
1.1

1.2

1.2.1

1.2.2

1.2.3

1.3

1.3.1

1.3.2

1.3.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.7

1.7.1

1.7.2

1.7.3

1.8

1.9

1.10

Table	of	Contents
Introduction

Getting	Started

Why	JUCE?

Other	Libraries

Resources

C++

IDE

Tools

Resources

Setup

macOS

Windows

Linux

Projucer	vs.	CMake

Create	Project

Debugging

Documentation

Working	with	JUCE

User	Interface

DSP

Misc

JUCE	Modules

Example	Projects

Code	snippets

Testing

Unit	tests

pluginval

Sanitizers

Profile

Benchmark

Continuous	Integration

Travis	CI

AppVeyor

Publish

Wish	List

What's	next

License

1

2

JUCE	Cookbook
WARNING:	WORK	IN	PROGRESS.	SOME	SECTION	MIGHT	NOT	HAVE	ANY	CONTENT	OR	ONLY	A	LIST	WITH
KEYWORDS	FOR	ME	AS	A	TODO	LIST.

A	collection	of	examples	&	workflow	tips	related	to	the	C++	library	JUCE.

Read	Online

Latest	PDF	(direct	download)

GitHub	Repository

Intro

Why	did	I	write	this

I	started	using	JUCE	because	I	wanted	to	make	my	own	audio	plug-ins	and	after	doing	a	little	bit	research	JUCE	seemed	to	be	the	way
to	go.

Over	the	last	couple	of	years,	I	have	collected	all	of	the	resources	related	to	JUCE	that	I	could	find.	The	list	of	bookmarked	pages	&
code	snippets	have	grown	to	quite	a	collection,	so	I	decided	to	publish	them	as	a	cheat	sheet	for	myself	and	everybody	else	who	uses	or
wants	to	use	JUCE.

About	myself

I	started	with	programming	at	the	age	of	10.	C++	was	my	first	and	primary	language	for	the	first	couple	of	years.	I	have	since	then	used
Python,	JS	&	Golang.	I	currently	studying	computer	science	with	a	focus	on	embedded	systems	in	Berlin.

Disclaimer
I'm	definitely	not	an	expert	in	JUCE	or	C++.	I	do	have	a	job	as	a	C++	developer,	but	unfortunately	not	using	JUCE.	So	if	you	find	any
problems	in	my	examples,	feel	free	to	open	an	issue.

Code	license
JUCE	is	published	under	a	dual	license,	it	is	free	for	open	source	&	small	projects.	You	can	find	their	license	for	JUCE	here.

All	of	my	example	code	in	this	repository	is	published	to	the	public	domain	under	the	Creative	Commons	CC0	1.0	license.

Contribute

If	you	find	any	bugs	or	design	problems	in	my	examples	feel	free	to	open	up	an	issue	on	GitHub.

If	you	want	to	add	examples	or	resources	to	this	collection	you	can	either	push	a	pull	request	directly	or	open	up	an	issue	first,	if	you
have	any	questions.	Please	make	sure	that	your	topic	is	not	already	covered	by	one	of	the	official	JUCE	tutorials.	If	you	want	to	add	to
one	of	the	official	tutorials	make	sure	you	include	a	link	to	that	page,	so	we	can	keep	duplicate	code	as	minimal	as	possible.	Maintaining
the	same	tutorial	twice	doesn't	make	much	sense.

Introduction

3

https://tobanteaudio.github.io/juce-cookbook/
https://github.com/tobanteAudio/juce-cookbook/releases/latest/download/JUCE-Cookbook.pdf
https://github.com/tobanteAudio/juce-cookbook
https://juce.com/juce-5-license

Introduction

4

Getting	Started

How	to	run	examples

Each	chapter	can	be	read	individually,	feel	free	to	jump	around	and	find	sections	that	are	of	interest	to	you.

All	of	the	example	projects	included	in	this	repository	are	normal		Projucer		projects,	so	running	them	is	the	same	as	any	other	project
created	with	the		Projucer	

Download	JUCE
Build	the	Projucer

Windows	&	macOS

Open	example	projects		.jucer		file	&	save	to	generate	the	build	files
Open	the	project	in	your	IDE	(Visual	Studio	/	XCode)
Build

Linux

Make	sure	you	add		Projucer		to	your		PATH	.

cd	$PROJECT_ROOT

Projucer	--resave	$PROJECT_NAME.jucer

cd	Builds/LinuxMakefile

make	config=[Release,	Debug]	-j8

Getting	Started

5

Why	JUCE

Features

Long	story	short,	JUCE	is	a	library	which	solves	many	common	problems	a	developer	might	face	during	the	creation	of	any	kind	of
application.	It	hides	away	a	lot	of	complexity,	which	normally	is	not	very	fun	to	work	with.	This	includes	cross	platform	window
creation,	file	I/O,	networking	and	so	on.	JUCE	also	comes	with	a	collection	of	user	interface	widgets,	such	as	buttons,	combo	boxes,
menus,	tabbed	views	and	many	more.	A	complete	list	can	be	found	in	the	JUCE	documentation.		Components		as	they	are	called	in
JUCE	form	the	basis	of	all	user	interaction	in	a	JUCE	application.	The	appearance	is	easily	customizable.	If	the	ones	provided	by	JUCE
don't	fit	your	needs	you	can	also	create	your	own,	just	create	subclass	from	the		Compoent		you	want	to	customize	and	of	you	go.

