : nat ⇒ nat ⇒ nat implementing
addition and multiplication, respectively.

Having general recursion also means that we have non-terminating programs, such
as the following one:

Example 2.11. Define 𝑆 := (𝜆 x : nat . succ x) : nat ⇒ nat and consider the PCF
program 𝑀 := fixnat(𝑆) : nat. Repeatedly applying the small-step operational
semantics, we get:

𝑀 = fixnat 𝑆

▷ 𝑆 (fixnat 𝑆)
▷ succ(fixnat 𝑆) = succ 𝑀

▷ succ(𝑆 (fixnat 𝑆))
▷ succ(succ(fixnat 𝑆)) = succ(succ 𝑀)
▷ . . .

Thus, the term𝑀 : nat never computes to a numeral.

2.2 Big-step operational semantics

In our investigations into the denotational semantics of PCF, we will typically not be
interested in intermediate reduction steps, e.g. we don’t really care about the whole
sequence ifzero(pred 3, 5, pred 7) ▷ ifzero(2, 5, pred 7) ▷ pred 7▷ 6; we only care
that ifzero(pred 3, 5, pred 7) computes to the numeral 6. The big-step operational
semantics of PCF is a way of formalising this desideratum.

Definition 2.12 (Big-step operational semantics of PCF, 𝑀 ⇓ 𝑉). We inductively
define when a term𝑀 (big-step) reduces to another term 𝑉 (of the same type, in the
same context), written𝑀 ⇓ 𝑉 , by the following inductive clauses:

x ⇓ x 𝜆 x : 𝜎 . 𝑀 ⇓ 𝜆 x : 𝜎 . 𝑀

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

7 Chapter 2. PCF and its operational semantics

𝑀 ⇓ 𝜆 x : 𝜎 . 𝐸 𝐸 [𝑁 /𝑥] ⇓ 𝑉
𝑀 𝑁 ⇓ 𝑉

𝑀 (fix𝜎 𝑀) ⇓ 𝑉
fix𝜎 𝑀 ⇓ 𝑉

0 ⇓ 0
𝑀 ⇓ 𝑛

succ 𝑀 ⇓ 𝑛 + 1

𝑀 ⇓ 0
pred 𝑀 ⇓ 0

𝑀 ⇓ 𝑛 + 1
pred 𝑀 ⇓ 𝑛

𝑀 ⇓ 0 𝑁1 ⇓ 𝑉
ifzero(𝑀, 𝑁1, 𝑁2) ⇓ 𝑉

𝑀 ⇓ 𝑛 + 1 𝑁2 ⇓ 𝑉
ifzero(𝑀, 𝑁1, 𝑁2) ⇓ 𝑉

Definition 2.14 (Value). A term is a value if it is either a variable, a numeral or a
𝜆-abstraction, i.e. it is of the form 𝜆 x : 𝜎 . 𝑁 for some term 𝑁 .
Note that the values of type nat in the empty context are precisely the numerals.

The reason that we use 𝑉 in the big-step semantics is the following:

Lemma 2.15. If𝑀 ⇓ 𝑉 , then 𝑉 is a value.

Moreover, values do not reduce any further:

Lemma 2.16. If 𝑉 is a value, then
(i) there is no term 𝑁 such that 𝑉 ▷ 𝑁 , and
(ii) whenever 𝑉 ⇓ 𝑁 , we have 𝑉 = 𝑁 .

Thus, the big-step operational semantics reduces a term all the way to a value,
forgetting about the intermediary reductions.

Furthermore, the values computed by the big-step operational semantics are unique:

Lemma 2.17 (Big-step is deterministic). If𝑀 ⇓ 𝑉 and𝑀 ⇓𝑊 , then 𝑉 =𝑊 .

The lemmas are proved by induction on the structure of derivations of𝑀 ⇓ 𝑉 and
inspection of the small-step operational semantics.

Finally, we relate the small-step and big-step operational semantics: We write ▷∗

for the reflexive transitive closure of ▷. That is, we have𝑀 ▷∗ 𝑁 exactly if there is a
sequence𝑀 = 𝑀0 ▷𝑀1 ▷ . . . ▷𝑀𝑛−1 = 𝑁 . For 𝑛 = 0, this reads𝑀 = 𝑁 , and for 𝑛 = 1,
it reads𝑀 ▷ 𝑁 .

Exercise 2.18. Show that:
(i) if𝑀 ⇓ 𝑉 , then𝑀 ▷∗ 𝑉 ;
(ii) if𝑀 ▷ 𝑁 , then 𝑁 ⇓ 𝑉 implies𝑀 ⇓ 𝑉 for all values 𝑉 ;
(iii) if𝑀 ▷∗ 𝑁 , then 𝑁 ⇓ 𝑉 implies𝑀 ⇓ 𝑉 for all values 𝑉 .

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

2.3. List of exercises 8

For (i) and (ii), use induction on the structure of the derivations; for (iii) you can
repeatedly apply (ii).
Conclude that𝑀 ⇓ 𝑉 if and only if𝑀 ▷∗ 𝑉 for all terms𝑀 and values 𝑉 .

2.3 List of exercises

1. Exercise 2.9: On computing additions using the small-step operational semantics.
2. Exercise 2.10: On defining addition and multiplication in PCF.
3. Exercise 2.18: On relating the small-step and big-step operational semantics.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

Chapter 3

Denotational semantics and
domain theory

Previously we introduced the operational semantics of PCF. Next, we wish to introduce
a denotational semantics to PCF. The basic idea is to assign to each type 𝜎 of PCF some
kind of mathematical object J𝜎K. A program 𝑀 (i.e. closed term) of type 𝜎 is then
interpreted as an element J𝑀K of J𝜎K. More generally, we extend the interpretation of
types to contexts and Γ ⊢ 𝑀 : 𝜎 will then be interpreted as a certain (𝜔-continuous)
function from JΓK to J𝜎K.

For the denotational semantics we have three desiderata:

• Compositionality: This can be summarised as follows:
The interpretation of a composite is the composite of the interpretations.

For example, the interpretation of a function type 𝜎 ⇒ 𝜏 will be a certain set of
functions from J𝜎K to J𝜏K, and if we have programs 𝑀 : 𝜎 ⇒ 𝜏 and 𝑁 : 𝜎 , then
J𝑀 𝑁 K = J𝑀K(J𝑁 K).

• Soundness: We want our interpretation to respect the operational semantics, i.e. if
we have terms𝑀 and 𝑁 with𝑀 ⇓ 𝑁 , then their interpretations should be equal.

• Computational adequacy: We should be able to use our interpretation to compute,
i.e. if𝑀 is a program of type nat and J𝑀K = 𝑛 for some natural number 𝑛, then
𝑀 ⇓ 𝑛.

Soundness and computational adequacy will be proved in Section 4.2 and Chapter 5,
while compositionality will be a direct consequence of our definitions.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

3.1. Towards domain theory 10

3.1 Towards domain theory

All this leaves the question what kind of mathematical objects we have in mind for
interpreting the types of PCF. A first, naive attempt may be to interpret each type 𝜎 as
a set J𝜎K with:

JnatK := the set N of natural numbers, and
J𝜎 ⇒ 𝜏K := the set {𝑓 : J𝜎K → J𝜏K} of all functions from J𝜎K to J𝜏K.

There are two problems with this naive approach. The first problem is that JnatK
should not only offer natural numbers, but it should also offer an interpretation of
programs of type nat that do not terminate such as the one in Example 2.11. Right now,
this program𝑀 would have to be interpreted as some natural number 𝑛, forcing us to
make some arbitrary choice. Moreover, it is not true that𝑀 ⇓ 𝑛, whatever choice we
make, so we would violate computational adequacy.

This problem is easily solved by introducing a new, special element ⊥𝜎 ∈ J𝜎K that
interprets non-terminating programs of type 𝜎 . And indeed, this will be a part of our
eventual interpretation.

However, it does not solve the second, more serious problem, namely that, in order
to interpret PCF’s fix𝜎 we would need every function 𝑓 : J𝜎K → J𝜎K to have a fixed
point. But this is easily seen to false, e.g. consider

𝑓 : N ∪ {⊥} → N ∪ {⊥}
⊥ ↦→ 0,
𝑛 ↦→ 𝑛 + 1.

This is where domain theory comes to the rescue: Instead of using plain sets, we
will interpret types as so-called 𝜔-cppos: these are partially ordered sets with a least
element ⊥ and least upper bounds of increasing sequences. A function between (the
underlying sets of) two 𝜔-cppos is 𝜔-continuous if it preserves the order and these least
upper bounds. The upshot of restricting to such 𝜔-continuous functions is that these
can be shown to have (least) fixed points, thus solving our second problem.

3.2 Basic definitions and the least fixed point theorem

We define 𝜔-cppos (short for: pointed, 𝜔-chain complete posets) and 𝜔-continuous
functions between them.

Definition 3.1 (Poset). A partially ordered set, or poset, is a set 𝑋 together with a
binary relation ⊑ satisfying:

(i) reflexivity: for every 𝑥 ∈ 𝑋 , we have 𝑥 ⊑ 𝑥 ;
(ii) transitivity: for every 𝑥,𝑦, 𝑧 ∈ 𝑋 , if 𝑥 ⊑ 𝑦 and 𝑦 ⊑ 𝑧, then 𝑥 ⊑ 𝑧;
(iii) antisymmetry: for every 𝑥,𝑦 ∈ 𝑋 , if 𝑥 ⊑ 𝑦 and 𝑦 ⊑ 𝑥 , then 𝑥 = 𝑦.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

11 Chapter 3. Denotational semantics and domain theory

Example 3.2. The natural numbers, rational numbers and real numbers with their
usual orderings are all examples of posets.

