
Accelerating Haskell Array Codes with Multicore GPUs

Manuel M. T. Chakravarty† Gabriele Keller† Sean Lee‡† Trevor L. McDonell† Vinod Grover‡

†University of New South Wales, Australia

{chak,keller,seanl,tmcdonell}@cse.unsw.edu.au

‡NVIDIA Corporation, USA

{selee,vgrover}@nvidia.com

Abstract
Current GPUs are massively parallel multicore processors opti-
mised for workloads with a large degree of SIMD parallelism.
Good performance requires highly idiomatic programs, whose de-
velopment is work intensive and requires expert knowledge.

To raise the level of abstraction, we propose a domain-specific
high-level language of array computations that captures appropri-
ate idioms in the form of collective array operations. We embed
this purely functional array language in Haskell with an online
code generator for NVIDIA’s CUDA GPGPU programming envi-
ronment. We regard the embedded language’s collective array op-
erations as algorithmic skeletons; our code generator instantiates
CUDA implementations of those skeletons to execute embedded
array programs.

This paper outlines our embedding in Haskell, details the design
and implementation of the dynamic code generator, and reports on
initial benchmark results. These results suggest that we can com-
pete with moderately optimised native CUDA code, while enabling
much simpler source programs.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classification—Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages; D.3.4
[Programming Languages]: Processors—Code generation

General Terms Languages, Performance

Keywords Arrays, Data parallelism, Dynamic compilation, GPGPU,
Haskell, Skeletons

1. Introduction
The current generation of graphical processing units (GPUs) are
massively parallel multicore processors. They are optimised for
workloads with a large degree of SIMD parallelism and good per-
formance depends on highly idiomatic programs with low SIMD
divergence and regular memory-access patterns. Hence, the devel-
opment of general-purpose GPU (GPGPU) programs is work in-
tensive and requires a substantial degree of expert knowledge.

Several researchers proposed to ameliorate the status quo by ei-
ther using a library to compose GPU code or by compiling a subset
of a high-level language to low-level GPU code [1, 6, 19, 22, 24,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAMP’11, January 23, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0486-3/11/01. . . $10.00

25]. Our work is in that same spirit: we propose a domain-specific
high-level language of array computations, called Accelerate, that
captures appropriate idioms in the form of parameterised, collec-
tive array operations. Our choice of operations was informed by
the scan-vector model [11], which is suitable for a wide range of
algorithms, and of which Sengupta et al. demonstrated that these
operations can be efficiently implemented on modern GPUs [30].

We regard Accelerate’s collective array operations as algorith-
mic skeletons that capture a range of GPU programming idioms.
Our dynamic code generator instantiates CUDA implementations
of these skeletons to implement embedded array programs. Dy-
namic code generation can exploit runtime information to optimise
GPU code and enables on-the-fly generation of embedded array
programs by the host program. Our code generator minimises the
overhead of dynamic code generation by caching binaries of pre-
viously compiled skeleton instantiations and by parallelising code
generation, host-to-device data transfers, and GPU kernel loading
and configuration.

In contrast to our earlier prototype of an embedded language
for GPU programming [23], Accelerate programs are not wrapped
in a monad to represent sharing; instead sharing is recovered au-
tomatically (see Section 3.3). Moreover, Accelerate supports rank
polymorphism in the manner of the Repa system [21] and uses a
refined skeleton-based code generator, which we discuss in detail
in the present paper.

In summary, our main contributions are the following:

• An embedded language, Accelerate, of parameterised, collec-
tive array computations that is more expressive than previous
GPGPU proposals for Haskell (Section 2).
• A code generator based on CUDA skeletons of collective array

operations that are instantiated at runtime (Section 3 & 4).
• An execution engine that caches previously compiled skeleton

instances and host-to-device transfers as well as parallelises
code generation, host-to-device data transfers, and GPU kernel
loading and configuration (Section 5).
• Benchmarks assessing runtime code generation overheads and

kernel performance (Section 6)

We discuss related work in Section 7. Our current implementation1

targets CUDA, but the same approach would work for OpenCL.

2. Accelerated array code
In the following, we illustrate Accelerate at two simple examples
after briefly introducing our array types.

1 http://hackage.haskell.org/package/accelerate

http://hackage.haskell.org/package/accelerate

data Z = Z — rank-0
data tail :. head = tail :. head — increase rank by 1

type DIM0 = Z
type DIM1 = DIM0 :. Int
type DIM2 = DIM1 :. Int
type DIM3 = DIM2 :. Int
〈and so on〉

type Array DIM0 e = Scalar e
type Array DIM1 e = Vector e

Figure 1. Types of array shapes and indices.

2.1 Arrays, shapes, and indexing
Parallelism in Accelerate takes the form of collective array opera-
tions over types Array sh e, where sh is the shape and e the el-
ement type of the array. Following the approach taken by the Repa
array library, we represent both the shapes and indices of an array
using an inductive notation of tuples as heterogenous snoc lists [21,
Section 4.1] to enable rank-polymorphic definitions of array func-
tions.

As shown in Figure 1, on both the type-level and the value-
level, we use the constructor Z to represent the shape of a rank-0
array and the infix operator (:.) to increase the rank by adding
a new dimension to the right of the shape. Thus, a rank-3 index
with components x, y and z is written (Z:.x:.y:.z) and has type
(Z:.Int:.Int:.Int).

Overall, an array of type Array (Z:.Int:.Int) Float is a
rank-2 array of single-precision floating point numbers. Figure 1
also defines synonyms for common types: a singleton array of
shape DIM0 represents a scalar value; an array of shape DIM1 is
a vector, and so on. It might appear as if the explicit mentioning
of the type Int for each dimension is redundant. However, as
explained in [21], we need indices over types other than Int for
rank-polymorphic functions that replicate a given array into one or
more additional dimensions or slice a lower-dimensional subarray
out of a larger array.

2.2 Arrays on the host and device
Accelerate is an embedded language (aka internal language) [18]
that distinguishes between vanilla Haskell arrays (in CPU host
memory) and embedded arrays (in GPU device memory) as well as
computations on both flavours of arrays. Embedded array compu-
tations need to be explicitly executed before taking effect; they are
identified by types formed from the type constructor Acc, which
is parameterised by a tuple of one of more arrays that are the re-
sult of the embedded computation. The following function embeds
a Haskell array into an embedded array computation, implying a
host-to-device memory transfer:

use :: (Shape sh, Elt e)
=> Array sh e -> Acc (Array sh e)

The type classes Shape and Elt characterise the types that may
be used as array indices and elements, respectively. We already
discussed the structure of array indices previously. Array elements
can be signed & unsigned integers (8, 16, 32, and 64-bit wide)
and floating point numbers (single & double precision). Moreover,
Char, Bool, and tuples of all those; array indices formed from Z
and (:.) may be used as array elements as well.

In the context of GPU programming, the distinction between
regular arrays of type Array sh e and arrays of the embedded lan-
guage Acc (Array sh e) has the added benefit that it differenti-
ates between arrays allocated in host memory and arrays allocated

in GPU device memory. Consequently, use implies host-to-device
data transfer. Similarly, computations in Acc are executed on the
device, whereas regular Haskell code runs on the host.

2.3 Computing a vector dot product
Consider computing the dot product of two vectors, using standard
Haskell lists:

dotp_list :: [Float] -> [Float] -> Float
dotp_list xs ys = foldl (+) 0 (zipWith (*) xs ys)

The two input vectors are multiplied pointwise and the resulting
products are summed, yielding a scalar result.

Using Accelerate, we implement this computation as follows:

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)

dotp xs ys = let xs’ = use xs
ys’ = use ys

in
fold (+) 0 (zipWith (*) xs’ ys’)

Here fold and zipWith are from Data.Array.Accelerate,
rather than from Data.List. The Accelerate code differs from
the list version in three respects: (1) the result is an Accelerate
computation, indicated by Acc; (2) we lift the two plain vectors xs
and ys into Acc with use; and (3) we use fold instead of foldl.

The first two points are artefacts of lifting the computation
into the embedded language, effectively delaying it. Concerning
point (3), foldl guarantees a left-to-right traversal, whereas fold
leaves the order in which the elements are combined unspecified
and requires an associative binary operation for deterministic exe-
cution.2 This allows for a parallel tree reduction [11, 30].

2.4 Array computations versus scalar expressions
The signatures of the two operations zipWith and fold, used in
dotp, are given in Table 1 (which omits the Shape and Elt con-
text for brevity). They follow the signatures of the correspond-
ing list functions, but with all arrays wrapped in Acc. In addi-
tion to Acc, which marks embedded array computations, we also
have Exp, which marks embedded scalar computations; a term of
type Exp Int represents an embedded expression yielding a result
of type Int and Exp Float -> Exp (Float, Float) charac-
terises an embedded function that takes an argument of type Float
to a result of type (Float, Float). Computations embedded in
Exp are, just like those embedded in Acc, executed on the device.

Compared to regular Haskell, Exp computations are rather lim-
ited, to meet the restrictions on what can be efficiently executed
on GPUs. For example, to avoid excessive SIMD divergence, we
do not support any form of recursion or iteration in Exp, as Acc
computations issue many parallel instances of an Exp computation.