Audio

Wraps	all	common	plug-in	types.
Basic	DSP	&	Analysis
Vector	instructions	for	x86	and	ARM

Mobil

Easily	use	C++	for	both	Android	&	iOS
Use	native	features

Why	JUCE?

6

https://docs.juce.com/master/index.html#tag_gui

Other	Libraries
Of	course	JUCE	is	not	the	only	library	that	helps	you	build	desktop	&	mobile	applications.	There	are	a	lot	of	open	source	frameworks	&
libraries	that	try	to	achieve	similar	goals.

The	following	list	is	definitely	not	complete,	but	should	give	you	a	good	overview	on	what	is	available	in	the	C++	ecosystem.

QT

If	you	have	been	programming	with	C++	for	a	while,	you	probably	heard	of	Qt.	It's	been	around	since	the	mid	90's	and	is	currently
being	developed	by	The	Qt	Company.

The	goal	of	Qt	is	to	do	it	all.	It	runs	on	almost	every	platform	including	BSDs	and	embedded	platforms.	Because	of	this	the	whole
framework	is	huge.	While	JUCE	is	around	a	couple	of	hundred	megabytes,	Qt	is	more	in	the	range	of	a	couple	gigabytes.

Qt	is	also	not	really	designed	to	help	you	write	audio	applications.	There	is	no	easy	way	to	wrap	a	Qt	application	in	an	AudioUnit	or
VST	plug-in	for	example.

If	your	goal	is	to	write	a	desktop	application	in	the	style	of	Gimp,	FreeCAD	or	Blender	and	you	need	a	lot	of	premade	desktop	widgets,
Qt	is	probably	the	way	to	go.

Qt	is	free	for	open	source	projects,	but	a	license	for	closed	source	application	can	become	pretty	expensive.

SFML

very	simple
intended	for	games

IMGUI

very	simple
intended	for	simple	widgets
works	well	with	SFML

cpp_box

Other	Libraries

7

Online	resources

Tutorials

JUCE	tutorials

Docs	&	Forum

The	two	most	important	resources	when	developing	with	JUCE	are	the	official	JUCE	documentation	&	the	JUCE	forum.

The	API	documentation	for	JUCE	is	very	good	in	my	opinion.	All	of	the	classes	&	functions	are	clearly	documented.

The	same	goes	for	the	forum,	every	time	I	asked	a	question,	it	was	answered	on	the	same	day,	which	compared	to	other	communities	is
simply	awesome.

YouTube

If	you	like	to	learn	using	videos,	you	should	be	able	to	go	from	beginner	to	advanced	using	the	resources	found	mainly	on	YouTube.

ADC	Talks

The	JUCE	team	has	their	own	YouTube	channel,	where	yo	can	find	all	of	the	talks	from	the	yearly		Audio	Developer	Confrence
(ADC)	.	The	content	goes	from	general	audio	development	to	JUCE	basics	to	advanced,	companies	showing	of	their	workflow	using
JUCE	and	much	more.	I	will	link	to	specific	talks	in	later	sections.

The	Audio	Programmer

	The	Audio	Programmer		is	a	YouTube	channel	which	almost	only	does	JUCE	related	development	tutorials.	He	has	videos	for	the
basics	on	getting	up	&	running	with	the	library,	introduction	to		Components	,	an	introduction	to	audio	plug-in	development	and
interviews	with	people	working	in	the	audio	developer	industry.	Each	video	is		~20-60min		long.

If	you	are	new	to	C++	and	audio	this	is	a	create	place	to	start.

If	you	are	already	pretty	good	in	the	language	and	have	a	basic	understanding	of	audio	in	the	digital	world	these	videos	will	probably	be
a	little	to	slow	for	you.

Discord

	The	Audio	Programmer		also	runs	a	Discord	channel	for	everything	related	to	audio	development.	I	hang	around	sometimes	as	well.

Resources

8

https://juce.com/learn/tutorials
https://juce.com/learn/documentation
https://forum.juce.com/
https://juce.com/learn/documentation
https://forum.juce.com/
https://www.youtube.com/channel/UCaF6fKdDrSmPDmiZcl9KLnQ/videos

C++
To	use	all	of	the	latest	JUCE	features	you	should	at	least	use	C++14	as	your	standard.	Any	newer	standard	works	as	well.

Idioms

If	the	list	of	idioms	&	language	features	below	seems	familiar	to	you,	you're	at	a	great	starting	point.	If	not,	I	have	provided	some
resources	below.