Definition 3.3 (𝜔-chain, least upper bound, 𝜔-cpo). Let (𝑋, ⊑) be a poset.
(i) An 𝜔-chain in 𝑋 is a subset {𝑥0, 𝑥1, 𝑥2, . . .} ⊆ 𝑋 of increasing elements, i.e. we

have 𝑥0 ⊑ 𝑥1, 𝑥1 ⊑ 𝑥2, 𝑥2 ⊑ 𝑥3, and so on.
(ii) An upper bound of a subset 𝑆 ⊆ 𝑋 is an element 𝑥 ∈ 𝑋 such that 𝑠 ⊑ 𝑥 for

every 𝑠 ∈ 𝑆 .
(iii) A least upper bound of a subset 𝑆 ⊆ 𝑋 is an upper bound 𝑥 ∈ 𝑋 of 𝑆 such that

for every upper bound 𝑦 ∈ 𝑋 of 𝑆 we have 𝑥 ⊑ 𝑦.
(iv) The poset 𝑋 is 𝜔-chain complete if every 𝜔-chain in 𝑋 has a least upper bound.

An 𝜔-chain complete poset will be called an 𝜔-cpo.

Exercise 3.4. Show that least upper bounds are unique. That is, if 𝑥 and 𝑦 are least
upper bounds of some subset 𝑆 of a poset 𝑋 , then 𝑥 = 𝑦.
Hint: Use antisymmetry.

Because least upper bounds are unique, we will speak of the least upper bound (of
a given subset) and in the case of 𝜔-chain 𝑥0 ⊑ 𝑥1 . . ., we will denote the least upper
bound by

⊔
𝑛∈N 𝑥𝑛 .

Definition 3.5 (Least element, 𝜔-cppo). Let (𝑋, ⊑) be a poset.
(i) A least element of 𝑋 is an element 𝑥 ∈ 𝑋 such that 𝑥 ⊑ 𝑦 for every 𝑦 ∈ 𝑋 .
(ii) An 𝜔-cpo is called pointed if it has a least element.

A pointed 𝜔-cpo will be called an 𝜔-cppo.

Exercise 3.6. Let 𝑋 be a poset with a least element 𝑥 . Show that 𝑥 is the least upper
bound of the empty subset and hence conclude that 𝑥 must be unique.

Because least elements are unique, we will speak of the least element and will
typically denote it by ⊥.

Example 3.7. The set of natural numbers N with the usual order is not an 𝜔-cpo,
because the 𝜔-chain {0, 1, . . .} does not have a (least) upper bound.

Example 3.8 (N⊥). A fundamental example of an 𝜔-cppo is the flat 𝜔-cppo N⊥,
which is given by the set N ∪ {⊥} ordered as depicted in the following diagram:

0 1 2 3 . . .

⊥

Here we interpret a line going up from an element 𝑥 to an element 𝑦 as saying that
𝑥 ⊑ 𝑦. Thus, the element ⊥ is the least element and all other elements are unrelated.
In particular, we have do not have 0 ⊑ 1 as in the usual ordering of the natural

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

3.2. Basic definitions and the least fixed point theorem 12

numbers.
The intuition here is that the partial order ⊑ does not reflect the numerical value,
but rather how “defined” an element is with ⊥ representing an “undefined”. In our
interpretation of PCF, we will interpret nat asN⊥ and⊥will serve as an interpretation
of non-terminating programs.

Exercise 3.9. Show that the 𝜔-chains in N⊥ are precisely {⊥}, {𝑛} and {⊥, 𝑛} for a
natural number 𝑛 ∈ N. Use this to check that N⊥ is indeed an 𝜔-cpo.

Remark 3.10. It is perhaps a bit arbitrary that to exhibit {⊥, 𝑛} ⊆ N⊥ as an 𝜔-chain
we have to repeat elements and order them linearly. One way to address this is to
replace the notion of 𝜔-chain by that of a directed (see Exercise 3.11) subset, and to
consider dcpos: posets with least upper bounds for all directed subsets.
For general domain theory the notion of dcpo is arguably the better notion (see
also [AJ94, Section 2.2.4], but for the denotational semantics of PCF and in particular,
the existence of least fixed points (Theorem 3.17), the notion of 𝜔-cpo suffices.

Exercise 3.11. Let (𝑋, ⊑) be a poset. A subset 𝑆 ⊆ 𝑋 is directed if it is non-empty
and for every two elements 𝑥,𝑦 ∈ 𝑆 , there exists an element 𝑧 ∈ 𝑆 with 𝑥 ⊑ 𝑧 and
𝑦 ⊑ 𝑧.

(i) Show that every 𝜔-chain is a directed subset. Conclude that every poset that
has least upper bounds of directed subsets (a so-called dcpo) is an 𝜔-cpo.

(ii) In the other direction, use the axiom of choice to show that every 𝜔-cpo has
least upper bounds of countable, directed subsets.

We proceed by defining the 𝜔-continuous maps between (pointed) 𝜔-cpos.

Definition 3.12 (𝜔-continuity). A function 𝑓 : 𝐴 → 𝐵 between the underlying sets
of two 𝜔-cpos 𝐴 and 𝐵 is 𝜔-continuous if

(i) it is monotone (or order preserving), i.e. if 𝑥 ⊑ 𝑦 in 𝐴, then 𝑓 (𝑥) ⊑ 𝑓 (𝑦) in 𝐵;
(ii) it preserves least upper bounds of 𝜔-chains, i.e. if {𝑥0, 𝑥1, . . .} is an 𝜔-chain in 𝐴

with least upper bound 𝑎, then 𝑓 (𝑎) is the least upper bound in 𝐵 of the subset
{𝑓 (𝑥0), 𝑓 (𝑥1), . . .}.

Remark 3.13. It follows from monotonicity that {𝑓 (𝑥0), 𝑓 (𝑥1), . . .} is an 𝜔-chain in 𝐵
and hence we could rewrite the second condition as:

𝑓 (⊔𝑛∈N 𝑥𝑛) =
⊔
𝑛∈N 𝑓 (𝑥𝑛).

It is worthwhile to reflect on the computational intuitions underlying monotonicity
and preservation of least upper bounds of 𝜔-chains. If we think of 𝑓 : 𝐴 → 𝐵 as some
computational procedure, then monotonicity says:

more (or better) input leads to more (or better) output,

while the second condition of 𝜔-continuity says:

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

13 Chapter 3. Denotational semantics and domain theory

every output can be patched together from the outputs of approximations.

The idea here is that a computational procedure can only inspect a finite amount of
input before returning an output, so that the approximations suffice to determine the
output. These intuitions and ideas are nicely illustrated in the following example:

Exercise 3.14. Let 𝐶 be the poset of finite and infinite binary sequences ordered by
prefix. For an infinite sequence 𝛼 we write 𝛼 ↾ 𝑛 for its finite prefix of length 𝑛.

(i) Show that 𝐶 is an 𝜔-cppo.
(ii) Show that a function 𝑓 : 𝐶 → 𝐶 is 𝜔-continuous if and only if for every infinite

sequence 𝛼 we have 𝑓 (𝛼) = ⊔
𝑛∈N 𝑓 (𝛼 ↾ 𝑛).

Actually, monotonicity, item (i) in Definition 3.12, is redundant as the following
exercise ask you to check:

Exercise 3.15. Show that if a function 𝑓 between 𝜔-cpos satisfies item (ii) of Defini-
tion 3.12, then 𝑓 must be monotone.
Hint: If 𝑥 ⊑ 𝑦, then {𝑥,𝑦} is an 𝜔-chain with least upper bound 𝑦.

Example 3.16. The function 𝑓 : N⊥ → N⊥ given by ⊥ ↦→ 0 and 𝑛 ↦→ 𝑛 + 1 is not
𝜔-continuous, because it is not monotone: ⊥ ⊑ 1, but 𝑓 (⊥) = 0 is not below 𝑓 (1) = 2
in the ordering of N⊥.
On the other hand, the function 𝑔 : N⊥ → N⊥ given by ⊥ ↦→ ⊥ and 𝑛 ↦→ 𝑛 + 1
is 𝜔-continuous. In fact, it will serve as the interpretation of the PCF program
𝜆 x : nat . succ x of type nat ⇒ nat.

The point of introducing 𝜔-continuity is the following fundamental result:

Theorem 3.17 (Kleene fixed point theorem). Every 𝜔-continuous function 𝑓 : 𝑋 → 𝑋

on a pointed 𝜔-cpo 𝑋 has a least fixed point given by the least upper bound of the
𝜔-chain

⊥ ⊑ 𝑓 (⊥) ⊑ 𝑓 (𝑓 (⊥))

Proof sketch. We write 𝑓 𝑛 (⊥) for the 𝑛-fold application of 𝑓 to the least element ⊥.
We first check that {𝑓 𝑛 (⊥) | 𝑛 ∈ N} is indeed an𝜔-chain. Since⊥ is the least element,
we certainly have ⊥ ⊑ 𝑓 (⊥). But now we also have 𝑓 (⊥) ⊑ 𝑓 2(⊥) by monotonicity
of 𝑓 . It follows by induction on 𝑛 that 𝑓 𝑛 (⊥) ⊑ 𝑓 𝑛+1(⊥), as desired. Now we calculate:

𝑓 (⊔𝑛∈N 𝑓
𝑛 (⊥)) =

⊔
𝑛∈N

𝑓 (𝑓 𝑛 (⊥)) (since 𝑓 preserves least upper bounds of 𝜔-chains)

=
⊔
𝑛∈N

𝑓 𝑛+1(⊥) (by definition)

=
⊔
𝑛∈N

𝑓 𝑛 (⊥) (by antisymmetry and calculation)

so we have a fixed point, as claimed. That it is the least follows from Exercise 3.18.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

3.3. Products: interpreting contexts 14

Exercise 3.18 (Park induction). Show that for every 𝑦 ∈ 𝑋 with 𝑓 (𝑦) ⊑ 𝑦, we have⊔
𝑛∈N 𝑓

𝑛 (⊥) ⊑ 𝑦. Conclude that ⊔𝑛∈N 𝑓
𝑛 (⊥) is indeed the least fixed point.