Accelerate distinguishes the types of collective and scalar com-
putations —Acc and Exp— to achieve a stratified language. Col-
lective operations comprise many scalar computations that are ex-
ecuted in parallel, but scalar computations cannot contain collec-
tive operations. This stratification excludes nested, irregular data-
parallelism statically; instead, Accelerate is limited to flat data-
parallelism involving only regular, multi-dimensional arrays.

2.5 Sparse-matrix vector multiplication
As a second example, consider the multiplication of a sparse ma-
trix with a dense vector. Let us represent sparse matrices in the
compressed row format (CSR) [11]—i.e., a matrix consists of an
array of matrix rows that only stores non-zero elements explicitly,

2 Although, floating-point arithmetic is not associative, it is common to
accept the resulting error in parallel applications.

but pairs them with their column index. For example, the matrix 7 0 0
0 0 0
0 2 3

 corresponds to [[(0, 7.0)], [], [(1, 2.0), (2, 3.0)]]

in compressed row representation (note that we start indexing with
0). Since we don’t directly support nested parallelism, we cannot
represent the sparse matrix as an array of arrays. Instead, we use
a second array to store the number of non-zero elements of each
row; we call this a segment descriptor. Now, we can represent our
example matrix as the pair of two flat vectors:

([1,0,2], -- segment descriptor
[(0,7.0),(1,2.0),(2,3.0)]) -- index-value pairs

We use the following type synonyms for sparse matrices:

type Segments = Vector Int
type SparseVector a = Vector (Int, a)
type SparseMatrix a = (Segments, SparseVector a)

Segments is the type of segment descriptors. A SparseVector is
a vector of pairs of index positions and values. We combine both to
represent a sparse matrix.

Now we can define a sparse-matrix vector product as follows:

smvm :: SparseMatrix Float -> Vector Float
-> Acc (Vector Float)

smvm (segd’, smat’) vec’
= let segd = use segd’

(inds, vals) = unzip (use smat’)
vec = use vec’
--
vecVals =
backpermute (extent inds)

(λi -> index1 $ inds ! i)
vec

products = zipWith (*) vecVals vals
in
foldSeg (+) 0 products segd

The function index1 has type Exp Int -> Exp Z:.Int, and
converts an Int expression into an index expression for a rank-1
Accelerate array. The function backpermute extracts those values
from the vec’ that have to be multiplied with the corresponding
non-zero matrix values in smat’. Then, zipWith performs the
multiplications and foldSeg adds all the products that correspond
to the values of one row. See [10] for a more detailed explanation
of the algorithm.

2.6 Accelerate in a nutshell
Scalar Accelerate expressions of type Exp e support Haskell’s
standard arithmetic operations by overloading the standard type
classes Num, Integral, etc, as well as bitwise operations from
Data.Bits. Moreover, they support equality and comparison op-
erators as well as logical connectives using the operators ==*,
/=*, <*, <=*, and so on. (We cannot overload on Bool in stan-
dard Haskell.) We also have conditional expressions of the form
c ? (t, e), which evaluate to t if c yields True; otherwise, to e.
Moreover arr!ix indexes an array and shape queries an array’s
extent. Finally, we have tupling, untupling, and auxiliary functions
to compute with indices.

Table 1 summarises the supported collective array operations.
The operations are largely self-explanatory. The function fold is
shape polymorphic—it requires an argument of at least rank-1. The
two functions replicate and slice are shape polymorphic as
well, but require more complex shape constraints that we charac-
terise with the type families FullShape and SliceShape to stat-

ically track changing array dimensions. For details on the various
forms of shape polymorphism, see [21]. Overall, the collective op-
erations of Accelerate are a multi-dimensional variant of those
underlying the scan-vector model [11, 30]

3. Embedding array computations
Next, we shall illustrate the embedding of Accelerate and its com-
pilation to CUDA code at the dotp example. Subsequent sections
will cover the CUDA backend in more detail. A more detailed dis-
cussion of the frontend is beyond the scope of this paper.

3.1 The surface language
The operations of the embedded language (of both the array and
scalar sub-language) do not directly issue any computations; in-
stead, they build term trees to represent embedded computations.
These trees use higher-order abstract syntax (HOAS) to embed
function-valued scalar expressions as well as typeclass overloading
to reflect arithmetic expressions. For example, the body of the dotp
function, fold (+) 0 (zipWith (*) xs’ ys’), turns into

Fold add (Const 0) (ZipWith mul xs’ ys’)
where

add = λx y -> PrimAdd (〈elided type info〉)
‘PrimApp‘
Tuple (NilTup ‘SnocTup‘ x

‘SnocTup‘ y)
mul = 〈. . . as add, but using PrimMul. . . 〉

This is very much like the approach taken by Elliott [13], Gill
et al. [14], and Mainland and Morrisett [24]. A difference of our
approach is that we maintain full type information of the embedded
language in the term tree (not shown above to favour conciseness)
and use type-preserving transformations in the frontend.

3.2 The structure of the frontend
Figure 2 summarises the overall architecture of Accelerate. It com-
prises a frontend and multiple backends that can target a variety of
architectures. In this paper, we are only concerned with the CUDA-
generating GPU backend; in future work, we plan to tackle optimis-
ing multicore CPU backends exploiting SIMD instructions, back-
ends for OpenCL, and for reconfigurable hardware, such as FPGAs.

The frontend reifies embedded programs using HOAS. After-
wards, it recovers sharing and turns the HOAS representation into a
nameless de Bruijn representation. The frontend uses GADTs [27]
and type families [9, 29] to preserve the embedded program’s
type information. The frontend is also responsible for all backend-
independent program analysis and optimisation—only very little of
the latter is performed in the current implementation. Each backend
maps the nameless (de Bruijn) AST to low-level code for a partic-
ular architecture and performs architecture-specific optimisations.

3.3 Namelessness and sharing
The HOAS representation, while convenient for the human reader,
is awkward for program transformations as it complicates look-
ing under lambdas—i.e., inspecting and manipulating the bodies
of function abstractions. Hence, we convert HOAS terms into a
nameless representation using typed de Bruijn indices (similar to
the dependently typed lambda terms of Altenkirch and Reus [3]).
The type preserving conversion using GADTs is described else-
where [8] and was simultaneously discovered by Atkey et al. [4].

Together with the conversion to a nameless representation, we
recover the sharing introduced by let-bound subterms in the em-
bedded program. For example, consider

let brr = map f arr
in zipWith g brr brr

use :: Array sh e -> Acc (Array sh e) embed array
unit :: Exp e -> Acc (Scalar e) create singleton array
reshape :: Exp sh -> Acc (Array sh’ e) -> Acc (Array sh e) impose a new shape
generate :: Exp sh -> (Exp sh -> Exp e) -> Acc (Array sh e) array from mapping
replicate :: Slice slix replicate. . .

=> Exp slix -> Acc (Array (SliceShape slix) e) . . . across new. . .
-> Acc (Array (FullShape slix) e) . . . dimensions

slice :: Slice slix remove existing. . .
=> Acc (Array (FullShape slix) e) -> Exp slix . . . dimensions
-> Acc (Array (SliceShape slix) e)

map :: (Exp a -> Exp b) -> Acc (Array sh a)-> Acc (Array sh b) map function over array
zipWith :: (Exp a -> Exp b -> Exp c) -> Acc (Array sh a) -> Acc (Array sh b) apply function to. . .

-> Acc (Array sh c) . . . pair of arrays
fold :: (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Array (sh:.Int) a) tree reduction along. . .

-> Acc (Array dim a) . . . innermost dimension
scan{l,r} :: (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Vector a) left-to-right & right-

-> (Acc (Vector a), Acc (Scalar a)) . . . to-left pre-scan
permute :: (Exp a -> Exp a -> Exp a) -> Acc (Array sh’ a) -> (Exp sh -> Exp sh’) Forward. . .

-> Acc (Array sh a) -> Acc (Array sh’ a) . . . permutation
backpermute :: Exp sh’ -> (Exp sh’ -> Exp sh) -> Acc (Array sh a) -> Acc (Array sh’ a) Backwards permutation
〈in addition, we have other flavours of folds and scans as well as segmented versions of array operations, such as foldSeg〉

Table 1. Summary of Accelerate’s core array operations, omitting Shape and Elt class contexts for brevity.

Frontend Multiple Backends First pass Second pass

CUDA.run

LLVM.run

FPGA.run

–
D

at
a

–
–

C
on

tr
ol

 –

Non-parametric array
representation

 → unboxed arrays
 → array of tuples
 ⇒ tuple of arrays

Surface language
↓

Reify & recover sharing
HOAS ⇒ de Bruijn

↓
Optimise (fusion)

Code generation
↓

Compilation
↓

Memoisation

Copy host → device
(asynchronously)

overlap

– GPU –

Parallel execution

– CPU –

Allocate
memory

Link & configure
kernel

Figure 2. Overall structure of Data.Array.Accelerate.

If we don’t take special care, we will translate this expression inef-
ficiently as zipWith g (map f arr) (map f arr). To recover
sharing, we use a variant of Gill’s technique [15]; in contrast to
Gill’s original work, we preserve types and produce a nested term
with minimal flattening, instead of a graph.