Composition
Inheritance

	virtual		/		override		/		final	
CppCon	2017:	Louis	Dionne	“Runtime	Polymorphism:	Back	to	the	Basics”

Lambdas
CppCon	2019:	Arthur	O'Dwyer	“Back	to	Basics:	Lambdas	from	Scratch”

RAII
CppCon	2019:	Arthur	O'Dwyer	“Back	to	Basics:	RAII	and	the	Rule	of	Zero”

Constexpr
CppCon	2015:	Scott	Schurr	“constexpr:	Introduction”
CppCon	2015:	Scott	Schurr	“constexpr:	Applications"

Atomic/Lock
CppCon	2019:	Rainer	Grimm	“Atomics,	Locks,	and	Tasks	(part	1	of	2)”
CppCon	2019:	Rainer	Grimm	“Atomics,	Locks,	and	Tasks	(part	2	of	2)”

Smart	Pointer	(unique	&	shared)
CppCon	2019:	Arthur	O'Dwyer	“Back	to	Basics:	Smart	Pointers”

Exceptions:
CppCon	2019:	Ben	Saks	“Back	to	Basics:	Exception	Handling	and	Exception	Safety”

Where	possible:		noexcept	/	const	
CppCon	2019:	Dan	Saks	“Back	to	Basics:	Const	as	a	Promise”

Container
array
vector
map

C++

9

https://www.youtube.com/watch?v=gVGtNFg4ay0&t=3296s
https://www.youtube.com/watch?v=3jCOwajNch0
https://www.youtube.com/watch?v=7Qgd9B1KuMQ&t=3039s
https://www.youtube.com/watch?v=fZjYCQ8dzTc
https://www.youtube.com/watch?v=qO-9yiAOQqc
https://www.youtube.com/watch?v=o0i2fc0Keo8&list=PL5qoVlA-tv09ykIIPHP9N6vgJaFPnYWCa&index=16
https://www.youtube.com/watch?v=_eaB69ta_ig&list=PL5qoVlA-tv09ykIIPHP9N6vgJaFPnYWCa&index=17
https://www.youtube.com/watch?v=xGDLkt-jBJ4
https://www.youtube.com/watch?v=W6jZKibuJpU
https://www.youtube.com/watch?v=NZtr93iL3R0&t=455s

IDE

Visual	Studio

Only	available	on	Windows
Native		CMake	/	clang-format		support
	clang-tidy		via	plug-in

XCode

Only	available	on	macOS
No	good		clang-format		or		clang-tidy		integration

CLion

Available	on	Linux/macOS/Windows
Native		CMake	/	clang-format	/	clang-tidy		support

Visual	Studio	Code

Available	on	Linux/macOS/Windows
	CMake	/	clang-format	/	clang-tidy		support	via	plug-ins
Has	plug-ins	for	literally	anything
Uses	a	lot	of	memory

IDE

10

Tools

compiler

warnings	are	your	friend
clang	from	source
cross	platform	different	warnings
old	versions	in	distros

clang-format

Automatic	formatting	of	source	code.	A	must	have	in	my	option.	It	doesn't	matter	what	configuration	you	pick,	the	goal	is	for	your
complete	code	base	to	look	as	similar	as	possible.

#	Formats	all	files	with	endings	.h	.hpp	.cpp	inplace	(overrides).

find	.	-iname	'*.h'	-o	-iname	'*.hpp'	-o	-iname	'*.cpp'	|	xargs	clang-format	-i

clang-tidy

Static	analysis	tool.	Takes	a	lot	of	CPU	to	run,	but	finds	a	lot	of	valid	issues.

compiler-explorer

https://godbolt.org

Online	compiler.	Great	for	testing	small	code	snippets.	Does	not	currently	have		JUCE		installed	unfortunately.

coverage
gcc	+	gcov	&	lcov
clang	+	llvm-profdata	&	llvm-cov

Makefile/Scripts
I	usually	wrap	all	the	common	commands	in	a	Makefile.	Just	to	save	some	typing.

Tools

11

https://godbolt.org/

CONFIG	?=	Release

BUILD_DIR	?=	build

GENERATOR	?=	Ninja

.PHONY:	config

config:

				cmake	-S.	-B$(BUILD_DIR)	-G$(GENERATOR)	-DCMAKE_BUILD_TYPE=$(CONFIG)

.PHONY:	build

build:

				cmake	--build	$(BUILD_DIR)	--config	$(CONFIG)

.PHONY:	test

test:

				cd	$(BUILD_DIR)	&&	ctest	-C	$(CONFIG)

.PHONY:	clean

clean:

				rm	-rf	$(BUILD_DIR)

.PHONY:	format

format:

				find	.	-iname	'*.h'	-o	-iname	'*.hpp'	-o	-iname	'*.cpp'	|	xargs	clang-format	-i

Tools

12

Resources

YouTube

Must	watch

ADC	2016:	The	Golden	Rules	of	Audio	Programming,	Pete	Goodliffe
CppCon	2014:	Mike	Acton	"Data-Oriented	Design	and	C++"
CppCon	2015:	Timur	Doumler	“C++	in	the	Audio	Industry”
CppCon	2016:	Timur	Doumler	“Want	fast	C++?	Know	your	hardware!"
CppCon	2017:	Kate	Gregory	“10	Core	Guidelines	You	Need	to	Start	Using	Now”
CppCon	2018:	Jason	Turner	“Applied	Best	Practices”

Conferences

CppCon
c++Now
ACCU
Meeting	Cpp
Pacific++

CppWeekly

Run	by	Jason	Turner.	Each	video	focuses	on	one	language	feature	or	oddity.