Exercise 3.19. Show that 𝜔-cpos and 𝜔-continuous functions form a category, i.e.
1. if 𝑋 is an 𝜔-cpo, then the identity function 𝑥 ↦→ 𝑥 on 𝑋 is 𝜔-continuous, and
2. if we have 𝜔-continuous functions 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 , then so is their

composition (as functions) 𝑔 ◦ 𝑓 : 𝐴 → 𝐶 .

Exercise 3.20 (For those familiar with category theory). Write 𝜔-CPO for the cate-
gory constructed above and 𝜔-CPPO⊥ for the category of pointed 𝜔-cpos and those
morphisms of 𝜔-cpos that preserve the least element.
Construct adjunctions

Set 𝜔-CPO 𝜔-CPPO⊥

⊣ ⊣

Hint: The composite functor Set → 𝜔-CPPO⊥ takes the set N to the 𝜔-cppo N⊥
from Example 3.8.

Remark 3.21. For the interpretation of PCF, we do not use the category𝜔-CPPO⊥, but
rather the full subcategory of 𝜔-CPO of pointed 𝜔-cpos. That is, we do not restrict
to those 𝜔-continuous functions that preserve the least element. For instance, the
interpretation of ifzero will not necessarily preserve the least element in its second
and third arguments. This makes sense, because ifzero(0, 𝑀, 𝑁) ⇓ 𝑀 holds even if
the program 𝑁 does not terminate.

3.3 Products: interpreting contexts

As explained in the introduction to this chapter our goal is to interpret the types of PCF
as 𝜔-cppos. Thus, we will have an 𝜔-cppo J𝜎K for each PCF type 𝜎 . Moreover, we wish
to extend this interpretation to contexts, which are lists of typed variables. In a context
Γ = [x0 : 𝜎0, x1 : 𝜎1, . . . , x𝑛 : 𝜎𝑛−1] the variables themselves are not really important;
it’s the types that matter. Accordingly, we will interpret such a context as the product
J𝜎0K × J𝜎1K × · · · × J𝜎𝑛−1K of the interpretations of the types.

The empty context will be interpreted as follows:

Example 3.22 (The one point 𝜔-cppo 1). The one point 𝜔-cppo 1 is the unique
𝜔-cppo with the singleton {★} as its underlying set.

Definition 3.23 (Binary product of 𝜔-cpos, 𝐴 × 𝐵). Given two 𝜔-cpos 𝐴 and 𝐵, their
binary product 𝐴 × 𝐵 is defined by taking the cartesian product of their underlying
sets with pairwise partial order:

(𝑥1, 𝑦1) ⊑𝐴×𝐵 (𝑥2, 𝑦2) := (𝑥1 ⊑𝐴 𝑥2) and (𝑦1 ⊑𝐵 𝑦2).

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

15 Chapter 3. Denotational semantics and domain theory

Given an 𝜔-chain {(𝑥0, 𝑦0), (𝑥1, 𝑦1), . . .} in 𝐴 × 𝐵, one verifies that {𝑥0, 𝑥1, . . .} and
{𝑦0, 𝑦1, . . .} are 𝜔-chains in 𝐴 and 𝐵, respectively. Hence, we can consider their least
upper bounds

⊔
𝑛∈N 𝑥𝑛 and

⊔
𝑛∈N𝑦𝑛 in 𝐴 and 𝐵. One then checks that the least upper

bound of the original 𝜔-chain in 𝐴 × 𝐵 is given by the pair of least upper bounds
(⊔𝑛∈N 𝑥𝑛,

⊔
𝑛∈N𝑦𝑛).

Finally, if 𝐴 and 𝐵 are pointed, then so is 𝐴 × 𝐵 with least element (⊥𝐴,⊥𝐵).

Example 3.24. The product of the 𝜔-cppos
𝑥

⊥
and

𝑦

⊥
looks like this:

(𝑥,𝑦)

(𝑥,⊥) (⊥, 𝑦)

(⊥,⊥)

Example 3.25 (An illustration of the 𝜔-cppo N⊥ × N⊥).

(0, 0) (0, 1) (1, 0) (1, 1) . . .

(⊥, 0) (⊥, 1) . . . (0,⊥) (1,⊥) . . .

(⊥,⊥)

The construction of least upper bounds of 𝜔-chains in the product ensures:

Lemma 3.26. Given two 𝜔-cpos 𝐴 and 𝐵, the projections

𝜋1 : 𝐴 × 𝐵 → 𝐴 𝜋2 : 𝐴 × 𝐵 → 𝐵

(𝑥,𝑦) ↦→ 𝑥 (𝑥,𝑦) ↦→ 𝑦

are 𝜔-continuous.

Exercise 3.27. Show that a function 𝑓 : 𝐴 × 𝐵 → 𝐶 between 𝜔-cpos is 𝜔-continuous
if and only if the functions 𝑓 (𝑥,−) : 𝐵 → 𝐶 and 𝑓 (−, 𝑦) : 𝐴 → 𝐶 are 𝜔-continuous
for every 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵.
Thus, 𝜔-continuity of 𝑓 can be checked in each argument separately.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

3.4. Exponentials: interpreting function types 16

Exercise 3.28. Prove that if 𝑓 : 𝐶 → 𝐴 and 𝑔 : 𝐶 → 𝐵 are 𝜔-continuous functions
between 𝜔-cpos, then so is the induced map

⟨𝑓 , 𝑔⟩ : 𝐶 → 𝐴 × 𝐵
𝑥 ↦→ (𝑓 (𝑥), 𝑔(𝑥)) .

For those familiar with category theory: conclude that the category 𝜔-CPO has finite
products.

3.4 Exponentials: interpreting function types

To interpret the function type 𝜎 ⇒ 𝜏 of PCF using 𝜔-cpos, we are going to construct
an 𝜔-cpo of 𝜔-continuous functions: the exponential.

Definition 3.29 (Exponential of 𝜔-cpos, 𝐵𝐴). Given two 𝜔-cpos 𝐴 and 𝐵, their
exponential 𝐵𝐴 is defined by equipping the set of 𝜔-continuous functions from 𝐴 to 𝐵
with the pointwise order:

𝑓 ⊑ 𝑔 := ∀𝑥∈𝐴 (𝑓 (𝑥) ⊑𝐵 𝑔(𝑥)) .

Given an 𝜔-chain {𝑓0, 𝑓1, . . .} in 𝐵𝐴, one verifies that {𝑓0(𝑥), 𝑓1(𝑥), . . .} is an 𝜔-chain
in 𝐵 for every 𝑥 ∈ 𝐴. Hence, for every 𝑥 ∈ 𝐴, we can consider the least upper bound⊔
𝑛∈N 𝑓𝑛 (𝑥) in 𝐵. One then checks that the function 𝑥 ↦→ ⊔

𝑛∈N 𝑓𝑛 (𝑥) is 𝜔-continuous
and moreover, that it is the least upper bound of the original 𝜔-chain in 𝐵𝐴.
Finally, if 𝐵 is pointed, then so is 𝐵𝐴 with least element 𝑥 ↦→ ⊥.

We illustrate the exponential with the following example and exercise before pro-
ceeding to develop the required machinery for interpreting PCF using 𝜔-cppos and
𝜔-continuous maps.

Example 3.30. Consider the𝜔-cpo 2 := ⊤
⊥

. Writing [𝑥,𝑦] for the function 𝑓 : 2 → 2

given by 𝑓 (⊥) := 𝑥 and 𝑓 (⊤) := 𝑦, we picture the exponential 22 as:

[⊤,⊤]

[⊥,⊤]

[⊥,⊥]

Note that [⊤,⊥] is not an element of 22, because it isn’t monotone.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

17 Chapter 3. Denotational semantics and domain theory

Exercise 3.31. For each natural number 𝑘 ∈ N, define the function 𝑠𝑘 : N⊥ → N⊥ by

𝑠𝑘 (⊥) := ⊥ and 𝑠𝑘 (𝑛) :=
{
𝑛 + 1 if 𝑛 ≤ 𝑘,
⊥ else.

(i) Show that each 𝑠𝑘 is 𝜔-continuous.
(ii) Show that {𝑠𝑘 | 𝑘 ∈ N} is an 𝜔-chain in NN⊥

⊥ and its least upper bound is
𝑠 : N⊥ → N⊥ with 𝑠 (⊥) := ⊥ and 𝑠 (𝑛) := 𝑛 + 1.

Thus, the functions (𝑠𝑘)𝑘∈N are increasingly better approximations of the successor
map on N⊥.

Lemma 3.32. Given two 𝜔-cpos 𝐴 and 𝐵, the evaluation function

𝐵𝐴 ×𝐴 → 𝐵

(𝑓 , 𝑥) ↦→ 𝑓 (𝑥)

is 𝜔-continuous.

Exercise 3.33. Prove Lemma 3.32.
Hint: Use Exercise 3.27.

Exercise 3.34. Show that if 𝑓 : 𝐶 × 𝐴 → 𝐵 is an 𝜔-continuous function between
𝜔-cpos, then so is the curried function

𝑓 : 𝐶 → 𝐵𝐴

𝑓 (𝑐) := 𝑎 ↦→ 𝑓 (𝑐, 𝑎).