Overall, the nameless form of dotp is

Fold add (Const 0) (ZipWith mul xs’ ys’)
where

add = Lam (Lam (Body (
PrimAdd (〈elided type info〉)
‘PrimApp‘
Tuple (NilTup ‘SnocTup‘ (Var (SuccIdx ZeroIdx))

‘SnocTup‘ (Var ZeroIdx)))))
mul = 〈. . . as add, but using PrimMul. . . 〉

(The subterms bound to add and mul here are inline in the term, we
only use a where-clause to improve readablity.) There is no sharing
in this example; so, the only interesting change, with respect to the
HOAS term, is the representation of functions. The Lam constructor
introduces nameless abstractions and Var wraps a de Bruijn index.

At this point, the program may be further optimised by the
frontend (e.g., by applying a fusion transformation), but we leave
significant backend-independent optimisations for future work. As
Figure 2 indicates, the frontend is also responsible for a representa-
tion transformation that is crucial for our support of arrays of n-ary
tuples. This representation transformation has no significant impact
on the dotp example and we defer its discussion until Section 4.

3.4 The structure of the CUDA backend
The right portion of Figure 2 displays the structure of our CUDA
backend. It is based on the idea of parallel programming with algo-
rithmic skeletons [12], where a parallel program is composed from
one or more parameterised skeletons, or templates, encapsulating
specific parallel behaviour. In our case, the various collective array
computations of Accelerate constitute skeletons that are parame-
terised by types and scalar embedded expressions to be injected at
predefined points. The skeletons for collective operations are hand-
tuned to ensure efficient global-memory access and the use of fast
on-chip shared memory for intra-block communication—all this is
needed to ensure good use of a GPU’s hardware resources [26].

__global__ void zipWith
(

TyOut * d_out,
const TyIn1 * d_in1,
const TyIn0 * d_in0,
const int length

){
int ix = blockDim.x * blockIdx.x + threadIdx.x;
int grid = blockDim.x * gridDim.x;

for (; ix < length; ix += grid) {
d_out[ix] = apply(d_in1[ix], d_in0[ix]);

}
}

Listing 1. CUDA skeleton for zipWith in zipWith.inl.

The code for dotp contains two such skeletons, namely fold and
zipWith, which are parameterised by their non-array arguments.

As Figure 2 suggests, the CUDA backend operates in two
passes, implemented as two separate traversals of the nameless
AST: the first pass generates GPU device code, while simultane-
ously transferring the input arrays to the device3; and the second
pass executes the various GPU kernels and manages intermediate
storage on the device. A single Accelerate array computation —of
type Acc a and executed with CUDA.run— will usually involve
the execution of multiple GPU kernels that need to be coordinated.

3.5 Skeletons
Our code generator includes CUDA code implementing individual
skeletons in such a manner that the code generator can instantiate
each skeleton with a set of concrete parameters. As an example of
this process, consider the (somewhat simplified) zipWith skeleton
in Listing 1. The skeleton code implements a CUDA kernel [26],
which encodes the behaviour of each thread for this computational
pattern. The skeleton code fixes zipWith’s parallel algorithmic
structure and contains placeholders for the element types of the
input and output arrays, TyIn0, TyIn1, and TyOut, as well as for
the function, apply, that is applied pairwise to the individual array
elements.

The zipWith() function in Listing 1 is marked as __global__
to indicate that the CUDA C compiler ought to compile it as a
GPU kernel function. Each of many data-parallel GPU threads will
execute the code in the listing simultaneously once the kernel is
invoked. To accommodate arbitrary array sizes on hardware with
varying capabilities, each GPU thread may be required to process
multiple elements; this requirement is met by striding the total
number of threads in each loop iteration of the for loop.

The use of zipWith in dotp requires the elements of the input
and output arrays to be float. The applied function in nameless
AST form is

Lam (Lam (Body (
PrimMul (〈elided type info〉)
‘PrimApp‘
Tuple (NilTup ‘SnocTup‘ (Var (SuccIdx ZeroIdx))

‘SnocTup‘ (Var ZeroIdx)))))

Our code generator translates this into a C function definition and
bundles it with typedefs fixing the input and output types as
follows:

3 GPUs typically have their own high-performance memory, which is sepa-
rate from the host’s main memory. Data transfer is by DMA (direct memory
access) and needs to be explicitly managed via the CUDA runtime [26].

typedef float TyOut;
typedef float TyIn1;
typedef float TyIn0;

static inline __device__
TyOut apply(const TyIn1 x1, const TyIn0 x0)
{

return x1 * x0;
}

#include <zipWith.inl>

As apply is defined as an inline function, the CUDA C compiler,
nvcc —invoked in the “Compilation” stage of the first pass in
Figure 2— will inline it into the zipWith skeleton defined in the
include file zipWith.inl; thus completing skeleton instantiation.

We use a simple memoisation technique to avoid the repeated
compilation of the same skeleton instance. For each use of a col-
lective array operation, we compute a hash value of the nameless
AST and associate that hash value with the binary code generated
by the CUDA C compiler from the instantiated skeleton code. If
we encounter the same computation again, we reuse that binary. In
the dotp example, we will compute a hash value for the typed AST
representing fold (+) 0 and a second hash value for the typed
AST representing zipWith (*). If the Haskell host program exe-
cutes dotp multiple times, our CUDA backend will instantiate and
compile the two skeletons only once. As part of the first pass, only
the copying of arrays from the host to the device will be repeated.
The second pass of the backend proceeds unaltered.

3.6 Invoking CUDA programs from Haskell
As can be seen in Listing 1, CUDA is an extension of the C pro-
gramming language. It includes supports for defining GPU ker-
nels, which is code executed in many data-parallel thread instances
on multiple GPU cores. These threads are arranged in a multi-
dimensional structure of thread blocks and grids—this is what the
blockDim, blockIdx, threadIdx, and gridDim in the listing re-
fer to. The CUDA extension to C also includes support for com-
piling, loading, and executing these kernels as well as for thread
synchronisation, device memory allocation, data transfer between
host and device memory, and similar operations. To use these fea-
tures from Haskell, we developed a binding to the CUDA C API
using Haskell’s foreign function interface. This binding is available
as a separate Haskell library package.4

During the first pass of the CUDA backend, we use the Haskell
CUDA binding to asynchronously transfer all input arrays to the
GPU. These arrays are easily identified while traversing the name-
less AST: whenever we encounter a Use node, we initiate the trans-
fer of the associated array. In dotp, we have two occurrences of
Use, one for each of the two input vectors. We use asynchronous
data transfers to overlap code generation with host-device data
transfer.

Once code generation and array transfer have completed, the
CUDA backend traverses the de Bruijn AST once more. This
second pass evaluates an entire array computation, invoked by
CUDA.run, by executing the generated GPU kernels for each col-
lective array operation of the AST bottom up. It uses functionality
from the Haskell CUDA binding to allocate intermediate arrays on
the device and to invoke kernels on the device passing the correct
arrays, which were either transferred from the host or generated
on the device by a previous kernel execution. Finally, the resulting
arrays are transferred back from the device to the host.

4 http://hackage.haskell.org/package/cuda

http://hackage.haskell.org/package/cuda

3.7 Dynamic versus static code generation
An obvious difference between using Accelerate for general-
purpose GPU programming and using CUDA directly is that, with
Accelerate, GPU kernels are generated dynamically (i.e., at appli-
cation runtime), whereas plain CUDA code will usually be pre-
compiled. The main drawback of dynamically generating and com-
piling GPU kernels is the overhead at execution time — we will
quantify that overhead in Section 6. We mitigate the overhead by
memoising compiled GPU kernels, so that kernels that are invoked
multiple times are only generated and compiled once.

In addition, it is only worthwhile to offload computations to
a GPU if they are compute-intensive. This implies a significant
runtime and usually also the use of significant amounts of input and
output data. Hence, the overhead of dynamic kernel compilation is
often not problematic in the face of long kernel runtimes and long
data-transfer times between host and device memory. Especially, if
those kernels are compiled once and executed on multiple data sets.

Finally, if all else fails, we are confident that we can use Tem-
plate Haskell [31] to support precompiling Accelerate kernels. We
haven’t implemented this yet, but as Template Haskell executes ar-
bitrary Haskell code at compile time, we can invoke the Accelerate
CUDA backend at compile time, too.

Dynamic code generation also has significant advantages, es-
pecially for embedded languages. In particular, the code generator
can query the capabilities of the hardware at the time of code gener-
ation and can optimise the generated program accordingly as well
as specialise the generated code to the available input data. Finally,
the host program can generate embedded programs on-the-fly.

4. Skeleton-based code generation
We will now expand on the general overview of the CUDA backend
from the last section and discuss some of the more sophisticated
features of our code generator. In particular, we will discuss support
for heterogenous tuples as array elements—a feature that CUDA
does not support efficiently. However, before we turn to tuples,
we will have a brief look at generating CUDA C from a scalar
Accelerate expression.