Channel

TheCherno

Focuses	on	Game	&	Graphics	programming.	Good	basic	C++	concept	series.

Channel
C++	Series

Books
Scott	Meyers:	Effective	C++

Resources

13

https://www.youtube.com/watch?v=SJXGSJ6Zoro&t=1399s
https://www.youtube.com/watch?v=rX0ItVEVjHc
https://www.youtube.com/watch?v=boPEO2auJj4&t=27s
https://www.youtube.com/watch?v=BP6NxVxDQIs
https://www.youtube.com/watch?v=XkDEzfpdcSg&t=1259s
https://www.youtube.com/watch?v=DHOlsEd0eDE
https://www.youtube.com/user/CppCon/videos
https://www.youtube.com/user/BoostCon/videos
https://www.youtube.com/channel/UCJhay24LTpO1s4bIZxuIqKw/videos
https://www.youtube.com/user/MeetingCPP/videos
https://www.youtube.com/channel/UCrRR5mU5aqvtZAuEGYfdTjw/videos
https://www.youtube.com/user/lefticus1/videos
https://www.youtube.com/user/TheChernoProject/videos
https://www.youtube.com/watch?v=18c3MTX0PK0&list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb

Setup

Project	Types

Official	JUCE:	Choosing	the	right	Projucer	template	for	your	application

Project	Management

If	you	have	multiple	projects	on	your	machine	that	use	JUCE,	you	get	to	a	problem	where	you	update	to	a	new	release	and	now	you
have	to	check	all	of	your	projects	if	they	still	compile	&	work.	Using	git	submodules	solves	this	problem.	You	essentially	have	a	copy
of	JUCE	for	each	of	your	projects	and	the	exact	version	is	saved	in	your	git	history.	Know	updating	to	new	JUCE	version	can	be	done
on	a	per	project	basis.

cd	$PROJECT_ROOT

mkdir	3rd_party

git	submodule	add	https://github.com/juce-framework/JUCE	3rd_party/JUCE

#	optional

cd	3rd_party/JUCE

git	checkout	juce6

Projucer

Update	module	paths	to	new	location
Make	sure	it's	done	for	each	exporter

CMake

Update	path	in		add_subdirectory	

Setup

14

https://docs.juce.com/master/tutorial_choosing_projucer_template.html

macOS

Dependencies

Program Description Source Comment

XCode Compiler	&	IDE AppStore

CMake Build	file	generator brew	/	download Optional

Ninja Build	system	similar	to	Makefiles,	but	faster. brew	/	download Optional

xcpretty Pretty	prints	XCode	command	line	output brew	/	download Optional

brew	install	cmake	ninja-build

gem	install	xcpretty

Install

git	clone	https://github/juce-framework/JUCE.git

cd	JUCE/extras/Projucer/Builds/MacOS

xcodebuild	--project	Projucer.xcodeproj	--configuration	Release	|	xcpretty

Tools

xcpretty

xcodebuild	[flags]	|	xcpretty																							#	Pretty	print

xcodebuild	[flags]	|	tee	xcodebuild.log	|	xcpretty		#	Pretty	print,	but	save	raw	output	to	file.

macOS

15

Windows

Dependencies

Program Description Source Comment

Visual	Studio Compiler	&	IDE Download	from	Microsoft

CMake Build	file	generator Scoop	/	Choco	/	Download Optional

Install

git	clone	https://github/juce-framework/JUCE.git

Open		JUCE/extras/Projucer/Builds/VisualStudio2019/Projucer.sln	
Build	in		Release		mode

Windows

16

Linux

Dependencies

Program Description Comment

x11 Unix	windowing	system.

xinerama Multi	display	extension	to	x11.

LibXext More	extensions	to	x11.

ALSA ALSA	sound	library.

freetype Font	library.

glu1-mesa

webkit2gtk WebKit	Browser	Engine Optional		JUCE_WEB_BROWSER=0	

curl4-openssl CURL	library Optional		JUCE_USE_CURL=0	

CMake Build	file	generator.	Replaces	Projucer Optional

Ninja Build	system	similar	to	Makefiles,	but	faster. Optional

Clang Compiler. Optional

Ubuntu

#	Required

sudo	apt	install	libx11-dev	libxinerama-dev	libxext-dev	libfreetype6-dev	libasound2-dev	libglu1-mesa-dev

#	Optional

sudo	apt	install	libwebkit2gtk-4.0-dev	libcurl4-openssl-dev

ToDo

Arch
Fedora
Raspberry	PI

Install

git	clone	https://github/juce-framework/JUCE.git

cd	JUCE/extras/Projucer/Builds/LinuxMakefile

make	config=Release	-j8

Linux

17

Projucer	vs.	CMake
Prior	to	JUCE	version	6,	the	Projucer	is	the	only	official	way	of	creating	projects.	CMake	support	is	currently	available	on	the		juce6	
preview	branch.