For those familiar with category theory: conclude that the category 𝜔-CPO is carte-
sian closed.

The following theorem says that the construction of the Kleene least fixed point
(Theorem 3.17) is continuous and will be used to interpret PCF’s fixed point operator
fix𝜎 : (𝜎 ⇒ 𝜎) ⇒ 𝜎 .

Theorem 3.35. For every 𝜔-cppo 𝐴, the assignment

𝜇 : 𝐴𝐴 → 𝐴

𝑓 ↦→ ⊔
𝑛∈N 𝑓

𝑛 (⊥)

of an 𝜔-continuous endofunction on 𝐴 to its least fixed point is 𝜔-continuous.

Proof sketch. For each natural number 𝑛 ∈ N, define

iter𝑛 : 𝐴𝐴 → 𝐴

𝑓 ↦→ 𝑓 𝑛 (⊥).

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

3.5. List of exercises 18

By induction on 𝑛, we see that each iter𝑛 is 𝜔-continuous. Thus, they are elements of
the exponential 𝐴(𝐴𝐴) . Moreover, {iter𝑛 | 𝑛 ∈ N} is an 𝜔-chain in this 𝜔-cpo. Hence,
we can take its least upper bound 𝐹 ∈ 𝐴(𝐴𝐴) which is an 𝜔-continuous function by
construction. Finally, from the construction of least upper bounds in the exponential,
we calculate that 𝐹 (𝑓) = 𝜇 (𝑓) for every 𝑓 ∈ 𝐴𝐴, so that 𝜇 must be 𝜔-continuous.

3.5 List of exercises

1. Exercise 3.4: On the uniqueness of least upper bounds.
2. Exercise 3.6: On the uniqueness of least elements.
3. Exercise 3.9: On 𝜔-chains in N⊥.
4. Exercise 3.11: On directed subsets and 𝜔-chains.
5. Exercise 3.14: On the 𝜔-cppo of finite and infinite binary sequences.
6. Exercise 3.15: On deriving monotonicity from preservation of least upper bounds

of 𝜔-chains.
7. Exercise 3.18: On showing that the Knaster–Tarski fixed point is the least.
8. Exercise 3.19: On the category of 𝜔-cpos.
9. Exercise 3.20: On adjunctions between the categories of sets and (pointed)𝜔-cpos.
10. Exercise 3.27: On checking 𝜔-continuity in each argument of the product.
11. Exercise 3.28: On 𝜔-continuity of the induced map to the product.
12. Exercise 3.31: On approximating the successor map on N⊥.
13. Exercise 3.33: On 𝜔-continuity of the evaluation map.
14. Exercise 3.34: On 𝜔-continuity of the curried map.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

Chapter 4

The Scott model of PCF

We started these notes by introducing PCF and its operational semantics in Chapter 2.
We then developed sufficient domain theory in Chapter 3 to now give a denotational
semantics of PCF, known as the Scott model of PCF, where we interpret the types of
PCF as 𝜔-cppos and terms as 𝜔-continuous maps.

Definition 4.1 (Interpretation of PCF types, J𝜎K). We inductively assign an 𝜔-cppo
J𝜎K to each type 𝜎 of PCF:

JnatK := N⊥ and J𝜎 ⇒ 𝜏K := J𝜏KJ𝜎K,

where we recall N⊥ from Example 3.8 and the exponential from Definition 3.29.

This interpretation extends to contexts by using iterated binary products:

Definition 4.2 (Interpretation of contexts, JΓK). The interpretation of a context
Γ = [x0 : 𝜎0, . . . , x𝑛−1 : 𝜎𝑛−1] is

JΓK := J𝜎0K × · · · × J𝜎𝑛−1K

with the convention that the empty context is interpreted as the empty product: the
one point 𝜔-cppo 1 from Example 3.22.

The interpretation of the terms of PCF proceeds by yet another inductive definition:

Definition 4.3 (Interpretation of PCF terms, J𝑀K). A term Γ ⊢ 𝑀 : 𝜎 of type 𝜎 in
context Γ will be interpreted as an 𝜔-continuous function

JΓK
J𝑀K
−−−→ J𝜎K

according to the following clauses which mirror Definition 2.3:

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

20

(i) The interpretation of

Γ, x : 𝜎,Δ ⊢ x : 𝜎
is

JΓK × J𝜎K × JΔK
𝜋−→ J𝜎K,

where 𝜋 is a suitable composition of projections (recall Lemma 3.26), which is
𝜔-continuous, because 𝜔-continuous functions are closed under composition
(recall Exercise 3.19).

(ii) To interpret
Γ, x : 𝜎 ⊢ 𝑀 : 𝜏

Γ ⊢ (𝜆 x : 𝜎 . 𝑀) : 𝜎 ⇒ 𝜏

we first remark that we have

JΓK × J𝜎K
J𝑀K
−−−→ J𝜏K

by induction hypothesis, so that we can define

JΓK
J𝜆 x:𝜎.𝑀K
−−−−−−−→ J𝜏KJ𝜎K

as the curried (recall Exercise 3.34) version of J𝑀K, i.e. for 𝛾 ∈ JΓK, we have
J𝜆 x : 𝜎 . 𝑀K(𝛾) := 𝑥 ↦→ J𝑀K(𝛾, 𝑥).

(iii) To interpret
Γ ⊢ 𝑀 : 𝜎 ⇒ 𝜏 Γ ⊢ 𝑁 : 𝜎

Γ ⊢ 𝑀 𝑁 : 𝜏
we first remark that we have

JΓK
J𝑀K
−−−→ J𝜏KJ𝜎K and JΓK

J𝑁 K
−−−→ J𝜎K

by induction hypothesis, so that we can define

JΓK
J𝑀 𝑁 K
−−−−−→ J𝜏K

by application: for 𝛾 ∈ JΓK, we have J𝑀 𝑁 K(𝛾) := J𝑀K(𝛾)
(
J𝑁 K(𝛾)

)
.

More abstractly, it is the composition of

JΓK
⟨J𝑀K,J𝑁 K⟩
−−−−−−−−→ J𝜏KJ𝜎K × J𝜎K

evaluation−−−−−−−→ J𝜏K,

where we recall Exercise 3.28 and Lemma 3.32.
(iv) To interpret

Γ ⊢ 𝑀 : 𝜎 ⇒ 𝜎
Γ ⊢ fix𝜎 (𝑀) : 𝜎

we first remark that we have

JΓK
J𝑀K
−−−→ J𝜎KJ𝜎K

by induction hypothesis, so that we can define

JΓK
Jfix𝜎 𝑀K
−−−−−−−→ J𝜎K

as the composition JΓK
J𝑀K
−−−→ J𝜎KJ𝜎K 𝜇

−→ J𝜎K, where we recall 𝜇, which assigns
least fixed points, from Theorem 3.35.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

21 Chapter 4. The Scott model of PCF

(v) The interpretation of
Γ ⊢ zero : nat

is
JΓK

JzeroK
−−−−−→ N⊥

which is given by 𝛾 ∈ JΓK ↦→ 0 ∈ N⊥.
(vi) To interpret

Γ ⊢ 𝑀 : nat
Γ ⊢ succ(𝑀) : nat

we first remark that we have

JΓK
J𝑀K
−−−→ N⊥

by induction hypothesis, so that we can define

JΓK
Jsucc 𝑀K
−−−−−−−→ N⊥

as the composition JΓK
J𝑀K
−−−→ N⊥

𝑠−→ N⊥, where 𝑠 : N⊥ → N⊥ is the successor
function on N⊥, i.e. 𝑠 (⊥) := ⊥ and 𝑠 (𝑛) := 𝑛 + 1.

(vii) To interpret
Γ ⊢ 𝑀 : nat
Γ ⊢ pred(𝑀) : nat

we first remark that we have

JΓK
J𝑀K
−−−→ N⊥

by induction hypothesis, so that we can define

JΓK
Jpred 𝑀K
−−−−−−−→ N⊥

as the composition JΓK
J𝑀K
−−−→ N⊥

𝑝
−→ N⊥, where 𝑝 : N⊥ → N⊥ is the predecessor

function on N⊥, i.e. 𝑝 (⊥) := ⊥, 𝑝 (0) := 0 and 𝑝 (𝑛 + 1) := 𝑛.
(viii) Finally, to interpret

Γ ⊢ 𝑀 : nat Γ ⊢ 𝑁1 : nat Γ ⊢ 𝑁2 : nat
Γ ⊢ ifzero(𝑀, 𝑁1, 𝑁2) : nat

we first remark that we have

JΓK
J𝑀K
−−−→ N⊥, JΓK

J𝑁1K−−−→ N⊥ and JΓK
J𝑁2K−−−→ N⊥

by induction hypothesis, so that we can define

JΓK
Jifzero(𝑀,𝑁1,𝑁2)K−−−−−−−−−−−−−−→ N⊥

as the composition JΓK
⟨J𝑀K,J𝑁1K,J𝑁2K⟩−−−−−−−−−−−−→ N⊥ × N⊥ × N⊥

𝑐−→ N⊥, where

𝑐 : N⊥ × N⊥ × N⊥ → N⊥

is defined as the 𝜔-continuous function 𝑐 (⊥, 𝑦, 𝑧) := ⊥, 𝑐 (0, 𝑦, 𝑧) := 𝑦 and
𝑐 (𝑛 + 1, 𝑦, 𝑧) := 𝑧.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

4.1. Towards soundness 22

Remark 4.4 (Programs of type 𝜎 are interpreted as elements of J𝜎K). Note that a
program, i.e. a closed term, ⊢ 𝑀 : 𝜎 is interpreted as a function J𝑀K : 1 → J𝜎K. Since
the underlying set of 1 is the singleton {★}, this function simply picks out an element.
With this in mind, we see that programs of type 𝜎 are interpreted as elements of J𝜎K.