4.1 Scalar code
While instantiating skeletons, the code generator needs to translate
scalar Accelerate expressions to plain C code. For the most part,
this is a straightforward syntactic translation from the de Bruijn
AST to C, where we use the Haskell language-c package5 to
first generate a C AST, which we subsequently pretty print into
a file. However, the following features of the scalar fragment of
Accelerate deserve particular attention: (1) lambda abstractions,
(2) shapes, (3) references to arrays, and (4) tuples. We start by
discussing lambda abstraction, and discuss the other three features
in the following subsections.

Concerning lambda abstractions, we saw previously that from

Lam (Lam (Body (
PrimMul (〈elided type info〉)
‘PrimApp‘
Tuple (NilTup ‘SnocTup‘ (Var (SuccIdx ZeroIdx))

‘SnocTup‘ (Var ZeroIdx)))))

we generate the C function

static inline __device__
TyOut apply(const TyIn1 x1, const TyIn0 x0)
{

return x1 * x0;
}

5 http://hackage.haskell.org/package/language-c

This is possible as the two lambda abstractions are outermost;
hence, we can translate them into a binary C function. Accelerate’s
scalar expression language is first-order in the sense that, although
it includes lambda abstractions, it does not include a general appli-
cation form. In other words, lambda abstractions of scalar expres-
sion can only be used as arguments to collective operations, such as
zipWith. As a consequence, lambda abstractions are always out-
ermost (in type correct programs) and we always translate them to
plain C functions.

4.2 Shapes
As discussed in Section 2.2, Accelerate directly supports collective
operations on multi-dimensional arrays. During code generation,
we map multi-dimensional indices to structs.

typedef int32_t Ix;
typedef Ix DIM1;
typedef struct { Ix a1,a0; } DIM2;
〈and so on〉

As CUDA supports the use of C++ features, such as templates and
overloading, we simplify code generation by overloading functions
operating on indices for the various index types—i.e., we have the
following families of functions:

int dim(DIMn sh);
int size(DIMn sh);
Ix toIndex(DIMn sh, DIMn ix); // index into row-

// major format
DIMn fromIndex(DIMn sh, Ix ix); // invert ‘toIndex’

The major advantage of this approach is that the CUDA skeletons
are ad-hoc polymorphic; i.e., we have a single skeleton that during
instantiation is specialised to a particular array element type and
dimensionality.

4.3 Array references in scalar code
Accelerate includes two scalar operations that receive an array-
valued argument, namely indexing (!) and determining the shape
of an array. They are, for example, used in smvm from Section 2.5.
Specifically, this code includes the following use of backpermute:

backpermute (shape inds)
(λi -> index1 $ inds!i)
vec

Here the array computation inds :: Acc (Array DIM1 Float)
is used in the first and second argument of backpermute. In the
code for smvm, inds is a previously let-bound variable. If instead,
collective array operations would have been used in place of inds
in the scalar function λi -> index1 $ inds!i, we would lift it
out of the scalar function and let bind it. After all, we obviously
don’t want to execute an arbitrarily complex array computation
once for every invocation of the scalar function. In fact, CUDA
would not permit us to do that as the scalar function will turn into
GPU kernel code, which cannot include further nested parallelism.

Nevertheless, even when inds is a let-bound variable, skeleton-
based code generation is not straight forward. The prototype of the
CUDA C code for the backpermute skeleton is as follows:

__global__ void backpermute (ArrOut d_out,
const ArrIn0 d_in0,
const DimOut shOut,
const DimIn0 shIn0);

It has a fixed set of arguments: the output and input array as well
as their shapes. To access inds inside the skeleton code after it
has been instantiated with λi -> index1 $ inds!i, we would
need to add inds as a new array-valued argument to the prototype

http://hackage.haskell.org/package/language-c

of backpermute. This is difficult to realise in our approach as the
generated code simply includes the skeleton definitions using a C
pre-processor include directive. We never rewrite skeleton code
dynamically.

Fortunately, texture references —a CUDA feature that comes
from its graphics heritage— enable an alternative solution. We can
define textures (which are effectively read-only arrays) as global
tables on a per skeleton instantiation basis and access them with
the CUDA operation tex1Dfetch(). For backpermute in smvm,
our code generator produces the following instantiation:

texture<int32_t, 1> tex0;
...
typedef DIM1 DimOut;
typedef DIM1 DimIn0;
static inline __device__
DimIn0 project(const DimOut x0)
{

DimIn0 r = tex1Dfetch(tex0, x0);
return r;

}
#include <backpermute.inl>

Here tex0 represents the texture storing the contents of inds
and λi -> index1 $ inds!i is implemented by the function
project, which is used at the appropriate place in the CUDA
skeleton code for backpermute defined in backpermute.inl.
(We omit the CUDA code for the backpermute skeleton due to
space constraints.)

Another important reason for using texture references is that
skeletons, such as backpermute, allow unconstrained indexing
patterns, which will usually not follow CUDA’s requirements for
coalesced and aligned access to global memory. Global memory
access can then incur severe performance penalties, whereas tex-
ture access is cached, and hence, may be more efficient in these
circumstances [26].

4.4 Arrays of tuples
Accelerate arrays of primitive types, such as Float and Int,
are easily represented in CUDA, using the corresponding float-
ing point and integral types. More interesting are arrays of tuples.
A naı̈ve implementation of tuples in CUDA might use arrays of
struct types—i.e., we might consider representing values of type
Array DIM1 (Int, Float) in CUDA by values of type

typedef struct {int a; float b;} arrayIntFloat[];

This representation is in general not efficient as it easily violates the
strict memory access rules imposed on CUDA devices, decreasing
effective bandwidth by as much as an order of magnitude [26].

Non-parametric. To avoid this inefficiency, Accelerate uses a
non-parametric array representation: arrays of tuples are repre-
sented as tuples of arrays in CUDA. For example, values of type
Array DIM1 (Int, Float) are represented by values of type

typedef struct {int a[]; float b[];} arrayIntFloat;

By virtue of this non-parametric array representation, Accelerate
(1) maintains global memory access coalescing rules and (2) in
some cases avoids redundant reads of elements that are never used.

Getters and setters. While we want to represent arrays of tuples
as tuples of arrays, we would still like the convenience of con-
ventional tuples for scalars. Moreover, the CUDA skeleton code
needs to abstract over array element types; otherwise, we would
need large families of alike skeletons, one for each combination of
argument types.

To abstract over the array representation in CUDA skeletons,
we use getter and setter functions to read and write array elements.

These getter and setter functions are appropriately defined by the
code generator when it generates a skeleton instance. As an exam-
ple, consider this slightly contrived function:

samxpy :: Acc (Vector (Float, Float))
-> Acc (Vector Float)
-> Acc (Vector Float)

samxpy = zipWith (λx y -> 1.5 * uncurry min x + y)

The Haskell idiom uncurry min implements a minimum function
on pairs. Overall, given a vector of pairs and a simple vector,
samxpy elementwise multiplies the minimum of the pair by a
constant and adds it to the corresponding element from the second
array.

In this example, the first argument to samxpy will be repre-
sented by a pair of two float arrays and we need an appropriate
getter function to read array elements from that array. During skele-
ton instantiation, our code generator generates the following getter
function:

typedef struct { float a1; float a0; } TyIn1;
typedef struct { float* a1; float* a0; } ArrIn1;

static inline __device__
TyIn1 get1(const ArrIn1 d_in1, const Ix idx)
{

TyIn1 x = { d_in1.a1[idx], d_in1.a0[idx] };
return x;

}

In order to make use of this getter, we need to generalise the
zipWith skeleton from Listing 1. More precisely, the body of the
for loops needs to change from

d_out[ix] = apply(d_in1[ix], d_in0[ix]);

to

set(d_out, ix, apply(get1(d_in1, ix),
get0(d_in0, ix)));

which uses get1 to access the elements of the first array—the
getter get0 and setter set are trivial as the second argument of
samxpy and its result are simple arrays of floats. Setter and getter
functions are inlined by the CUDA C compiler, eliminating any
runtime overhead due to the parameterisation.

The code generator generates the following code for the func-
tion body 1.5 * uncurry min x + y:

static inline __device__
TyOut apply(const TyIn1 x1, const TyIn0 x0)
{

return (float) 1.5 * fminf(x1.a1, x1.a0) + x0;
}

5. Executing Accelerate computations
To complete the discussion of the CUDA backend, we will now
have a closer look at those items of the right-hand side of Figure 2
that surround the actual code generation. In particular, we will
cover (1) the management of the CUDA backend execution-state,
(2) the extension of the execution state by host-to-device memory
transfer and code generation, and finally (3) the actual execution of
of an Accelerate computation on the host and device.

In Figure 2, these three items correspond to (1) the CUDA.run
function, (2) the first pass, and (3) the second pass. We shall discuss
each in turn.

5.1 CUDA.run and the execution state
The CUDA backend provides a single point of entry, which encap-
sulates the entire process of compiling and evaluating an embedded
array program denoted in the Accelerate language. It is the function

CUDA.run :: Arrays a => Acc a -> a

Internally, running an Accelerate computation in the CUDA back-
end utilises the StateT monad6 stacked over IO. This is necessary
to use the Haskell foreign function interface (FFI) to communicate
with the CUDA runtime, maintain the CUDA environment’s device
context, and to keep track of a range of internal resources that we
discuss in the following subsections.