If	you	already	know	how	CMake	works,	this	will	be	your	best	option.	The	preview	branch	is	very	stable.

Projucer

Quick	Setup
Perfect	IDE	integration
Hard	to	link	external	code/libraries

The	Projucer	is	an	application	that	comes	with	the	JUCE	library.	It	handles	the	creation	if	IDE	projects	and	Makefiles	depending	on	the
platform.	All	of	your	configuration	is	stored	in	a		.jucer		file,	which	internally	is	xml.	Compiler	flags,	defines	&	includes	can	be	set	for
each	platform	independently.	Limitations	come	when	you	want	to	link	against	third	party	code.	If	you	get	to	this	point	you	should
probably	switch	to	CMake.

This	is	definitely	the	fasted	way	of	creating	&	running	a	project.

CMake

CMake	support	is	coming	in	JUCE	version	6.	This	will	let	you	simply	write		add_subdirectory(path/to/JUCE)		in	your	CMake
configuration.

A	guide	can	be	found	in	the	JUCE	repository:	github.com/juce-framework/JUCE/tree/juce6/examples/CMake

Example	plug-in	projects	can	be	found	here:

tobanteAudio/juce-6-demo
tobanteAudio/modEQ

Projucer	vs.	CMake

18

https://github.com/juce-framework/JUCE/tree/juce6/examples/CMake
https://github.com/tobanteAudio/juce-6-demo
https://github.com/tobanteAudio/modEQ

Create	Project

Projucer

Offical	JUCE:	Projucer	Part	1:	Getting	started	with	the	Projucer
Offical	JUCE:	Projucer	Part	2:	Manage	your	Projucer	projects

CMake

github.com/juce-framework/JUCE/tree/juce6/examples/CMake

Create	Project

19

https://docs.juce.com/master/tutorial_new_projucer_project.html
https://docs.juce.com/master/tutorial_manage_projucer_project.html
https://github.com/juce-framework/JUCE/tree/juce6/examples/CMake

Debugging
AudioPluginHost

IDE	Integration

Debugging

20

Documentation

Doxygen

Example:	tobanteAudio/modEQ

GitHub	Pages

static	files

readthedocs

gitbook

Documentation

21

https://tobanteaudio.github.io/modEQ/

Working	with	JUCE

22

UI
Basic	Components

Button
Slider
Label
Combobox

Projucer	live	build
Tricks

Animations
LookAndFeel

Colour	IDs
Override	functions
Look	at	JUCE	implementations

Custom	components
Look&Feel	methods

User	Interface

23

DSP
DSP	module

Gain	example
Compressor	example

AudioProcessor
Plug-ins

VST/AU
ValueTree

Parameters
Undo
Generic	Editor
Attachments

DSP

24

Misc

Model	View	Controller

Why
Example
Talk

File	IO

Record/Playback
Sampler

Network	IO

Open	Sound	Control
Arduino

OpenGL

Text	for	3	examples
How	to	use	GLEW

If	not,	how	to	get	function	pointers	using		openglcontext.extensions	.

Misc

25

JUCE	Modules

Third	Party	Modules

Small	and	definitely	not	complete	list	of	Third	party	JUCE	modules.

Name License Description Comment

ATK BSD	3 An	audio	digital	processing	toolbox Haven't	used	yet.

FF	Meters BSD	3 Plug	and	play	component	to	display	LED	meters	for
JUCE	audio	buffers

Using	it	in	modEQ.
Love	it.

Tracktion
Engine GPL/Commercial A	DAW	framework Haven't	used	yet.

Foleys	Video
Engine GPL/Commercial A	video	engine	to	load,	play,	assemble	and	write	video Haven't	used	yet.

If	you	know	of	any	other	JUCE	modules,	fell	free	to	open	an	issue	so	we	cam	add	it	to	the	list.

JUCE	Modules

26

https://github.com/mbrucher/AudioTK
https://github.com/ffAudio/ff_meters
https://github.com/Tracktion/tracktion_engine
https://github.com/ffAudio/foleys_video_engine

Example	Projects

OpenGL

OpenGL	Basic
OpenGL	Model
OpenGL	Shader

Example	Projects

27

https://github.com/tobanteAudio/juce-cookbook/tree/master/examples/opengl/opengl-basic
https://github.com/tobanteAudio/juce-cookbook/tree/master/examples/opengl/opengl-model
https://github.com/tobanteAudio/juce-cookbook/tree/master/examples/opengl/opengl-shader

Code	snippets

Plug-in	recall

Variable		parameters_		is	of	type		juce::AudioProcessorValueTreeState	:

void	YourPluginProcessor::getStateInformation(juce::MemoryBlock&	destData)

{

				juce::MemoryOutputStream	stream(destData,	false);

				parameters_.state.writeToStream(stream);

