Customizable Decay: How to Maximize Suricata Event Utility in Finite Space

> Sascha Steinbiss, DCSO Benno Evers, Tenzir Matthias Vallentin, Tenzir

### **TENZIR**



🖉 © Tenzir GmbH

### Introduction



Sascha

- Senior Software Engineer
- >6 years at DCSO
- Former genome wrangler
- Suricata contributor
- Debian Developer



Benno

- C++ Developer at Tenzir
- Former PMC at Apache Mesos project
- Distributed Systems programming



#### Matthias

- Founder & CEO at Tenzir
- PhD @ UC Berkeley (with Zeek team)
- High-performance network monitoring
- SOC infrastructure and threat detection



### Introduction



Sascha

- Senior Software Engineer
- >6 years at DCSO
- Former genome wrangler
- Suricata contributor
- Debian Developer



Benno

- C++ Developer at Tenzir
- Former PMC at Apache Mesos project
- Distributed Systems programming



#### Matthias

- Founder & CEO at Tenzir
- PhD @ UC Berkeley (with Zeek team)
- High-performance network monitoring
- SOC infrastructure and threat detection



### Suricata: Not Just Alerts

- Suricata is an IDS/IPS and NSM tool
  - Output : alerts and extensive metadata per protocol transaction
- Metadata are useful
  - Other forms of detection (retro, pattern-based, data mining)
  - Analysis (network structure, communication patterns, ...)
- Scenario: store metadata close to the Suricata sensor
  - Data residency requirements
  - Bandwidth constraints
  - Scaling/cost issue with centralized architecture



### Too much data in confined space



#### Cumulative EVE-JSON volume of a real sensor with ~6Gbit/s of diverse traffic

TLP:CLEAR

# Too much data in confined space?

### • Extend space

- Limited by deployment constraints (bare-metal appliances? cost?)
- Compress data
  - Adds additional overhead for compression/decompression
  - Still natural limits for space reduction
- Move data (tape storage, ...)
  - Deployment constraints (rack space, network, ...)
  - Huge impact on access latency/searchability
- Delete old data
  - Blunt tool with no awareness of data importance
  - We may still need it!

### Can we do better?



### **Optimal Information Density?**

### • Change data

- Never delete relevant events, but make data range more coarse-grained
- Maybe less data is already sufficient for the actual questions we have
- Example: Who looked up domain X in a specific timeframe?

{"timestamp": "2020-11-06T10:32:23.723294+0000", "event\_type": "dns", "src\_ip": "10.0.0.207", "src\_port": 32598, "dest\_ip": "148.0.250.134", "dest\_port": 53, "proto": "UDP", "dns": {"rrname": "www.foobar.com", ...}}} {"timestamp": "2020-11-06T10:39:39.325094+0000", "event\_type": "dns", "src\_ip": "10.0.0.207", "src\_port": 29384, "dest\_ip": "148.0.250.134", "dest\_port": 53, "proto": "UDP", "dns": {"rrname": "www.foobar.com", ...}}} {"timestamp": "2020-11-06T10:42:57.000333+0000", "event\_type": "dns", "src\_ip": "10.0.0.207", "src\_port": 44522, "dest\_ip": "148.0.250.134", "dest\_port": 53, "proto": "UDP", "dns": {"rrname": "www.foobar.com", ...}}}

VS.

{"first\_seen": "2020-11-06T10:32:23.723294+0000", "last\_seen": "2020-11-06T10:42:57.000333+0000", "count": 3, "event\_type": "dns", "src\_ip": "10.0.0.207", "dest\_ip": "148.0.250.134", "proto": "UDP", "dns": {"rrname": "www.foobar.com", ...}}}

### Data Transformations



### Contributions

- 1. Devise a **compaction** concept to trigger arbitrary dataflow pipelines
  - Composable, modular data processing **operations**
  - Trigger pipelines for spatial ("80% disk") and temporal ("after 42 days") conditions
- 2. Implement compaction in VAST (<u>vast.io</u>)
  - Easy-to-use declarative YAML configuration
  - Operationalize in a production deployment
- 3. Evaluate with real-world Suricata EVE logs









### VAST: An Overview



### • What is VAST?

- Security-native high-performance telemetry database
- Richly-typed, structured data
- Open data plane via Apache Arrow (in-memory) and Parquet & Feather (disk)