Nevertheless, that we are under the hood manipulating CUDA
through the FFI and that we need to maintain internal state should
not distract from the property that CUDA.run is a pure function at
the user-level Accelerate API. In fact, Accelerate provides an al-
ternative Interpreter.run implemented as a purely functional
interpreter. We consider Interpreter.run as an executable spec-
ification of the denotational semantics of any Accelerate backend
and use it to validate accelerated backends, such as CUDA.run.

5.2 First pass
In essence, the first pass (c.f. Figure 2) over the de Bruijn AST
of a particular array computation is about setting up the execution
environment; to this end, we need to ensure that (a) all data needed
for evaluation is available on the device and (b) all GPU kernels
needed to execute the involved collective operations are available as
CUDA binaries. As both tasks can be time consuming, our backend
overlaps data transfer and code generation as far as possible.

5.2.1 Data transfer & garbage collection
To determine the arrays whose contents need to be transferred
from the host to the device, the CUDA backend extracts all Use
subterms during the bottom-up sweep of the first pass. As part of
the execution state, the CUDA backend maintains a hash table —
we call it the memory table— that associates the host array with
a reference to the device memory area that holds the copied data
(once the asynchronous data transfer has been completed).

The second pass will use the memory table to obtain the appro-
priate device memory reference to provide as input data to the GPU
kernels upon invocation. Moreover, as host-device data transfers
are expensive, given the relatively high latency and low bandwidth
of the PCI-E bus, we also utilise the memory table to minimise data
transfer. Consider the following example:

square :: (Elt e, IsNum e, Shape dim)
=> Array dim e -> Acc (Array dim e)

square xs = zipWith (*) (use xs) (use xs)

Here we use a single array twice. However, device arrays can be
safely shared because our skeletons do not mutate data, so we use
the memory table to ensure xs is transferred only once.

Furthermore, the memory table uses a reference counting
scheme that facilitates an efficient use of device memory. Addi-
tional Use occurrences simply increase the reference count of the
associated device memory. When the array is consumed as input to
a kernel computation, we decrement the reference count and free
the device array once the reference count drops to zero.

5.2.2 Compilation & code memoisation
In unison with the AST traversal that extracts all Use subterms to
initiate data transfers, the CUDA backend initiates code generation

6 For details on StateT, see http://hackage.haskell.org/package/
monads-fd

for each collective array operation it encounters. For each collec-
tive operation, skeleton instantiation and CUDA code generation
proceeds as described in Section 4. After the CUDA code is gener-
ated, it is compiled with the external nvcc tool-chain to produce a
CUDA binary for the instantiated skeleton.

The CUDA-backend execution state includes a second hash ta-
ble —the kernel table— that associates a CUDA binary with the
skeleton instantiation whose computation that binary implements.
More precisely, CUDA binaries are keyed on a skeleton and the
parameters of its instantiation—they are not keyed on the specific
AST node representing that skeleton instantiation. As a result, we
can easily reuse a binary when the same skeleton instantiation is
required again, whether that is as the same Accelerate computation
applied to a different set of input arrays, or within an entirely differ-
ent computation. For example, instantiations such as fold (+) 0
are very common, and it would be wasteful to dynamically generate
the same code multiple times.

As with data transfer, compilation of the generated CUDA code
proceeds asynchronously. Linking of compiled code is deferred
until it is needed during execution in the second pass.

5.3 Second pass
The second pass implements an expression evaluator for array
computations. Traversing the de Bruijn AST bottom-up, for each
node it distinguishes between three cases:

1. If it is a Use node, the evaluator refers to the memory table to
obtain a reference to the device memory holding the array data.

2. If it is a non-skeleton node (i.e., a let-binding, shape conversion,
or similar), the evaluator executes it directly, by adjusting the
environment or similar as required.

3. If it is a skeleton node, the evaluator refers to the kernel table
to obtain the corresponding CUDA binary. It then allocates
device memory to hold the result of skeleton evaluation, and
finally invokes the one or more GPU kernels that implement
the skeleton.

In summary, the second pass interleaves host-side evaluation and
the invocation of GPU kernels, while keeping track of device mem-
ory, allocating intermediates, and releasing device arrays once no
longer required (their reference count drops to zero).

5.3.1 Launch configuration & thread occupancy
As briefly mentioned in Section 3.6, GPU kernels are executed by
a multi-dimensional hierarchy of threads. In particular, they are
grouped into thread blocks, which are distributed over the avail-
able streaming multiprocessors. Unlike a CPU core, a GPU multi-
processor has no branch prediction and no speculative execution. In
exchange they are capable of executing hundreds of threads concur-
rently; in particular, they execute small groups of threads —called
warps— concurrently and by executing other warps when one warp
is paused or stalled they can keep the ALUs busy. The ratio of active
warps (i.e., warps that could run) to the maximum possible number
of active warps is called occupancy.

Higher occupancy does not always equate to higher perfor-
mance, but low occupancy always interferes with the ability to
hide memory and instruction latency, resulting in suboptimal per-
formance. Several factors influence the configuration required for
maximum possible occupancy, but once a kernel has been compiled
and its resource usage known, we can calculate an ideal launch con-
figuration. Our CUDA backend does this for every kernel and it
additionally limits the number of thread blocks per multiprocessor
to that which can be physically resident, to make optimal use of
physical resources which vary from GPU to GPU. Occupancy cal-
culations for the dotp kernels are shown in Table 2.

http://hackage.haskell.org/package/monads-fd
http://hackage.haskell.org/package/monads-fd

Compute CapabilityCompute CapabilityCompute Capability

1.0, 1.1 1.2, 1.3 2.0

zipWith (!)

fold (+) 0

96 128 192
128 128 256

Table 2. Optimum thread block size for the dotp kernels for dif-
ferent compute capabilities, and therefore hardware resources.

5.3.2 Kernel execution
The second pass traverses the de Bruijn AST in depth-first order.
Our current implementation executes kernels on a single GPU, but
the design is amenable to executing these multiple subtrees concur-
rently on separate GPUs, as is available in some NVIDIA Tesla
configurations. Accelerate’s collective operations have a purely
functional semantics; as a result, such concurrent expression eval-
uation is always sound.

To prepare a single GPU kernel for execution —of which some
collective operations comprise more than one— the array compu-
tation evaluator needs to do the following:

• Allocate device memory for the kernel result. The extent of
kernel results may depend on the results of previous kernels,
so allocation of intermediate storage needs to be dynamic.
• Link the CUDA binary implementing the kernel. As mentioned

in Section 5.2.2, the first pass initiates both the data transfer of
input arrays as well as the compilation of CUDA code asyn-
chronously. Accordingly, the evaluator may need to wait until
all inputs and the binary code for the kernel are available. The
CUDA binary includes information about all resource require-
ments, which we use to determine the optimal configuration for
the current architecture as discussed in the previous subsection.
• Invoke the CUDA runtime system. Using our Haskell binding

mentioned in Section 3.6, we construct the launch configuration
and function call stack, as well as bind references to free array
variables represented as textures (c.f. Section 4.3).

GPU kernels execute asynchronously; hence, the evaluator can
immediately begin to set up the next stage of the computation. If
the result of an asynchronously executing kernel is needed before
the kernel completes, the evaluator will block before invoking the
kernel depending on that result.

6. Evaluation
In this section, we discuss the performance of some simple Accel-
erate programs and identify several areas for future improvement.
Benchmarks were conducted on a single Tesla T10 processor (com-
pute capability 1.3, 30 × 1.3GHz) backed by two quad-core Xeon
E5405 CPUs (64-bit, 2GHz, 8GB RAM) running GNU/Linux.

6.1 Runtime overheads
Runtime code generation, kernel loading, data transfer, and so on
can lead to a serious overhead for GPU computations. Our CUDA
backend attempts to minimise these overheads, through caching
and parallelisation, but we start by having a look at the worst case
overheads in this subsection. Thereafter, we will focus exclusively
on the execution time of the generated kernels.

Data transfer. Communication with the GPU is limited by the
relatively narrow PCI-E bus. It dominates the runtime of computa-
tionally simple operations: for a vector dot product of arrays of 18
million floats, the data transfer takes approximately 20ms per array,
whereas the actual computation time is 3.5ms. Although the trans-
fer times dominate, off-loading can still be worthwhile. Using the

Operation No. kernels Code
Generation (ms)

Compilation
(ms)

dotp
smvm
black-scholes

2 0.807 651
6 2.75 742
1 44.3 1344

Table 3. Execution time for code generation and compilation.
Only the first invocation of a skeleton will incur these overheads.

0

1,000

2,000

3,000

4,000

2 4 6 8 10 12 14 16 18
199.62

392.74
590.02

784.61
984.48

1181.73
1381.47

1578.05
1779.62

400.42

780.06

1184.19

1554.62

1951.39

2340.74

2747.68

3120.16

3505.89

Dot Product

T
im

e
 (
μs

e
c
)

Number of Elements (million)

Accelerate CUBLAS

0.1

1

10

2 4 6 8 10 12 14 16 18

0.20

0.39

0.59

0.78
0.98

1.18
1.38

1.58
1.78

0.40

0.78

1.18

1.55
1.95

2.34
2.75

3.12
3.51

Dot Product

T
im

e
 (
m

s)
Number of elements (million)

Accelerate CUBLAS

Figure 3. Kernel execution time for a dot product.

high-performance vector package,7 a single-core CPU implemen-
tation of the same computation takes 71.3ms for 18 million floats.