}

void	YourPluginProcessor::setStateInformation(const	void*	data,	int	sizeInBytes)

{

				juce::ValueTree	tree	=	juce::ValueTree::readFromData(data,	static_cast<size_t>(sizeInBytes));

				jassert(tree.isValid());

				if	(tree.isValid())

				{

								parameters_.state	=	tree;

				}

}

Code	snippets

28

Testing
Testing

JUCE	unit	tests
Catch2
pluginval
Valgrind

Testing

29

Unit	Tests

Catch2

github.com/catchorg/Catch2

Link	against	CMake	shared	code	target
Register	tests
CTest

JUCE	Unit	Tests
API	Documentation
Example
How	to	run	them	in	a	plug-in	build

Unit	tests

30

https://github.com/catchorg/Catch2
https://docs.juce.com/master/classUnitTest.html
https://github.com/juce-framework/JUCE/blob/master/examples/Utilities/UnitTestsDemo.h

pluginval
github.com/Tracktion/pluginval

Checks
Install
GUI
Command	Line

The		pluginval		team	describes	there	software	as:

pluginval	is	a	cross-platform	plugin	validator	and	tester	application.

It	is	designed	to	be	used	by	both	plugin	and	host	developers

to	ensure	stability	and	compatibility	between	plugins	and	hosts.

You	can	run		pluginval		both	in	command-line	or	GUI	mode.	So	it's	very	easy	to	integrate	into	your		CI		pipeline.

Checks

Randomly	automate	UI/parameters
Recall	parameters
Call	audio	callback	with	different	sample	rates	&	buffer	sizes
Checking	for	memory	allocations	on	audio	thread	(macOS	AU	only)
And	more...

Install

The	simplest	way	to	get	pluginval	is	to	download	it	directly	from	GitHub.	See	the	releases	page.

macOS

curl	-L	"https://github.com/Tracktion/pluginval/releases/download/latest_release/pluginval_macOS.zip"	-o	pluginval.zi

p

unzip	pluginval

cp	-r	pluginval.app	~/Applications

Windows

TODO

Linux

curl	-L	"https://github.com/Tracktion/pluginval/releases/download/latest_release/pluginval_linux.zip"	-o	pluginval.zi

p

unzip	pluginval

cp	pluginval	/usr/local/bin

GUI
Should	be	the	same	an	all	platforms:

pluginval

31

https://github.com/Tracktion/pluginval
https://github.com/Tracktion/pluginval/releases

Launch		pluginval	
Scan	for	plug-ins
Set	strictness
Select	plug-in	to	test
Test

Command	Line

macOS

~/Applications/pluginval.app/Contents/MacOS/pluginval	--validate-in-process	--strictness-level	10	--validate	"path/to

/your.vst3"	||	exit	1

Windows

Somehow		pluginval		doesn't	like		powershell	,	so		cmd		should	be	used	or	run	it	in	GUI	mode.

Linux

pluginval	--validate-in-process	--strictness-level	10	--validate	"path/to/your.vst3"	||	exit	1

pluginval

32

Sanitizers

Address

Undefined	Behaviour

Memory

Thread

Sanitizers

33

Profile

Linux

perf

Set		-fno-omit-frame-pointer		for	best	results.

perf	record	-g	path/to/exe

perf	report	-g	'graph,0.5,caller'

Profile

34

Benchmark
	Google	Benchmark	

Generate	test	data
Noise
Sample

Simple	example

Benchmark

35

https://github.com/google/benchmark

Continuous	Integration
Explaining	the	concepts	of		continuous	integration		and		continuous	deployment		is	far	out	of	scope	for	this	document,	but	TLDR:
CI	helps	you	find	problems	in	your	code	faster.	Every	time	you	push	to	your	version	control	server	of	choice	(e.g.	GitHub	or	GitLab)
builds	on	various	platforms	start	up.	For	example	in	my	plug-in	project	modEQ,	I	have	builds	for	Windows,	macOS	&	Linux.	Since	all
of	the	platforms	are	using	different	compilers	I	get	different	warnings	on	each.	Fixing	all	those	little	things	as	you	go	will	save	you	a	lot
of	time	compared	to	developing	exclusively	on	one	platform	and	then	trying	to	release	it	for	a	additional	platform	at	the	end.

There	are	many	CI	services	online	for	free	if	your	project	is	publicly	available	on	GitHub	or	other	platforms.	I	will	focus	on		travis-
ci		and		appveyor		because	those	to	combined	will	cover	all	desktop	platforms	JUCE	supports	(Windows,	macOS	&	Linux).

Continuous	Integration

36

Travis	CI
basics
install	dependencies

Linux	fake	Xorg
platform	matrix
push	to	gh-pages
run	pluginval
full	example

Travis	CI

37

Appveyor

Example	Configuration

JUCE	+	CMake:

version:	0.1.0.{build}

clone_folder:	C:/projects/project

branches:

		only:

				-	master

image:	Visual	Studio	2019

platform:	x64

configuration:

		-	Release

install:

		-	cd	%APPVEYOR_BUILD_FOLDER%

		-	git	submodule	update	--init	--recursive

build:

		parallel:	true

build_script:

		-	cd	C:/projects/project

		-	mkdir	build

		-	cd	build

		-	cmake	-G	"Visual	Studio	16	2019"	..