### • Use Cases

- Store alerts (and metadata) and pivot to PCAPs<sup>1</sup>
- Automated querying (execute security content)<sup>2</sup>
- $\circ$  Guided threat hunting via notebooks (Suricon 2023 ;-)<sup>3</sup>
- SIEM offloading for pre-processing and cost savings



<sup>1</sup> Matthias Vallentin, "Pivot like a Pro: Unified Threat Hunting in Network Security Data", SuriCon 2019, Amsterdam

<sup>2</sup> Sascha Steinbiss, Matthias Vallentin, "Distributing Security Content to Detect Threats Across Past, Present and Future", SuriCon 2021, Boston

<sup>3</sup> https://xkcd.com/541/

© Tenzir GmbH

#### TLP:CLEAR

### Suricata Ingestion



### Suricata and VAST at DCSO



### **EVE-JSON** and **VAST**

```
"timestamp": "2018-02-16T13:38:56.245600+0100",
"flow id": 210421612967555,
"event type": "flow",
"src ip": "172.31.69.15",
"src port": 10897,
"dest ip": "131.202.242.193",
"dest port": 22,
"proto": "TCP",
"flow": {
  "pkts toserver": 44,
  "pkts toclient": 42,
  "bytes toserver": 6968,
  "bytes toclient": 3100,
  "start": "2018-02-16T13:38:56.245600+0100",
  "end": "2018-02-16T13:39:02.465647+0100",
  "age": 6,
  "state": "new",
  "reason": "timeout",
  "alerted": false
},
```

type suricata.component.common = record { timestamp: timestamp, flow id: count #index=hash, src ip: addr, src port: port, dest ip: addr, dest port: port, proto: string, event type: string, type suricata.component.flow = record { pkts toserver: count, pkts toclient: count, bytes toserver: count, bytes toclient: count, start: time. end: time, age: count, state: string, reason: string, alerted: bool type suricata.flow = suricata.component.common + record { flow: suricata.component.flow, app proto: string

data

#### schema

multiple levels of sophistication

2/ Man

- Lvl 1: Keep space usage along target *capacity* 
  - Delete data partitions randomly when hitting quota (e.g. 80–90%, < 7 TB)
- Lvl 2: Use age to delete data with respect to a total order
  - Delete from oldest to newest event timestamps
- Lvl 3: Add event type as another dimension
  - Delete proportionally to traffic mix (e.g., 40% DNS, 20% flow, 30% DCE/RPC, ...)
- Lvl 4: Use per-event *weights* to express relative importance
  - Scale age by weight ("virtual age") before evaluating age
- Lvl 5: Do not delete, but compact data
  - Apply pipeline instead of deleting
- Lvl 6: Multi-level compaction
  - Compact compacted types again using different pipelines



- Lvl 1: Keep space usage along target *capacity* 
  - Delete data partitions randomly when hitting quota (e.g. 80–90%, < 7 TB)
- Lvl 2: Use *age* to delete data with respect to a total order
  - Delete from oldest to newest event timestamps
- Lvl 3: Add event type as another dimension
  - Delete proportionally to traffic mix (e.g., 40% DNS, 20% flow, 30% DCE/RPC, ...)
- Lvl 4: Use per-event *weights* to express relative importance
  - Scale age by weight ("virtual age") before evaluating age
- Lvl 5: Do not delete, but compact data
  - Apply pipeline instead of deleting
- Lvl 6: Multi-level compaction
  - Compact compacted types again using different pipelines



# Lvl 2: Age



time

### Lvl 2: Linearized View





- Lvl 1: Keep space usage along target *capacity* 
  - Delete data partitions randomly when hitting quota (e.g. 80–90%, < 7 TB)
- Lvl 2: Use *age* to delete data with respect to a total order
  - Delete from oldest to newest event timestamps
- Lvl 3: Add event type as another dimension
  - Delete proportionally to traffic mix (e.g., 40% DNS, 20% flow, 30% DCE/RPC, ...)
- Lvl 4: Use per-event weights to express relative importance
  - Scale age by weight ("virtual age") before evaluating age
- Lvl 5: Do not delete, but compact data
  - Apply pipeline instead of deleting
- Lvl 6: Multi-level compaction
  - Compact compacted types again using different pipelines





### Lvl 3: Event Type Distribution

- High variation!
  - Event type volume
  - Event type distribution
- More flexible approach needed to deal with heterogeneous data