Code generation & compilation. For the three benchmarks dis-
cussed in the following, Table 3 displays the time needed by our
CUDA backend for code generation as well as the time required by
the NVIDIA CUDA compiler to generate a binary, where our back-
end minimises compilation time by executing several instances of
the external CUDA compiler nvcc concurrently. The inflated times
for black-scholes are due to the lack of sharing amongst scalar
terms, which we will discuss later. It is important to remember that
only the first invocation of a skeleton will incur these overheads;
subsequent invocations use the cached binary.

6.2 Dot product
Figure 3 compares the computation of a dot product by the Accel-
erate CUDA backend with the CUBLAS library, a hand-written im-
plementation of the Basic Linear Algebra Subprograms in CUDA
by NVIDIA.

Accelerate takes almost precisely twice as long as CUBLAS,
because CUBLAS implements the dot product as a single kernel.
Accelerate uses two kernels: one for zipWith (*) and one for
fold (+) 0. Consequently, it also needs to store this intermedi-
ate result in global memory on the device. The second kernel then
reloads this intermediate array, which accounts for the additional
overhead in his computationally simple, bandwidth-bound opera-
tion. To eliminate this overhead, Accelerate supposes to support
automatic fusion of adjacent kernels; we leave this to future work.

6.3 Black-Scholes option pricing
The Black-Scholes algorithm is a partial differential equation for
modelling the evolution of a stock option price under certain as-
sumptions. Figure 4 compares the execution time for Accelerate
with that of a reference implementation from NVIDIA’s CUDA

7 http://hackage.haskell.org/package/vector

http://hackage.haskell.org/package/vector

9

2217.18
2936.9

15960.5

51786.8

9,000,000 Options

0

15000

30000

45000

60000

1 2 3 4 5 6 7 8 9
249.824 498.176 799.232 988.096 1232.61 1481.18 1791.07 1986.27 2217.18
335.68 661.472 984.416 1313.41 1636.16 1961.25 2320 2609.38 2936.91790.88

3559.55
5333.92

7105.34
8874.75

10648.4
12417.5

14192.9
15960.5

5820.83

11555

17315.3

23063.2

28811.8

34544.5

40304.8

46132

51786.8

Black-Scholes

Ti
m

e
(μ

se
c)

Number of Options (million)
Accelerate Accelerate with Sharing on CND
Accelerate with Sharing on CND and D CUDA SDK

0.1

1

10

100

1 2 3 4 5 6 7 8 9

0.34

0.66
0.98

1.31
1.64

1.96 2.32 2.61 2.94

1.79

3.56
5.33

7.11
8.87

10.65 12.42 14.19 15.96

0.25

0.498

0.799
0.988

1.233
1.481

1.791 1.986 2.217

5.82

11.56
17.32

23.06
28.81

34.54 40.30 46.13 51.79

Black-Scholes Option Pricing

Ti
m

e
(m

s)

Number of options (million)

Accelerate (w/o sharing) CUDA SDK
Accelerate (sharing cnd’) Accelerate (sharing cnd’ and d)

Figure 4. Kernel execution time of Black-Scholes option pricing,
using varying amounts of sharing of sub-expressions.

SDK. The three graphs for Accelerate demonstrate the impact of
various amounts of sub-expression sharing. From the benchmark,
the following computes a cumulative normal distribution:

cnd :: Exp Float -> Exp Float
cnd d =

let poly = horner coeff
k = 1.0 / (1.0 + 0.2316419 * abs d)
cnd’ = rsqrt2 * exp (-0.5*d*d) * poly k

in
d >* 0 ? (1 - cnd’, cnd’)

The conditional expression d >* 0 ? (1 - cnd’, cnd’) re-
sults in a branch that only introduces the predicated execution of
a small number of extra instructions if the computation of cnd’ is
shared between the two occurrences of that variable. Without shar-
ing, the value of cnd’ is computed twice, and worse, the growing
number of predicated instructions leads to a large penalty on the
SIMD architecture of a GPU.

Figure 4 gives three flavours of the Accelerate implementation:
(1) without any sharing, (2) sharing only cnd’, and (3) sharing
cnd’ and the argument d, used repeatedly within cnd. Flavour (2)
avoids divergent branching in the conditional expression while
flavour (3) additionally avoids the re-computation of d. The large
discrepancy in runtime demonstrates the impact of differences in
instruction count (2573 vs. 501) and of warp divergence, which
serialises portions of the execution.

The currently released version of Accelerate recovers no shar-
ing. However, we are presently completing the implementation of a
variant of Gill [15]’s observable sharing—his paper also discusses
the issue of sharing in embedded languages in greater detail.

6.4 Sparse-matrix vector multiplication
Figure 5 compares the sparse-matrix vector multiplication from
Section 2.5 with the high-performance CUSP library [5]; a special
purpose library for sparse-matrix operations, providing highly op-
timised algorithms that exploit properties in the layout of the non-
zero elements. Using a 14 matrix corpus derived from a variety of
application domains [34], we compare against several of the hand-
optimised CUSP algorithms most similar to our implementation.

The COO format stores each non-zero element as a triple of
row and column coordinate together with the data, with the kernel
exhibiting complete memory access coalescing so is largely insen-
sitive to irregularity in the underlying structure. The CSR (scalar)

Accelerate Kernel Execution Time (µs)Accelerate Kernel Execution Time (µs)Accelerate Kernel Execution Time (µs)Accelerate Kernel Execution Time (µs)Accelerate Kernel Execution Time (µs)Accelerate Kernel Execution Time (µs)
backpermute fold_segmented zipWith inclusive_scan exclusive_update Total

Dense
Protein
FEM/Spheres
FEM/Cantilever
Wind Tunnel
FEM/Harbour
QCD
FEM/Ship
Economics
Epidemiology
FEM/Accelerator
Circuit
Webbase
LP

1584.54 256.256 487.616 14.24 4 2,347
1064.26 31350.5 327.456 37.664 11.776 32,791.656
1516.16 509.888 447.968 60.544 22.048 2,556.608
1071.84 373.792 300.704 52.352 20.224 1,818.912
2781.57 1208.38 869.152 127.392 52.448 5,038.942
1143.07 34737 350.656 45.216 13.952 36,290
1066.88 28961.7 284 44.96 15.904 30,373
1979.84 807.296 584 89.792 38.752 3,499.68
892.928 1137.63 197.792 118.72 54.688 2,401.758
1000.45 2882.66 309.6 273.728 134.208 4,600.646
829.504 648 202.048 81.152 33.792 1,794.496
527.904 943.04 149.696 105.024 45.952 1,771.616
1630.56 5513.7 463.36 498.048 254.464 8,360.132
6060.61 1623.58 1668.67 15.008 4.544 9,372

Kernel Execution Time (µs)Kernel Execution Time (µs)Kernel Execution Time (µs)Kernel Execution Time (µs)Kernel Execution Time (µs)Kernel Execution Time (µs)Kernel Execution Time (µs)Kernel Execution Time (µs)Kernel Execution Time (µs)Kernel Execution Time (µs)Kernel Execution Time (µs)Kernel Execution Time (µs)Kernel Execution Time (µs)
CachedCachedCachedCachedCachedCached UncachedUncachedUncachedUncachedUncachedUncached

Accelerate COO CSR (scalar) CSR (vector) DIA ELL HYB COO CSR (scalar) CSR (vector) DIA ELL HYB
Dense
Protein
FEM/Spheres
FEM/Cantilever
Wind Tunnel
FEM/Harbour
QCD
FEM/Ship
Economics
Epidemiology
FEM/Accelerator
Circuit
Webbase
LP

2,347 1,338.77325 10,750.87425 552.55025 2,515.51725 2,147.425 1,352.9435
32,791.656 1,550.8445 5,195.43825 641.12825 876.86925 1,020.89825
2,556.608 2,073.1975 6,333.4125 952.1115 778.443 768.073
1,818.912 1,436.1385 4,424.49325 669.29125 699.42525 634.055 1,024.033
5,038.942 4,060.211 11,644.4575 1,942.356 1,900.2505

36,290 1,094.306 2,971.90125 504.02125 637.70025 836.34725
30,373 858.64875 2,059.22175 492.01875 313.49675 294.08125

3,499.68 2,829.21325 8,479.6895 1,272.48025 1,299.2485 1,550.972
2,401.758 1,072.6845 1,352.32775 555.05225 906.02775
4,600.646 1,670.69175 1,168.9195 654.1 383.81975 378.34775
1,794.496 1,355.24925 3,495.57175 971.0525 1,039.688
1,771.616 1,142.678 1,187.888 538.077 713.26275
8,360.132 2,319.22925 6,066.522 2,942.51175 1,607.97175