		-	cmake	--build	.	--config	Release

AppVeyor

38

Publish
GitHub	releases
zip
installer/package

Deploy

docs
app/plug-in

Publish

39

My	wish	list	for	JUCE
Build	system	(solved	in	JUCE	version	6)

CMake
Multiple	targets	in	one	project

Better	Graphics	API	integration
Metal	(coming	in	JUCE	version	6)
Vulkan

Available	in	compiler-explorer
FreeBSD	support	(Working	on	it,	see	tobanteAudio/juce-freebsd-example)

Wish	List

40

https://godbolt.org
https://github.com/tobanteAudio/juce-freebsd-example

What	next
Read	the	docs
Read	the	source
Read	other	app	written	in	JUCE

modEQ
helm
temper

Related	resources

Faust
YouTube

	std::audio	

What's	next

41

License

CREATIVE	COMMONS	CORPORATION	IS	NOT	A	LAW	FIRM	AND	DOES	NOT

					PROVIDE	LEGAL	SERVICES.	DISTRIBUTION	OF	THIS	DOCUMENT	DOES	NOT

					CREATE	AN	ATTORNEY-CLIENT	RELATIONSHIP.	CREATIVE	COMMONS	PROVIDES

					THIS	INFORMATION	ON	AN	"AS-IS"	BASIS.	CREATIVE	COMMONS	MAKES	NO

					WARRANTIES	REGARDING	THE	USE	OF	THIS	DOCUMENT	OR	THE	INFORMATION

					OR	WORKS	PROVIDED	HEREUNDER,	AND	DISCLAIMS	LIABILITY	FOR	DAMAGES

					RESULTING	FROM	THE	USE	OF	THIS	DOCUMENT	OR	THE	INFORMATION	OR

					WORKS	PROVIDED	HEREUNDER.

Statement	of	Purpose

The	laws	of	most	jurisdictions	throughout	the	world	automatically

confer	exclusive	Copyright	and	Related	Rights	(defined	below)	upon	the

creator	and	subsequent	owner(s)	(each	and	all,	an	"owner")	of	an

original	work	of	authorship	and/or	a	database	(each,	a	"Work").

Certain	owners	wish	to	permanently	relinquish	those	rights	to	a	Work

for	the	purpose	of	contributing	to	a	commons	of	creative,	cultural	and

scientific	works	("Commons")	that	the	public	can	reliably	and	without

fear	of	later	claims	of	infringement	build	upon,	modify,	incorporate

in	other	works,	reuse	and	redistribute	as	freely	as	possible	in	any

form	whatsoever	and	for	any	purposes,	including	without	limitation

commercial	purposes.	These	owners	may	contribute	to	the	Commons	to

promote	the	ideal	of	a	free	culture	and	the	further	production	of

creative,	cultural	and	scientific	works,	or	to	gain	reputation	or

greater	distribution	for	their	Work	in	part	through	the	use	and

efforts	of	others.

For	these	and/or	other	purposes	and	motivations,	and	without	any

expectation	of	additional	consideration	or	compensation,	the	person

associating	CC0	with	a	Work	(the	"Affirmer"),	to	the	extent	that	he	or

she	is	an	owner	of	Copyright	and	Related	Rights	in	the	Work,

voluntarily	elects	to	apply	CC0	to	the	Work	and	publicly	distribute

the	Work	under	its	terms,	with	knowledge	of	his	or	her	Copyright	and

Related	Rights	in	the	Work	and	the	meaning	and	intended	legal	effect

of	CC0	on	those	rights.

1.	Copyright	and	Related	Rights.	A	Work	made	available	under	CC0	may

be	protected	by	copyright	and	related	or	neighboring	rights

("Copyright	and	Related	Rights").	Copyright	and	Related	Rights

include,	but	are	not	limited	to,	the	following:

				the	right	to	reproduce,	adapt,	distribute,	perform,	display,

				communicate,	and	translate	a	Work;	moral	rights	retained	by	the

				original	author(s)	and/or	performer(s);	publicity	and	privacy

				rights	pertaining	to	a	person's	image	or	likeness	depicted	in	a

				Work;	rights	protecting	against	unfair	competition	in	regards	to	a

				Work,	subject	to	the	limitations	in	paragraph	4(a),	below;	rights

				protecting	the	extraction,	dissemination,	use	and	reuse	of	data	in

				a	Work;	database	rights	(such	as	those	arising	under	Directive

				96/9/EC	of	the	European	Parliament	and	of	the	Council	of	11	March

				1996	on	the	legal	protection	of	databases,	and	under	any	national

				implementation	thereof,	including	any	amended	or	successor	version

				of	such	directive);	and	other	similar,	equivalent	or	corresponding

				rights	throughout	the	world	based	on	applicable	law	or	treaty,	and

				any	national	implementations	thereof.