Exercise 4.5. Show that the numerals of PCF are interpreted as the natural numbers
in N⊥, i.e. J𝑛K = 𝑛 ∈ N⊥ for every natural number 𝑛 ∈ N.

4.1 Towards soundness

The next section will be devoted to proving the soundness theorem, which says that if
𝑀 ⇓ 𝑁 , then J𝑀K = J𝑁 K. In other words, the interpretation respects the operational
semantics. The proof of soundness relies on the following lemma:

Lemma 4.6 (𝛽-equality). The Scott model of PCF validates 𝛽-equality. That is, if
Γ, x : 𝜎 ⊢ 𝑀 : 𝜏 and Γ ⊢ 𝑁 : 𝜎 , then

J(𝜆 x : 𝜎 . 𝑀) 𝑁 K = J𝑀 [𝑁 /x]K

Exercise 4.7. Prove Lemma 4.6 from the substitution lemma given below.

Suppose that we have a term 𝑀 : 𝜏 in context Γ = [x0 : 𝜎0, . . . , x𝑘−1 : 𝜎𝑘−1], and
assume that we have another context Δ with terms Δ ⊢ 𝑁𝑖 : 𝜎𝑖 for every 0 ≤ 𝑖 ≤ 𝑘 − 1.
This yields (by a recursive definition on the structure of derivations of Γ ⊢ 𝑀 : 𝜏) a term

Δ ⊢ 𝑀 [𝑁0/x0, . . . , 𝑁𝑘−1/x𝑘−1] : 𝜏

in context Δ.
Thus, in our interpretation, we get

J𝑀 [𝑁0/x0, . . . , 𝑁𝑘−1/x𝑘−1]K(𝛿) ∈ J𝜏K (†)

for every 𝛿 ∈ JΔK.
Alternatively, we can note that J𝑁𝑖K(𝛿) ∈ J𝜎𝑖K for every 0 ≤ 𝑖 ≤ 𝑘 − 1, so that we

can feed them as inputs to J𝑀K : J𝜎0K × · · · × J𝜎𝑘−1K → J𝜏K which yields:

J𝑀K
(
J𝑁0K(𝛿), . . . , J𝑁𝑘−1K(𝛿)

)
∈ J𝜏K. (‡)

The substitution lemma says that (†) and (‡) agree.

Lemma 4.8 (Substitution lemma). If [x0 : 𝜎0, . . . , x𝑘−1 : 𝜎𝑘−1] = Γ ⊢ 𝑀 : 𝜏 , then for
every context Δ and terms Δ ⊢ 𝑁𝑖 : 𝜎𝑖 with 0 ≤ 𝑖 ≤ 𝑘 − 1, we have

J𝑀 [𝑁0/x0, . . . , 𝑁𝑘−1/x𝑘−1]K(𝛿) = J𝑀K
(
J𝑁0K(𝛿), . . . , J𝑁𝑘−1K(𝛿)

)
for every 𝛿 ∈ JΔK.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

23 Chapter 4. The Scott model of PCF

Proof. By induction on the structure of derivations of Γ ⊢ 𝑀 : 𝜏 .
For example, for the case of 𝜆-abstraction, we consider the term Γ, 𝑦 : 𝜏 ⊢ 𝑀 : 𝜌
with [x0 : 𝜎0, . . . , x𝑘−1 : 𝜎𝑘−1] = Γ, and we assume to have a context Δ with terms
Δ ⊢ 𝑁𝑖 : 𝜎𝑖 for 0 ≤ 𝑖 ≤ 𝑘 − 1. We have to prove that

J(𝜆 y : 𝜏 . 𝑀) [𝑁0/x0, . . . , 𝑁𝑘−1/x𝑘−1]K(𝛿) = J𝜆 y : 𝜏 . 𝑀K
(
J𝑁0K(𝛿), . . . , J𝑁𝑘−1K(𝛿)

)
for every 𝛿 ∈ JΔK.
Note that this is an equality of elements of J𝜌KJ𝜏K, i.e. an equality of (𝜔-continuous)
functions, so let 𝑡 ∈ J𝜏K be arbitrary and note that

(J(𝜆 y : 𝜏 . 𝑀) [𝑁0/x0, . . . , 𝑁𝑘−1/x𝑘−1]K(𝛿)) (𝑡)
= J𝑀 [𝑁0/x0, . . . , 𝑁𝑘−1/x𝑘−1, y/y]K(𝛿, 𝑡)
= J𝑀K

(
J𝑁0K(𝛿, 𝑡), . . . , J𝑁𝑘−1K(𝛿, 𝑡), JyK(𝛿, 𝑡)

)
(by IH applied to Γ, y : 𝜏 ⊢ 𝑀 : 𝜌)

= J𝑀K
(
J𝑁0K(𝛿, 𝑡), . . . , J𝑁𝑘−1K(𝛿, 𝑡), 𝑡

)
=
(
J𝜆 y : 𝜏 . 𝑀K

(
J𝑁0K(𝛿), . . . , J𝑁𝑘−1K(𝛿)

))
(𝑡),

as desired. Note that the 𝑁𝑖 in lines 2–4 refer to the terms 𝑁𝑖 in the extended context
Δ, y : 𝜏 .

4.2 Soundness

The soundness theorem expresses that the denotational semantics, in the form of the
Scott model of PCF, respects the operational semantics.

Theorem 4.9 (Soundness). For terms𝑀 and 𝑁 of the same type in the same context,
we have: if𝑀 ⇓ 𝑁 , then J𝑀K = J𝑁 K.

Proof. By induction on the structure of the derivations of𝑀 ⇓ 𝑁 . We work out two
cases: the fixed point operator and application.

• Recall that the former is the rule

𝑀 (fix𝜎 𝑀) ⇓ 𝑉
fix𝜎 𝑀 ⇓ 𝑉

so that we may assume J𝑀 (fix𝜎 𝑀)K = J𝑉 K and we have to prove:

Jfix𝜎 𝑀K = J𝑉 K.

But this holds: if𝑀 is a term in context Γ, then for every 𝛾 ∈ JΓK, we have

Jfix𝜎 𝑀K(𝛾) = 𝜇
(
J𝑀K(𝛾)

)
(by definition)

=
(
J𝑀K(𝛾)

) (
𝜇
(
J𝑀K(𝛾)

))
(because 𝜇 gives a fixed point)

= J𝑀 (fix𝜎 𝑀)K(𝛾) (by definition)
= J𝑉 K(𝛾) (by assumption).

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

4.3. List of exercises 24

• The big-step rule for application is

𝑀 ⇓ 𝜆 x : 𝜎 . 𝐸 𝐸 [𝑁 /𝑥] ⇓ 𝑉
𝑀 𝑁 ⇓ 𝑉

so that we may assume J𝑀K = J𝜆 x : 𝜎 . 𝐸K and J𝐸 [𝑁 /𝑥]K = J𝑉 K, and we have
to prove:

J𝑀 𝑁 K = J𝑉 K.

If𝑀 and 𝑁 are terms in a context Γ, then for every 𝛾 ∈ JΓK, we calculate:

J𝑀 𝑁 K(𝛾) = J𝑀K(𝛾)
(
J𝑁 K(𝛾)

)
(by definition)

= J𝜆 x : 𝜎 . 𝐸K(𝛾)
(
J𝑁 K(𝛾)

)
(by assumption on J𝑀K)

= J(𝜆 x : 𝜎 . 𝐸)𝑁 K(𝛾) (by definition)
= J𝐸 [𝑁 /x]K(𝛾) (by Lemma 4.6)
= J𝑉 K(𝛾) (by assumption on J𝑁 K),

completing the proof.

Exercise 4.10. Consider the program𝑀 := fixnat(𝜆 x : nat . x).
Prove that J𝑀K = ⊥ and use the soundness theorem to conclude that 𝑀 does not
reduce to a value.
Hint: For a particularly quick proof that J𝑀K = ⊥, use Exercise 3.18.

4.3 List of exercises

1. Exercise 4.5: On the interpretation of the numerals.
2. Exercise 4.7: On proving that the interpretation validates 𝛽-equality.
3. Exercise 4.10: On using the soundness theorem to prove non-termination.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

Chapter 5

Computational adequacy

Soundness is a nice and fundamental result, but a converse would be more interesting:
Can we use the model to compute in PCF? More precisely, if two terms𝑀 and 𝑁 are
equal in the model, does𝑀 reduce to 𝑁 (or vice versa) in the operational semantics?

This is actually not the case, because the model is more extensional than PCF, e.g. the
programs 𝜆 x : nat . x and 𝜆 x : nat . pred(succ x) are different values in PCF, but their
interpretations as𝜔-continuous functions are equal. Even if we did allow for reductions
in the bodies of the 𝜆-abstractions, we could easily get another counterexample such
as the pair of programs 𝜆 x : nat . 𝜆 y : nat . add𝑥 𝑦 and 𝜆 x : nat . 𝜆 y : nat . add𝑦 𝑥
where add is a program for addition.

However, it is the case that if𝑀 is a program of type nat and J𝑀K = 𝑛, then𝑀 ⇓ 𝑛.
This is known as the computational adequacy of the Scott model of PCF and allows us
to compute in PCF using the domain-theoretic denotational semantics.

Theorem (Computational adequacy). For every program𝑀 of type nat and natural
number 𝑛 ∈ N, if J𝑀K = 𝑛, then𝑀 ⇓ 𝑛.