9,372 4,864.74725 71,881.3765 4,325.415 4,408.12775

Rows Columns Non-Zeros
Dense
Protein
FEM/Spheres
FEM/Cantilever
Wind Tunnel
FEM/Harbour
QCD
FEM/Ship
Economics
Epidemiology
FEM/Accelerator
Circuit
Webbase
LP

2,000 2,000 4,000,000
36,417 36,417 4,344,765
83,334 83,334 6,010,480
62,451 62,451 4,007,383

217,918 217,918 11,634,424
46,835 46,835 2,374,001
49,152 49,152 1,916,928

140,874 140,874 7,813,404
206,500 206,500 1,273,389
525,825 525,825 2,100,225
121,192 121,192 2,624,331
170,998 170,998 958,936

1,000,005 1,000,005 3,105,536
4,284 1,092,610 11,279,748

Throughput (GFLOPS/s)Throughput (GFLOPS/s)Throughput (GFLOPS/s)Throughput (GFLOPS/s)Throughput (GFLOPS/s)Throughput (GFLOPS/s)Throughput (GFLOPS/s)Throughput (GFLOPS/s)Throughput (GFLOPS/s)Throughput (GFLOPS/s)Throughput (GFLOPS/s)Throughput (GFLOPS/s)Throughput (GFLOPS/s)
CachedCachedCachedCachedCachedCached UncachedUncachedUncachedUncachedUncachedUncached

Accelerate COO CSR (scalar) CSR (vector) DIA ELL HYB COO CSR (scalar) CSR (vector) DIA ELL HYB
Dense
Protein
FEM/Spheres
FEM/Cantilever
Wind Tunnel
FEM/Harbour
QCD
FEM/Ship
Economics
Epidemiology
FEM/Accelerator
Circuit
Webbase
LP

3.40911221604226 5.97561984451064 0.74412553007026 14.4783212024608 3.18026044146587 3.72539203930289 5.91303332326886
0.26499210652856 5.60309560371785 1.67253070518161 13.5534972916885 9.90972143224318 8.51165138151623
4.70191754074148 5.79827054585972 1.89802259050709 12.6255800922476 15.4423124107995 15.6508040251382
4.4063517091536 5.5807751132638 1.81145400097514 11.9750049025742 11.4590744329004 12.6404901782968 7.82666769527935

4.61780429304406 5.73094550997473 1.99827669086344 11.979702999862 12.2451476792139
0.13083537802563 4.33882478940991 1.59763114605507 9.42024170607886 7.44550750920985 5.67707014042313
0.12622394747201 4.46498757495425 1.86179851684259 7.7920932891277 12.229332520991 13.0367236945572
4.46521053353449 5.52337580067533 1.84285143931273 12.2805898166199 12.0275744016637 10.0754933035542
1.06038077108518 2.37420975132949 1.88325500234688 4.58835722222547 2.81092714875455
0.91301308555364 2.51419808591262 3.59344676857559 6.42172450695612 10.9438089103023 11.1020879600843
2.92486692642391 3.87283888923016 1.50151745562082 5.40512691126381 5.04830487607821
1.08255513610173 1.67840108937076 1.61452258125345 3.56430771060647 2.68887166755869
0.74293946554911 2.6780759168159 1.02382749127095 2.11080618454625 3.86267482622129
2.40701070332802 4.63734184751325 0.31384340560034 5.21556798596204 5.11770467632205

0

5

10

15

20

D
en

se

P
ro

te
in

FE
M

/S
p

he
re

s

FE
M

/C
an

til
ev

er

W
in

d
 T

un
ne

l

FE
M

/H
ar

b
ou

r

Q
C

D

FE
M

/S
hi

p

E
co

no
m

ic
s

E
p

id
em

io
lo

gy

FE
M

/A
cc

el
er

at
or

C
irc

ui
t

W
eb

b
as

e

LP

Sparse-matrix vector multiplication

G
FL

O
P

S
/s

Accelerate COO CSR (scalar) CSR (vector) DIA ELL HYB

0

3.75

7.5

11.25

15

D
en

se

P
ro

te
in

FE
M

/S
p

he
re

s

FE
M

/C
an

til
ev

er

W
in

d
 T

un
ne

l

FE
M

/H
ar

b
ou

r

Q
C

D

FE
M

/S
hi

p

E
co

no
m

ic
s

E
p

id
em

io
lo

gy

FE
M

/A
cc

el
er

at
or

C
irc

ui
t

W
eb

b
as

e

LP

Sparse-matrix vector multiplication

G
FL

O
P

S
/s

Accelerate COO CSR (scalar) CSR (vector)

Figure 5. Sparse-matrix vector multiplication (higher is better)

and CSR (vector) kernels store data in a compressed-row format
similar to our implementation. The CSR (scalar) kernel uses one
thread per matrix row, so memory access is rarely coalesced, while
the CSR (vector) kernel uses a single warp per matrix row for par-
tial access coalescing. The CSR kernels are sensitive to row length
irregularity so may exhibit thread divergence. All CUSP kernels
utilise the texture cache. Our implementation uses a segmented re-
duction method at its core that, similar to the CSR (vector) kernel,
uses one warp per segment.

It comes as no real surprise that our high-level, general-purpose
matrix code is slower than the manually tuned special-purpose li-
brary code of CUSP, which uses optimised data layouts and al-
gorithms. Nevertheless, overall performance remains competitive,
and is fairly consistent in terms of relative throughput across the
range of matrices, generally placing between CUSP’s COO and
CSR (scalar). A notable exception are the Protein, FEM/Harbour,
and QCD matrices, wherein our segmented reduction foldSeg is
significantly slower than in the other test cases due to increased
warp divergence. This arises from the skeleton component of the
kernel, and we believe it can be further optimised. As in the case
of the dot product, support for automatic fusion should further im-
prove the performance of Accelerate for this benchmark.

7. Related work
Haskell-based approaches. Vertigo, Obsidian, and Nikola are
embedded languages for GPGPU programming in Haskell. Ver-
tigo [13] is a statically compiled graphics language targeting the
DirectX 8.1 shader model, whereas Obsidian [32] produces CUDA
code as we do. Nikola [24] is both in its aim and approach to
the embedding closest to Accelerate. Nikola’s CUDA backend is,
however, quite different. It explicitly schedules loops, whereas we
use algorithmic skeletons. The expressiveness of Nikola’s embed-
ded language is more limited than Accelerate’s as Nikola does not
support generative functions, such as replicate, whose memory
requirements can’t be statically determined by Nikola’s size infer-
ence. Moreover, Accelerate array computations can span multiple
CUDA kernels, whereas both Nikola and Obsidian can only ex-
press array computations that can be implemented in a single GPU
kernel. Algorithms requiring multiple kernels need to be explicitly
scheduled by the application programmer and incur additional host-
device data-transfer overhead—which can be rather significant as
our benchmarks showed.

C++-based approaches. Accelerator [6, 33] is a library-based ap-
proach with less syntactic sugar for the programmer, but support
for bindings to functional languages. In contrast to our current sys-
tem, it already targets multiple architectures, namely GPUs, FPAs,
and multicore CPUs. However, the code generated for GPUs uses

the DirectX 9 API, which doesn’t provide access to several mod-
ern GPU features, negatively effecting performance and portabil-
ity. RapidMind [35], which targets OpenCL, and its predecessor
Sh, are C++ meta programming libraries for data parallel pro-
gramming. RapidMind was integrated into Intel’s Array Buildings
Blocks (ArBB) together with Intel’s own Ct technology. However,
the current release of ArBB seems to only support multicore CPUs,
lacking GPU support. GPU++[19] employs a similar technique, but
provides a more abstract interface than the other C++-based ap-
proaches listed here. Sato and Iwasaki [28] describe a C++ skele-
ton library including fusion optimisations. Finally, Thrust [17] is a
library of algorithms written in CUDA with an interface similar to
the C++ Standard Template Library.

Others. PyCUDA [22] uses Python as a host language to facili-
tate GPU programming, while still providing access to the CUDA
driver API. A similar approach is followed by CLyther [1], which
targets OpenCL. Copperhead [7] uses PyCUDA and Thrust inter-
nally to provide a higher level of abstraction to compile, link, cache,
and execute CUDA and C++ code.

The Jacket [2] extension to Matlab supports offloading of matrix
computations to GPUs by introducing new data types for matrices
allocated in device memory and overloading existing operations,
such that application to GPU data types triggers the execution of
suitable GPU kernels.

8. Conclusion
We introduced Accelerate, an embedded language of parame-
terised, collective array computations over multi-dimensional ar-
rays. We outlined a skeleton-based, dynamic code generator for
Accelerate that produces code that competes with moderately op-
timised native CUDA code in our benchmarks. We use a variety
of techniques to optimise performance, such as memoising gen-
erated GPU kernels to avoid recompilation and overlapping code
generation with host-to-device data transfer.

Our benchmarks indicate that a fusion optimisation combining
adjacent kernels, where this is possible, would help to close the cur-
rent gap between our code generator and hand-optimised CUDA
code. Unfortunately, in the context of parallel programming, fu-
sion needs to be applied with care to avoid eliminating too much
of the available parallelism [10, 20]. Consequently, many standard
fusion techniques cannot be applied directly. Fusion could be im-
plemented by matching on a fixed set of combinations of collective
operations, but this quickly leads to a combinatorial explosion of
the required optimisation rules. We will investigate a suitable fu-
sion framework for Accelerate in future work.