2.	Waiver.	To	the	greatest	extent	permitted	by,	but	not	in

contravention	of,	applicable	law,	Affirmer	hereby	overtly,	fully,

permanently,	irrevocably	and	unconditionally	waives,	abandons,	and

surrenders	all	of	Affirmer's	Copyright	and	Related	Rights	and

associated	claims	and	causes	of	action,	whether	now	known	or	unknown

(including	existing	as	well	as	future	claims	and	causes	of	action),	in

the	Work	(i)	in	all	territories	worldwide,	(ii)	for	the	maximum

duration	provided	by	applicable	law	or	treaty	(including	future	time

extensions),	(iii)	in	any	current	or	future	medium	and	for	any	number

License

42

of	copies,	and	(iv)	for	any	purpose	whatsoever,	including	without

limitation	commercial,	advertising	or	promotional	purposes	(the

"Waiver").	Affirmer	makes	the	Waiver	for	the	benefit	of	each	member	of

the	public	at	large	and	to	the	detriment	of	Affirmer's	heirs	and

successors,	fully	intending	that	such	Waiver	shall	not	be	subject	to

revocation,	rescission,	cancellation,	termination,	or	any	other	legal

or	equitable	action	to	disrupt	the	quiet	enjoyment	of	the	Work	by	the

public	as	contemplated	by	Affirmer's	express	Statement	of	Purpose.

3.	Public	License	Fallback.	Should	any	part	of	the	Waiver	for	any

reason	be	judged	legally	invalid	or	ineffective	under	applicable	law,

then	the	Waiver	shall	be	preserved	to	the	maximum	extent	permitted

taking	into	account	Affirmer's	express	Statement	of	Purpose.	In

addition,	to	the	extent	the	Waiver	is	so	judged	Affirmer	hereby	grants

to	each	affected	person	a	royalty-free,	non	transferable,	non

sublicensable,	non	exclusive,	irrevocable	and	unconditional	license	to

exercise	Affirmer's	Copyright	and	Related	Rights	in	the	Work	(i)	in

all	territories	worldwide,	(ii)	for	the	maximum	duration	provided	by

applicable	law	or	treaty	(including	future	time	extensions),	(iii)	in

any	current	or	future	medium	and	for	any	number	of	copies,	and	(iv)

for	any	purpose	whatsoever,	including	without	limitation	commercial,

advertising	or	promotional	purposes	(the	"License").	The	License	shall

be	deemed	effective	as	of	the	date	CC0	was	applied	by	Affirmer	to	the

Work.	Should	any	part	of	the	License	for	any	reason	be	judged	legally

invalid	or	ineffective	under	applicable	law,	such	partial	invalidity

or	ineffectiveness	shall	not	invalidate	the	remainder	of	the	License,

and	in	such	case	Affirmer	hereby	affirms	that	he	or	she	will	not	(i)

exercise	any	of	his	or	her	remaining	Copyright	and	Related	Rights	in

the	Work	or	(ii)	assert	any	associated	claims	and	causes	of	action

with	respect	to	the	Work,	in	either	case	contrary	to	Affirmer's

express	Statement	of	Purpose.

4.	Limitations	and	Disclaimers.

				No	trademark	or	patent	rights	held	by	Affirmer	are	waived,

				abandoned,	surrendered,	licensed	or	otherwise	affected	by	this

				document.		Affirmer	offers	the	Work	as-is	and	makes	no

				representations	or	warranties	of	any	kind	concerning	the	Work,

				express,	implied,	statutory	or	otherwise,	including	without

				limitation	warranties	of	title,	merchantability,	fitness	for	a

				particular	purpose,	non	infringement,	or	the	absence	of	latent	or

				other	defects,	accuracy,	or	the	present	or	absence	of	errors,

				whether	or	not	discoverable,	all	to	the	greatest	extent

				permissible	under	applicable	law.		Affirmer	disclaims

				responsibility	for	clearing	rights	of	other	persons	that	may	apply

				to	the	Work	or	any	use	thereof,	including	without	limitation	any

				person's	Copyright	and	Related	Rights	in	the	Work.	Further,

				Affirmer	disclaims	responsibility	for	obtaining	any	necessary

				consents,	permissions	or	other	rights	required	for	any	use	of	the

				Work.		Affirmer	understands	and	acknowledges	that	Creative	Commons

				is	not	a	party	to	this	document	and	has	no	duty	or	obligation	with

				respect	to	this	CC0	or	use	of	the	Work.

License

43

	Introduction
	Getting Started
	Why JUCE?
	Other Libraries
	Resources

	C++
	IDE
	Tools
	Resources

	Setup
	macOS
	Windows
	Linux
	Projucer vs. CMake
	Create Project
	Debugging
	Documentation

	Working with JUCE
	User Interface
	DSP
	Misc
	JUCE Modules
	Example Projects
	Code snippets

	Testing
	Unit tests
	pluginval
	Sanitizers
	Profile
	Benchmark

	Continuous Integration
	Travis CI
	AppVeyor
	Publish

	Wish List
	What's next
	License