Unlike soundness, computational adequacy cannot be proved by a straightforward
induction on types, or structure of the derivation of the program𝑀 , since the statement
refers to closed terms of type nat only.

Therefore, instead of proving computational adequacy directly, we will derive it as
a corollary of a more general result that does allow for a proof by induction on types.

More specifically, we will introduce a logical relation [Plo73]. It is an example of
a fundamental and often used technique in the theory of programming languages,
going back to Tait’s method of computability [Tai67] and also known as the method of
reducibility candidates [GLT89].

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

5.1. The logical relation 26

5.1 The logical relation

We introduce the logical relation 𝑅𝜎 , a binary relation between semantics and syntax of
PCF, and use it to prove computational adequacy.

Definition 5.1 (Logical relation,𝑅𝜎). Wedefine a binary relation𝑅𝜎 between elements
of J𝜎K and programs of type 𝜎 by induction on types:

(i) 𝑥 𝑅nat 𝑀 holds if 𝑥 = 𝑛 with 𝑛 ∈ N implies𝑀 ⇓ 𝑛,
(ii) 𝑓 𝑅𝜎⇒𝜏 𝑀 holds if 𝑥 𝑅𝜎 𝑁 implies 𝑓 (𝑥) 𝑅𝜏 𝑀 𝑁 for every element 𝑥 ∈ J𝜎K and

program 𝑁 of type 𝜎 .

Observe that computational adequacy is equivalent to the statement that for every
program 𝑀 : nat we have J𝑀K 𝑅nat 𝑀 . Hence, we will have proven computational
adequacy if we can show:

Lemma. For every program𝑀 : 𝜎 , it holds that J𝑀K 𝑅𝜎 𝑀 .

This, in turn, will follow from the fundamental theorem of the logical relation:

Lemma (Fundamental theorem of the logical relation). If [x0 : 𝜎0, . . . , x𝑘−1 : 𝜎𝑘−1] =
Γ ⊢ 𝑀 : 𝜏 , then whenever we have programs 𝑁𝑖 : 𝜎𝑖 and 𝑠𝑖 ∈ J𝜎𝑖K such that 𝑠𝑖 𝑅𝜎𝑖 𝑁𝑖 for
all 0 ≤ 𝑖 ≤ 𝑘 − 1, it holds that(

J𝑀K(𝑠0, . . . , 𝑠𝑘−1)
)
𝑅𝜏 𝑀 [𝑁0/x0, . . . , 𝑁𝑘−1/x𝑘−1] .

The second clause, item (ii), of Definition 5.1 says that related inputs must go to
related outputs and is designed to make proofs by induction on types possible.

Before we can prove the fundamental theorem of the logical relation, we need to
establish several properties of the relation 𝑅𝜎 .

Lemma 5.2. If 𝑥 ⊑ 𝑦 and 𝑦 𝑅𝜎 𝑀 , then 𝑥 𝑅𝜎 𝑀 .

Proof. We proceed by induction on the type 𝜎 . For the base case, suppose we have
𝑥 ⊑ 𝑦 in N⊥ and 𝑦 𝑅nat 𝑀 , and assume that 𝑥 = 𝑛 for a natural number 𝑛. We have to
prove that 𝑀 ⇓ 𝑛. Since 𝑛 = 𝑥 ⊑ 𝑦, we must have 𝑦 = 𝑛 by definition of the partial
order on N⊥, and hence𝑀 ⇓ 𝑛 because we assumed 𝑦 𝑅nat 𝑀 .
For function types, we assume to have 𝑓 ⊑ 𝑔 in J𝜏KJ𝜎K with 𝑔 𝑅𝜎⇒𝜏 𝑀 , and we have
to prove 𝑓 𝑅𝜎⇒𝜏 𝑀 . So suppose that we have 𝑥 𝑅𝜎 𝑁 . Then 𝑔(𝑥) 𝑅𝜏 𝑀 𝑁 because
we assumed 𝑔 𝑅𝜎⇒𝜏 𝑀 . But 𝑓 ⊑ 𝑔, so 𝑓 (𝑥) ⊑ 𝑔(𝑥) and hence, we get the desired
𝑓 (𝑥) 𝑅𝜏 𝑀 𝑁 by the induction hypothesis applied at the type 𝜏 .

Lemma 5.3. The least element is related to all programs. That is, for every program
𝑀 : 𝜎 , we have ⊥ 𝑅𝜎 𝑀 , where we recall that ⊥ denotes the least element of J𝜎K.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

27 Chapter 5. Computational adeqacy

Lemma 5.4. The logical relation is closed under least upper bounds of 𝜔-chains. That
is, for every program𝑀 : 𝜎 and 𝜔-chain 𝑥0 ⊑ 𝑥1 . . . in J𝜎K, if 𝑥𝑛 𝑅𝜎 𝑀 for every 𝑛 ∈ N,
then (⊔𝑛∈N 𝑥𝑛) 𝑅𝜎 𝑀 .

Exercise 5.5. Prove Lemmas 5.3 and 5.4 by induction on PCF types.

Exercise 5.6. Check the following closure properties of 𝑅nat:
(i) 0 𝑅nat 0;
(ii) if 𝑥 𝑅nat 𝑀 , then 𝑠 (𝑥) 𝑅nat succ 𝑀 , where 𝑠 is the successor map on N⊥ as

in Definition 4.3(vi);
(iii) if 𝑥 𝑅nat 𝑀 , then 𝑝 (𝑥) 𝑅nat pred 𝑀 , where 𝑝 is the predecessor map on N⊥ as

in Definition 4.3(vii);
(iv) if 𝑥 𝑅nat 𝑀 , 𝑦 𝑅nat 𝑁1 and 𝑧 𝑅nat 𝑁2, then 𝑐 (𝑥,𝑦, 𝑧) 𝑅nat ifzero(𝑀, 𝑁1, 𝑁2),

where 𝑐 is the if-zero map on N⊥ as in Definition 4.3(viii).

5.2 Applicative approximation

We will need one more ingredient for proving the fundamental theorem of the logical
relation and (hence) computational adequacy: the applicative approximation relation.

In Lemma 5.2, we showed that if 𝑥 ⊑ 𝑦 and 𝑦 𝑅𝜎 𝑀 , then 𝑥 𝑅𝜎 𝑀 . The applicative
approximation relation may be motivated by the desire to have a similar property of
the logical relation, but for programs, rather than elements of the interpretation. That
is, we introduce a binary relation ⊏∼𝜎 on programs of type 𝜎 and show (Lemma 5.9) that
if 𝑥 𝑅𝜎 𝑀 and𝑀 ⊏∼𝜎 𝑁 , then 𝑥 𝑅𝜎 𝑁 .

Definition 5.7 (Applicative approximation). We define a binary relation ⊏∼𝜎 on
programs of type 𝜎 by induction on types:

(i) 𝑀 ⊏∼nat 𝑁 holds if𝑀 ⇓ 𝑛 implies 𝑁 ⇓ 𝑛 for every natural number 𝑛 ∈ N.
(ii) 𝑀 ⊏∼𝜎⇒𝜏 𝑁 holds if for every program 𝐾 of type 𝜎 we have𝑀 𝐾 ⊏∼𝜏 𝑁 𝐾 .

Note that the applicative approximation relation mirrors the partial orders on N⊥
and the exponentials. But the applicative approximation relation is only a preorder ; it is
reflexive and transitive, but not antisymmetric:

Exercise 5.8. Give examples of programs 𝑀 and 𝑁 such that 𝑀 ⊏∼nat⇒nat 𝑁 and
𝑁 ⊏∼nat⇒nat 𝑀 , but𝑀 ≠ 𝑁 .

Lemma 5.9. If 𝑥 𝑅𝜎 𝑀 and𝑀 ⊏∼𝜎 𝑁 , then 𝑥 𝑅𝜎 𝑁 .

Proof. We proceed by induction on types. For the base type, we assume 𝑥 𝑅nat 𝑀
and 𝑀 ⊏∼nat 𝑁 . Suppose that 𝑥 = 𝑛 for 𝑛 ∈ N; we have to prove 𝑁 ⇓ 𝑛. But 𝑀 ⇓ 𝑛
since 𝑥 𝑅nat 𝑀 and hence, 𝑁 ⇓ 𝑛 because𝑀 ⊏∼nat 𝑁 .
For function types, we assume 𝑓 𝑅𝜎⇒𝜏 𝑀 and 𝑀 ⊏∼𝜎⇒𝜏 𝑁 . Suppose that we have
𝑥 𝑅𝜎 𝐾 ; we have to prove 𝑓 (𝑥) 𝑅𝜏 𝑁 𝐾 . By our assumption that 𝑓 𝑅𝜎⇒𝜏 𝑀 , we get

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

5.3. Proving computational adeqacy 28

𝑓 (𝑥) 𝑅𝜏 𝑀 𝐾 . Moreover, our assumption 𝑀 ⊏∼𝜎⇒𝜏 𝑁 yields 𝑀 𝐾 ⊏∼𝜏 𝑁 𝐾 , so that
𝑓 (𝑥) 𝑅𝜏 𝑁 𝐾 by the induction hypothesis applied at 𝜏 , as desired.

The following lemma has two useful corollaries for proving the fundamental theorem
of the logical relation:

Lemma 5.10. For all programs𝑀 and 𝑁 of type 𝜎 , if𝑀 ⇓ 𝑉 implies 𝑁 ⇓ 𝑉 for every
program 𝑉 : 𝜎 , then𝑀 ⊏∼𝜎 𝑁 .

Exercise 5.11. Prove Lemma 5.10 by induction on types.

Corollary 5.12. For every program𝑀 : 𝜎 ⇒ 𝜎 , it holds that𝑀 (fix𝜎 𝑀) ⊏∼𝜎 fix𝜎 𝑀 .