Although our current implementation specifically builds on
CUDA, our approach is not limited to that framework. In particu-
lar, we are convinced that we could re-target our code generator to
OpenCL [16] by rewriting the skeleton code and by replacing our
binding to the CUDA runtime by a binding to the OpenCL runtime.

Acknowledgements. We are grateful to Ben Lever and Rami
Mukhtar for their very helpful and constructive feedback on Accel-
erate. We thank the anonymous reviewers for their suggestions on
improving the paper. This research was funded in part by the Aus-
tralian Research Council under grant number LP0989507. Trevor
L. McDonell was supported by an Australian Postgraduate Award
(APA) and a NICTA supplementary award.

References
[1] Clyther, 2010. URL http://clyther.sourceforge.net/.

[2] Accelereyes. The Jacket documentation wiki, 2010. URL http:
//wiki.accelereyes.com/.

[3] Thorsten Altenkirch and Bernhard Reus. Monadic presentations of
lambda terms using generalized inductive types. In Computer Science
Logic, volume 1683 of LNCS, pages 825–825. Springer-Verlag, 2009.

[4] Robert Atkey, Sam Lindley, and Jeremy Yallop. Unembedding
domain-specific languages. In Haskell ‘09: Proceedings of the 2nd
ACM SIGPLAN Symposium on Haskell, pages 37–48. ACM, 2009.

[5] Nathan Bell and Michael Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Supercomputing
‘09: Proceedings of the 2009 Conference on High Performance Com-
puting Networking, Storage and Analysis, pages 1–11. ACM, 2009.

[6] Barry Bond, Kerry Hammil, Lubomir Litchev, and Satnam Singh.
FPGA circuit synthesis of Accelerator data-parallel programs. In
FCCM ‘10: Proceedings of the 2010 18th IEEE Annual International
Symposium on Field-Programmable Custom Computing Machines,
pages 167–170. IEEE Computer Society, 2010.

[7] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead:
Compiling an embedded data parallel language. Technical Report
UCB/EECS-2010-124, University of California, Berkeley, 2010.

[8] Manuel M. T. Chakravarty. Converting a HOAS term GADT into a de
Bruijn term GADT, 2009. URL http://www.cse.unsw.edu.au/

~chak/haskell/term-conv/.

[9] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.
Associated type synonyms. In ICFP ‘05: Proceedings of the tenth
ACM SIGPLAN international conference on Functional programming,
pages 241–253, New York, NY, USA, 2005. ACM.

[10] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones,
Gabriele Keller, and Simon Marlow. Data Parallel Haskell: a status re-
port. In DAMP ‘07: Proceedings of the 2007 Workshop on Declarative
Aspects of Multicore Programming, pages 10–18. ACM, 2007.

[11] Siddhartha Chatterjee, Guy E. Blelloch, and Marco Zagha. Scan
primitives for vector computers. In Supercomputing ‘90: Proceedings
of the 1990 Conference on Supercomputing, 1990.

[12] Murray I. Cole. Algorithmic Skeletons: Structured Management of
Parallel Computation. The MIT Press, 1989.

[13] Conal Elliott. Programming graphics processors functionally. In
Proceedings of the 2004 Haskell Workshop. ACM Press, 2004.

[14] Gill, Bull, Kimmell, Perrins, Komp, and Werling. Introducing Kansas
Lava. In IFL ‘09: The Intl. Symp. on Impl. and Application of Func-
tional Languages, volume 6041 of LNCS. Springer-Verlag, 2009.

[15] Andy Gill. Type-safe observable sharing in Haskell. In Haskell ’09:
Proc. of the 2nd ACM SIGPLAN Symp. on Haskell. ACM, 2009.

[16] Khronos OpenCL Working Group. The OpenCL specification, version
1.1. Technical report, Khronos Group, 2010. http://www.khronos.
org/opencl/.

[17] Jared Hoberock and Nathan Bell. Thrust: A parallel template library,
2010. URL http://www.meganewtons.com/. Version 1.2.1.

[18] Paul Hudak. Building domain-specific embedded languages. ACM
Comput. Surv., page 196, 1996.

[19] Thomas Jansen. GPU++: An Embedded GPU Development System
for General-Purpose Computations. PhD thesis, Technische Univer-
sität München, 2008.

[20] Gabriele Keller and Manuel M. T. Chakravarty. On the distributed
implementation of aggregate data structures by program transforma-
tion. In Parallel and Distributed Processing, Fourth International
Workshop on High-Level Parallel Programming Models and Support-
ive Environments (HIPS’99), number 1586 in LNCS, pages 108–122.
Springer-Verlag, 1999.

[21] Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Si-
mon Peyton Jones, and Ben Lippmeier. Regular, shape-polymorphic,
parallel arrays in Haskell. In ICFP ’10: Proc. of the 15th ACM SIG-
PLAN Intl. Conf. on Functional Programming. ACM, 2010.

[22] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan C. Catanzaro,
Paul Ivanov, and Ahmed Fasih. PyCUDA: GPU run-time code gener-
ation for high-performance computing. CoRR, 2009.

[23] Sean Lee, Manuel M. T. Chakravarty, Vinod Grover, and Gabriele
Keller. GPU kernels as data-parallel array computations in Haskell. In

http://clyther.sourceforge.net/
http://wiki.accelereyes.com/
http://wiki.accelereyes.com/
http://www.cse.unsw.edu.au/~chak/haskell/term-conv/
http://www.cse.unsw.edu.au/~chak/haskell/term-conv/
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.meganewtons.com/

Workshop on Exploiting Parallelism using GPUs and other Hardware-
Assisted Methods (EPHAM 2009), 2009.

[24] Geoffrey Mainland and Greg Morrisett. Nikola: Embedding compiled
GPU functions in Haskell. In Haskell ’10: Proceedings of the 2010
ACM SIGPLAN Symposium on Haskell. ACM, September 2010.

[25] Michael McCool, Stefanus Du Toit, Tiberiu Popa, Bryan Chan, and
Kevin Moule. Shader algebra. ACM Transactions on Graphics, 23(3):
787–795, 2004.

[26] NVIDIA. NVIDIA CUDA C Programming Guide 3.1.1, 2010.
[27] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Ge-

offrey Washburn. Simple unification-based type inference for GADTs.
In ICFP ‘06: Proc. of the Eleventh ACM SIGPLAN Intl. Conf. on
Functional Programming, pages 50–61. ACM, 2006.

[28] Shigeyuki Sato and Hideya Iwasaki. A skeletal parallel framework
with fusion optimizer for GPGPU programming. In Programming
Languages and Systems, volume 5904 of LNCS. Springer, 2009.

[29] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin
Sulzmann. Type checking with open type functions. In ICFP ’08:
Proceeding of the 13th ACM SIGPLAN International Conference on
Functional Programming, pages 51–62. ACM, 2008.

[30] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens.
Scan primitives for GPU computing. In Proceedings of the 22nd ACM
SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware,
pages 97–106. Eurographics Association, 2007.

[31] Tim Sheard and Simon Peyton Jones. Template meta-programming
for Haskell. In Haskell ’02: Proceedings of the 2002 ACM SIGPLAN
Workshop on Haskell, pages 60–75. ACM Press, 2002.

[32] Joel Svensson, Koen Claessen, and Mary Sheeran. GPGPU kernel
implementation and refinement using Obsidian. Procedia Computer
Science, 1(1):2059 – 2068, 2010. ICCS 2010.

[33] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using data
parallelism to program GPUs for general-purpose uses. In ASPLOS-
XII: Proc. of the 12th Intl. Conf. on Architectural Support for Pro-
gramming Lang. and Operating Systems, pages 325–335. ACM, 2006.

[34] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Kather-
ine Yelick, and James Demmel. Optimization of sparse matrix-vector
multiplication on emerging multicore platforms. Parallel Computing,
35(3):178–194, 2009.

[35] Lin Xu and Justin W L Wan. Real-time intensity-based rigid 2D–3D
medical image registration using RapidMind multi-core development
platform. Conf Proc IEEE Eng Med Biol Soc, 2008:5382–5, 2008.

	Introduction
	Accelerated array code
	Arrays, shapes, and indexing
	Arrays on the host and device
	Computing a vector dot product
	Array computations versus scalar expressions
	Sparse-matrix vector multiplication
	Accelerate in a nutshell

	Embedding array computations
	The surface language
	The structure of the frontend
	Namelessness and sharing
	The structure of the CUDA backend
	Skeletons
	Invoking CUDA programs from Haskell
	Dynamic versus static code generation

	Skeleton-based code generation
	Scalar code
	Shapes
	Array references in scalar code
	Arrays of tuples

	Executing Accelerate computations
	CUDA.run and the execution state
	First pass
	Data transfer & garbage collection
	Compilation & code memoisation

	Second pass
	Launch configuration & thread occupancy
	Kernel execution

	Evaluation
	Runtime overheads
	Dot product
	Black-Scholes option pricing
	Sparse-matrix vector multiplication

	Related work
	Conclusion