- Lvl 1: Keep space usage along target *capacity* 
  - Delete data partitions randomly when hitting quota (e.g. 80–90%, < 7 TB)
- Lvl 2: Use *age* to delete data with respect to a total order
  - Delete from oldest to newest event timestamps
- Lvl 3: Add event type as another dimension
  - Delete proportionally to traffic mix (e.g., 40% DNS, 20% flow, 30% DCE/RPC, ...)
- Lvl 4: Use per-event *weights* to express relative importance
  - Scale age by weight ("virtual age") before evaluating age
- Lvl 5: Do not delete, but compact data
  - Apply pipeline instead of deleting
- Lvl 6: Multi-level compaction
  - Compact compacted types again using different pipelines



# Lvl 4: Virtual Age

- Motivation: empirical event distribution != desired relative event priorities
- Want
  - "My alerts are more important than my DNS events"
  - "Prefer metadata events over mundane flow events, if they exist"
- Not
  - "I want 90% flows and 10% alerts"

### → Virtual Age:

- 1. Attach a *weight* to each type
- 2. Adjust event age by projecting into a virtual space





### Lvl 4: Virtual Age



### Lvl 4: Linearized View



- Lvl 1: Keep space usage along target *capacity* 
  - Delete data partitions randomly when hitting quota (e.g. 80–90%, < 7 TB)
- Lvl 2: Use *age* to delete data with respect to a total order
  - Delete from oldest to newest event timestamps
- Lvl 3: Add event type as another dimension
  - Delete proportionally to traffic mix (e.g., 40% DNS, 20% flow, 30% DCE/RPC, ...)
- Lvl 4: Use per-event *weights* to express relative importance
  - Scale age by weight ("virtual age") before evaluating age
- Lvl 5: Do not delete, but *compact* data
  - Apply pipeline instead of deleting
- Lvl 6: Multi-level compaction
  - Compact compacted types again using different pipelines



### Lvl 5: Pipeline Transformation



### Lvl 5: Linearized View





# Implementation





### Lvl 5: Dataflow with Pipelines





V

>

>

> > >

 $\sim$ 

 $\sim$ 

>

>

| N.    |            |      | 2 |
|-------|------------|------|---|
| About |            |      |   |
| Wł    | ny VAST    |      |   |
| Tar   | rget Audie | ence |   |
| Vis   | sion       |      |   |
| Us    | e Cases    |      |   |
| Try   |            |      |   |
| Setu  | ıp         |      |   |
| Use   |            |      |   |
| Und   | erstand    |      |   |
| Arc   | chitecture | 9    |   |
| Da    | ta Model   |      |   |
| Qu    | ery Lang   | uage |   |
| E     | xpression  | ns   |   |
| Ρ     | ipelines   |      |   |
| C     | perators   |      |   |
|       | drop       |      |   |
|       | replace    |      |   |
|       | hash       |      |   |
|       | identity   |      |   |
|       | rename     |      |   |

extend select

summarize

where

Frontends Contribute

Develop

#### > Understand > Query Language > Operators

### Operators

VAST ships with the following operators:

🖿 drop

ft.

Drops individual fields having the configured extractors from the...

hash Computes a SHA256 hash digest of a given field.

🖿 rename

Renames schemas and fields according to a configured mapping.

select

Keeps the fields having the configured extractors and removes t...

here 📄

Keeps rows matching the configured expression and removes th...

replace

Replaces the fields matching the configured extractors with fixe...

h identity

Does nothing with the input. (This operator primarily for testing  $\ldots$ 

extend

Adds the configured fields with fixed values.

summarize

The summarize operator bundles input records according to a gr...



<mark>7 /</mark> © Tenzir GmbH

### **Compaction Pipelines**



### Lvl 2: Rotation Example

```
plugins:
 compaction:
    space:
      interval: 1 hour
      disk-budget-high: 95
      disk-budget-low: 90
      scan-binary: /usr/local/bin/vastdiskbudget
      step-size: 3
    time:
      interval: 1 hour
      rules:
        - after: 90 days
          types: [suricata.dns, suricata.alert, ...]
```

plugins: compaction: space: mode: weighted-age interval: 1h disk-budget-high: 95 disk-budget-low: 90 scan-binary: /usr/local/bin/vastdiskbudget step-size: 3 weights: - weight: 1 pipeline: aggregate-flows types: - suricata.flow - weight: 1 pipeline: aggregate-dns types: - suricata.dns - weight: 1 pipeline: aggregate-snmp types:

- suricata.snmp

- weight: 1 pipeline: aggregate-smb types: - suricata.smb - weight: pipeline: aggregate-http types: - suricata.http - weight: 1 pipeline: aggregate-tls types: - suricata.tls - weight: 1.5 types: - suricata.flow agg - suricata.dns agg - suricata.snmp agg - suricata.smb\_agg - suricata.http agg - suricata.tls agg



```
"timestamp": "2020-11-06T07:34:23.000074+0000",
"flow id": 1618483912196429,
"in_iface": "enp175s0f1",
"event_type": "flow",
"src ip": "10.0.0.12",
"src port": 53905,
"dest_ip": "148.0.51.138",
"dest_port": 53,
"proto": "UDP",
"app proto": "dns",
"flow": {
  "pkts_toserver": 1,
  "pkts_toclient": 1,
  "bytes toserver": 88,
  "bytes toclient": 136,
  "start": "2022-06-29T07:31:23.458630+0000",
  "end": "2022-06-29T07:31:23.394739+0000",
  "age": 0,
  "state": "established",
  "reason": "timeout",
  "alerted": false
},
"host": "53c5bbd7849b48e1a458347df93c0dc5",
```



TLP:CLEAR

### Space Reduction

- What space reduction can we achieve if we compact a typical dataset?
- Example
  - $\circ$  3 days of "Realistic Cyber Defense Dataset" CSE-CIC-IDS2018<sup>1</sup>
  - Suricata 7, all EVE output options enabled
  - ~150GB pcaps, ~42M events
- Parameters
  - Event types compacted:
    - smb, dns, http, flow, snmp, tls
  - Two resolutions evaluated
    - 1 hour
    - 1 minute



<sup>1</sup> Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani: "*Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization*", 4th International Conference on Information Systems Security and Privacy (ICISSP), Portugal, 2018

TLP:CLEAR



### **Space Reduction by Projection**

#### {

}

```
"timestamp":
"2018-02-16T18:17:17.044699",
       "flow id": 1599357715314279,
       "pcap_cnt": 55512743,
       "vlan": null.
       "in iface": null,
       "src ip": "196.52.43.92",
       "src port": 6712,
       "dest ip": "172.31.64.32",
       "dest_port": 161,
       "proto": "UDP",
       "event type": "snmp",
       "community_id": null,
       "tx id": null,
       "snmp": {
       "version": 1,
       "pdu_type": "get_request",
       "vars": [
               "1.3.6.1.2.1.1.1.0"
       ],
       "community": "public"
```

#### {

"timestamp": "2018-02-16T18:17:00.000000", "src ip": "196.52.43.92", "dest\_ip": "172.31.64.32", "dest port": 161, "proto": "UDP", "community id": [], "count": 1. "timestamp max": "2018-02-16T18:17:17.044699", "timestamp\_min": "2018-02-16T18:17:17.044751", "event\_type": "snmp\_agg"

### **Real-world measurements**



TLP:CLEAR

### Effect on Retention Time



- Lvl 1: Keep space usage along target *capacity* 
  - Delete data partitions randomly when hitting quota (e.g. 80–90%, < 7 TB)
- Lvl 2: Use *age* to delete data with respect to a total order
  - Delete from oldest to newest event timestamps
- Lvl 3: Add event type as another dimension
  - Delete proportionally to traffic mix (e.g., 40% DNS, 20% flow, 30% DCE/RPC, ...)
- Lvl 4: Use per-event *weights* to express relative importance
  - Scale age by weight ("virtual age") before evaluating age
- Lvl 5: Do not delete, but *compact* data
  - Apply pipeline instead of deleting
- Lvl 6: Multi-level compaction
  - Compact compacted types again using different pipelines



## Thank you!



**VAST** 

vast.io

Join our Community Slack!

slack.tenzir.com





<mark>7 /</mark>© Tenzir GmbH



45

# Meerkats will prevail!

TLP:CLEAR







# **VAST Plugins**

• Plugin architecture



- Easy to implement missing transformation functionality
  - Pipeline operators
  - Aggregation functions

### **VAST Plugins**



7 © Tenzir GmbH

TLP:CLEAR