Proof. By Exercise 5.11 it is enough to establish that 𝑀 (fix𝜎 𝑀) ⇓ 𝑉 implies
fix𝜎 𝑀 ⇓ 𝑉 for every program 𝑉 . But this holds by definition of the big-step
operational semantics.

Corollary 5.13. For every term x : 𝜎 ⊢ 𝑀 : 𝜏 and program 𝑁 : 𝜎 , it holds that
𝑀 [𝑁 /x] ⊏∼𝜏 (𝜆 x : 𝜎 . 𝑀)𝑁 .

Proof. By Lemma 5.10 and the definition of the big-step operational semantics.

Corollary 5.12 allows us to prove that the logical relation is closed under the least
fixed point operation 𝜇 (recall Theorem 3.17):

Lemma 5.14. If 𝑓 𝑅𝜎⇒𝜎 𝑀 , then 𝜇 (𝑓) 𝑅𝜎 fix𝜎 𝑀 .

Proof. Suppose that 𝑓 𝑅𝜎⇒𝜎 𝑀 . Since 𝜇 (𝑓) = ⊔
𝑛∈N 𝑓

𝑛 (⊥), Lemma 5.4 tells us that it
is enough to prove that 𝑓 𝑛 (⊥) 𝑅𝜎 (fix𝜎 𝑀) for every 𝑛 ∈ N. We do so by induction
on 𝑛. The case 𝑛 = 0 is provided by Lemma 5.3. For the inductive case, suppose that
𝑓 𝑛 (⊥) 𝑅𝜎 (fix𝜎 𝑀); we show that 𝑓 𝑛+1(⊥) 𝑅𝜎 (fix𝜎 𝑀). By induction hypothesis
and the assumption that 𝑓 𝑅𝜎⇒𝜎 𝑀 , we see that 𝑓 (𝑓 𝑛 (⊥)) 𝑅𝜎 𝑀 (fix𝜎 𝑀). Hence,
we obtain the desired 𝑓 𝑛+1(⊥) 𝑅𝜎 (fix𝜎 𝑀) by Lemma 5.9 and Corollary 5.12.

5.3 Proving computational adequacy

Finally, we have established enough properties to prove:

Lemma 5.15 (Fundamental theorem of the logical relation). If 𝑀 : 𝜏 is a term in a
context Γ = [x0 : 𝜎0, . . . , x𝑘−1 : 𝜎𝑘−1], then whenever we have programs 𝑁𝑖 : 𝜎𝑖 and
𝑠𝑖 ∈ J𝜎𝑖K such that 𝑠𝑖 𝑅𝜎𝑖 𝑁𝑖 for all 0 ≤ 𝑖 ≤ 𝑘 − 1, it holds that(

J𝑀K(𝑠0, . . . , 𝑠𝑘−1)
)
𝑅𝜏 𝑀 [𝑁0/x0, . . . , 𝑁𝑘−1/x𝑘−1] .

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

29 Chapter 5. Computational adeqacy

Proof. We abbreviate 𝑠0, . . . , 𝑠𝑘−1 as ®𝑠 and 𝑀 [𝑁0/x0, . . . , 𝑁𝑘−1/x𝑘−1] as 𝑀 [®𝑁 /®x]. We
proceed by induction on the structure of the derivations Γ ⊢ 𝑀 : 𝜏 :

• For [x0 : 𝜎0, . . . , x𝑘−1 : 𝜎𝑘−1] ⊢ x𝑖 : 𝜎𝑖 and 𝑠𝑖 𝑅𝜎𝑖 𝑁𝑖 for all 0 ≤ 𝑖 ≤ 𝑘 − 1, we
observe that

Jx𝑖K(®𝑠) = 𝑠𝑖 𝑅𝜎𝑖 𝑁𝑖 = x𝑖 [®𝑁 /®x],
as wished.

• For application, we consider Γ ⊢ 𝑀 : 𝜏 ⇒ 𝜌 and Γ ⊢ 𝐾 : 𝜏 and we have to prove

J𝑀 𝐾K(®𝑠) 𝑅𝜌 (𝑀 𝐾) [®𝑁 /®x] .

Our induction hypothesis yields

J𝑀K(®𝑠) 𝑅𝜏⇒𝜌 𝑀 [®𝑁 /®x] and J𝐾K(®𝑠) 𝑅𝜏 𝐾 [®𝑁 /®x] .

And hence, by definition of 𝑅𝜏⇒𝜌 ,

J𝑀K(®𝑠)
(
J𝐾K(®𝑠)

)
𝑅𝜌 𝑀 [®𝑁 /®x] 𝐾 [®𝑁 /®x],

but this is an unfolded version of what we wanted to prove.
• For 𝜆-abstraction, we consider Γ, y : 𝜏 ⊢ 𝑀 : 𝜌 and we have to prove

J𝜆 y : 𝜏 . 𝑀K(®𝑠) 𝑅𝜏⇒𝜌 (𝜆 y : 𝜏 . 𝑀) [®𝑁 /®x] .

So suppose that we have 𝑡 𝑅𝜏 𝐾 ; we show that(
J𝜆 y : 𝜏 . 𝑀K(®𝑠)

)
(𝑡) 𝑅𝜌

(
(𝜆 y : 𝜏 . 𝑀) [®𝑁 /®x]

)
𝐾.

The left-hand side unfolds to J𝑀K(®𝑠, 𝑡), while the right-hand side unfolds to(
𝜆 y : 𝜏 . 𝑀 [®𝑁 /®x]

)
𝐾 . By Lemma 5.9 and Corollary 5.13, it thus suffices to prove

J𝑀K(®𝑠, 𝑡) 𝑅𝜌 𝑀 [®𝑁 /®x, 𝐾/y],

which holds by induction hypothesis.
• For fix, we consider Γ ⊢ 𝑀 : 𝜏 ⇒ 𝜏 and we have to prove

Jfix𝜏 𝑀K(®𝑠) 𝑅𝜏 (fix𝜏 𝑀) [®𝑁 /®x] .

By definition, Jfix𝜏 𝑀K(®𝑠) = 𝜇
(
J𝑀K(®𝑠)

)
and (fix𝜏 𝑀) [®𝑁 /®x] = fix𝜏 (𝑀 [®𝑁 /®x]),

so by Lemma 5.14, it is enough to prove that J𝑀K(®𝑠) 𝑅𝜏⇒𝜏 𝑀 [®𝑁 /®x]. But this
holds by induction hypothesis.

• Finally, the cases for zero, succ, zero and ifzero follow from Exercise 5.6.

For the special case of the empty context, we obtain:

Corollary 5.16. For every program𝑀 : 𝜎 , it holds that J𝑀K 𝑅𝜎 𝑀 .

By further specialising to the base type and the definition of 𝑅nat, we get:

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

5.4. List of exercises 30

Theorem 5.17 (Computational adequacy). For every program 𝑀 of type nat and
natural number 𝑛 ∈ N, if J𝑀K = 𝑛, then𝑀 ⇓ 𝑛.

We end these notes with an exercise illustrating two uses of computational adequacy:
one on establishing the computational behaviour of a program, and one on using a
domain-theoretic argument to show that a certain program cannot exist.

Exercise 5.18. Consider the following pseudocode:

root : (Nat -> Nat) -> Nat

root M = root’ M 0

root’ : (Nat -> Nat) -> Nat -> Nat

root’ M m = if M 0 == 0

then m

else root’ (shift M) (m + 1)

shift : (Nat -> Nat) -> Nat -> Nat

shift M n = M (n + 1)

(i) Translate the above pseudocode to corresponding programs root, root’ and
shift in PCF.

(ii) Use computational adequacy to prove that for every program𝑀 : nat ⇒ nat
and natural number 𝑛, we have

root 𝑀 ⇓ 𝑛 ⇐⇒ 𝑀 𝑛 ⇓ 0 and ∀𝑘<𝑛
(
𝑀 𝑘 reduces to a non-zero numeral

)
.

That is, root 𝑀 computes the first “root” (or zero) of 𝑀 provided that 𝑀
terminates on all values up to (and including) the root.

(iii) Give an informal argument as to why we can’t drop the condition that 𝑀 𝑘

reduces to a (non-zero) numeral for all 𝑘 ≤ 𝑛.
(iv) Show that there is no program 𝐹 : (nat ⇒ nat) ⇒ nat such that for every

program𝑀 : nat ⇒ nat and natural number 𝑛, we have

𝐹 𝑀 ⇓ 𝑛 ⇐⇒ 𝑛 is the least natural number with𝑀 𝑛 ⇓ 0.

Hint: Consider the𝜔-continuous functions 𝑓 , 𝑔 : N⊥ → N⊥ given by 𝑓 (⊥) := ⊥,
𝑓 (0) := ⊥ and 𝑓 (𝑛 + 1) := 0, and 𝑔(𝑥) = 0 for all 𝑥 ∈ N⊥. Use the observation
that 𝑓 ⊑ 𝑔 to derive a contradiction from the assumption that a program 𝐹

with the above specification exists.

5.4 List of exercises

1. Exercise 5.5: On proving that the logical relation contains the least element is
and is closed under least upper bounds of 𝜔-chains.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

31 Chapter 5. Computational adeqacy

2. Exercise 5.6: On showing that the logical relation is suitably closed under the
basic operations on the type of natural numbers.

3. Exercise 5.8: On a counterexample to antisymmetry of the applicative approxi-
mation relation.

4. Exercise 5.11: On a sufficient big-step condition for the applicative approximation
relation to hold.

5. Exercise 5.18: On computational adequacy and programs finding roots.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

Bibliography

[Abr97] Samson Abramsky. “Game Semantics”.
In: Semantics and Logics of Computation. Ed. by A. Pitts and P. Dybjer.
Cambridge University Press, 1997, pp. 1–32.
doi: 10.1017/CBO9780511526619.002 (cit. on p. 1).

[AJ94] Samson Abramsky and Achim Jung. “Domain theory”.
In: Handbook of Logic in Computer Science.
Ed. by S. Abramsky, Dov M. Gabray, and T. S. E. Maibaum. Vol. 3.
Clarendon Press, 1994, pp. 1–168. Updated online version available at
https://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf

(cit. on pp. 1–2, 12).
[dJon22] Tom de Jong.

“Domain Theory in Constructive and Predicative Univalent Foundations”.
PhD thesis. School of Computer Science, University of Birmingham, 2022.
arXiv: 2301.12405 [cs.LO].
url: https://tdejong.com/writings/phd-thesis.pdf (cit. on p. 2).

[Esc07a] Martín Escardó.
“Domain theory and denotational semantics of functional programming”.
Slides for an advanced course at the Midlands Graduate School (MGS) in
the Foundations of Computing Science. 2007. url: https:
//www.cs.nott.ac.uk/~psznhn/MGS2007/LectureNotes/mgs2007-

dom.pdf (cit. on p. 1).
[Esc07b] Martín Escardó. Seemingly impossible functional programs.

Guest post on Andrej Bauer’s blog. 2007.
url: https://math.andrej.com/2007/09/28/seemingly-impossible-
functional-programs/ (cit. on p. 2).

[GHK+03] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and
D. S. Scott. Continuous Lattices and Domains. Vol. 93.
Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2003. doi: 10.1017/CBO9780511542725
(cit. on pp. 1–2).

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://doi.org/10.1017/CBO9780511526619.002
https://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
https://arxiv.org/abs/2301.12405
https://tdejong.com/writings/phd-thesis.pdf
https://www.cs.nott.ac.uk/~psznhn/MGS2007/LectureNotes/mgs2007-dom.pdf
https://www.cs.nott.ac.uk/~psznhn/MGS2007/LectureNotes/mgs2007-dom.pdf
https://www.cs.nott.ac.uk/~psznhn/MGS2007/LectureNotes/mgs2007-dom.pdf
https://math.andrej.com/2007/09/28/seemingly-impossible-functional-programs/
https://math.andrej.com/2007/09/28/seemingly-impossible-functional-programs/
https://doi.org/10.1017/CBO9780511542725
https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

33 Bibliography

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Vol. 7.
Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1989.
Reprinted with minor corections in 1990; updated web version available at
https://www.paultaylor.eu/stable/prot.pdf (cit. on p. 25).

[Gun92] Carl A. Gunter.
Semantics of Programming Languages: Structures and Techniques.
Foundations of Computing. MIT Press, 1992 (cit. on pp. 2–3).

[Har20] Brendan Hart. “Investigating Properties of PCF in Agda”. Final year MSci
project. School of Computer Science, University of Birmingham, 2020.
url: https://raw.githubusercontent.com/BrendanHart/
Investigating-Properties-of-PCF/master/InvestigatingProperties

OfPCFInAgda.pdf. Agda code available at
https://github.com/BrendanHart/Investigating-Properties-of-PCF

(cit. on p. 2).
[Hyl97] Martin Hyland. “Game Semantics”.

In: Semantics and Logics of Computation. Ed. by A. Pitts and P. Dybjer.
Cambridge University Press, 1997, pp. 131–184.
doi: 10.1017/CBO9780511526619.005 (cit. on p. 1).

[LN15] John Longley and Dag Normann. Higher-Order Computability.
Theory and Applications of Computability. Springer, 2015.
doi: 10.1007/978-3-662-47992-6 (cit. on pp. 1, 3).

[Lon95] John Longley. “Realizability Toposes and Language Semantics”.
PhD thesis. Department of Computer Science, University of Edinburgh,
1995.
url: https://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-332
(cit. on p. 1).

[Mar+10] Simon Marlow et al. Haskell 2010 Language Report. 2010.
url: https://haskell.org/definition/haskell2010.pdf (cit. on p. 3).

[Plo73] G. D. Plotkin. Lambda-definability and logical relations.
Memorandum SAI-RM-4.
School of Artificial Intelligence, University of Edinburgh, 1973.
url: https://homepages.inf.ed.ac.uk/gdp/publications/logical_
relations_1973.pdf (cit. on p. 25).

[Plo77] G. D. Plotkin. “LCF considered as a programming language”.
In: Theoretical Computer Science 5.3 (1977), pp. 223–255.
doi: 10.1016/0304-3975(77)90044-5 (cit. on pp. 1, 3).

[Plo83] Gordon Plotkin. Domains. Course notes known as the Pisa notes. 1983.
url: https://homepages.inf.ed.ac.uk/gdp/publications/Domains_
a4.ps (cit. on pp. 2–3).

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://www.paultaylor.eu/stable/prot.pdf
https://raw.githubusercontent.com/BrendanHart/Investigating-Properties-of-PCF/master/InvestigatingPropertiesOfPCFInAgda.pdf
https://raw.githubusercontent.com/BrendanHart/Investigating-Properties-of-PCF/master/InvestigatingPropertiesOfPCFInAgda.pdf
https://raw.githubusercontent.com/BrendanHart/Investigating-Properties-of-PCF/master/InvestigatingPropertiesOfPCFInAgda.pdf
https://github.com/BrendanHart/Investigating-Properties-of-PCF
https://doi.org/10.1017/CBO9780511526619.005
https://doi.org/10.1007/978-3-662-47992-6
https://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-332
https://haskell.org/definition/haskell2010.pdf
https://homepages.inf.ed.ac.uk/gdp/publications/logical_relations_1973.pdf
https://homepages.inf.ed.ac.uk/gdp/publications/logical_relations_1973.pdf
https://doi.org/10.1016/0304-3975(77)90044-5
https://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps
https://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps
https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

Bibliography 34

[PWF12] Andrew M. Pitts, Glynn Winskel, and Marcelo Fiore. Denotational
Semantics: Lecture Notes for the Computer Science Tripos, Part II. 2012.
url: https://www.cl.cam.ac.uk/teaching/1112/DenotSem/dens-
notes-bw.pdf (cit. on p. 2).

[Rie93] Jon G. Rieke. “Fully abstract translations between functional languages”.
In: Mathematical Structures in Computer Science 3 (1993), pp. 387–415.
doi: 10.1017/S0960129500000293 (cit. on p. 3).

[Sco70] Dana Scott. Outline of a Mathematical Theory of Computation.
Tech. rep. PRG02. Oxford University Computing Laboratory, Nov. 1970.
url: https://www.cs.ox.ac.uk/publications/publication3720-
abstract.html (cit. on p. 1).

[Sco93] Dana S. Scott. “A type-theoretical alternative to ISWIM, CUCH, OWHY”.
In: Theoretical Computer Science 121.1–2 (1993), pp. 411–440.
doi: 10.1016/0304-3975(93)90095-B (cit. on p. 1).

[SS71] Dana Scott and Christopher Strachey.
Towards a Mathematical Semantics for Computer Languages.
Tech. rep. PRG06. Oxford University Computing Laboratory, Aug. 1971.
url: https://www.cs.ox.ac.uk/publications/publication3723-
abstract.html (cit. on p. 1).

[Str06] Thomas Streicher.
Domain-Theoretic Foundations of Functional Programming.
World Scientific, 2006. doi: 10.1142/6284 (cit. on pp. 2–3).

[Str94] Thomas Streicher.
“A universality theorem for PCF with recursive types, parellel-or and ∃”.
In: Mathematical Structures in Computer Science 4.1 (1994), pp. 111–115.
doi: 10.1017/S0960129500000384 (cit. on p. 3).

[Tai67] W. W. Tait. “Intensional interpretations of functionals of finite type I”.
In: The Journal of Symbolic Logic 32.2 (1967), pp. 198–212.
doi: 10.2307/2271658 (cit. on p. 25).

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages.
Ed. by Michael Garey and Albert Meyer. Foundations of Computing.
MIT Press, 1993. doi: 10.7551/mitpress/3054.001.0001 (cit. on p. 2).

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies.

https://www.cl.cam.ac.uk/teaching/1112/DenotSem/dens-notes-bw.pdf
https://www.cl.cam.ac.uk/teaching/1112/DenotSem/dens-notes-bw.pdf
https://doi.org/10.1017/S0960129500000293
https://www.cs.ox.ac.uk/publications/publication3720-abstract.html
https://www.cs.ox.ac.uk/publications/publication3720-abstract.html
https://doi.org/10.1016/0304-3975(93)90095-B
https://www.cs.ox.ac.uk/publications/publication3723-abstract.html
https://www.cs.ox.ac.uk/publications/publication3723-abstract.html
https://doi.org/10.1142/6284
https://doi.org/10.1017/S0960129500000384
https://doi.org/10.2307/2271658
https://doi.org/10.7551/mitpress/3054.001.0001
https://github.com/tomdjong/MGS-domain-theory#fixing-inaccuracies

	Abstract
	Acknowledgements
	Contents
	Introduction
	Aims
	Exercises
	References
	Further reading

	PCF and its operational semantics
	PCF
	Big-step operational semantics
	List of exercises

	Denotational semantics and domain theory
	Towards domain theory
	Basic definitions and the least fixed point theorem
	Products: interpreting contexts
	Exponentials: interpreting function types
	List of exercises

	The Scott model of PCF
	Towards soundness
	Soundness
	List of exercises

	Computational adequacy
	The logical relation
	Applicative approximation
	Proving computational adequacy
	List of exercises

	Bibliography

