Distributing Security Content to Detect Threats Across Past, Present, and Future

SuriCon 2021, Boston

Sascha Steinbiß¹ Matthias Vallentin²

¹DCSO Deutsche Cyber-Sicherheitsorganisation GmbH, Berlin, Germany

²Tenzir GmbH, Hamburg, Germany

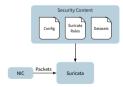
About the speakers

Sascha

- Senior Software Engineer
- 5y @DCSO, German MSS provider
- Former genome wrangler
- Suricata and Debian contributor

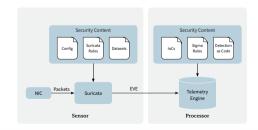
Matthias

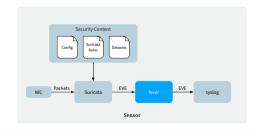
- Founder & CEO at Tenzir
- PhD @ UC Berkeley (with Zeek team)
- High-performance network monitoring
- SOC infrastructure and threat detection

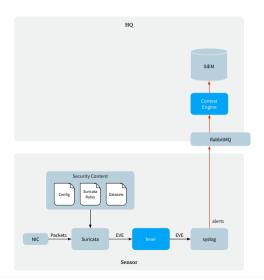


Definitions

- Definitions in the context of the talk
 - Security Content (SC): Rules, IoCs, scripts/code ("Detection as Code")
 - In this talk: Suricata rules and tactical indicators
- How can we instrumentalize rules and TI for detection?
 - Rules: used and shared directly
 - Indicators:
 - wrapped in rules
 - datasets
 - matched downstream
 - Code: Rules + Lua, (Zeek Scripts) heavy-weight for sharing


```
# Rule
alert smb $HOME_NET any -> any any \
(msg:"ET EXPLOIT Possible ETERNALBLUE \
MS17-010 Echo Response";
flow:from server, established: \
content: "|00 00 00 31 ff|SMB|2b ... 07 c0|": \
depth:16; fast_pattern; [...]
sid:2024218; rev:2;)
# Rule with embedded ToC
alert dns anv anv -> anv anv \
(msg:"DNS Query to evil.com"; \
dns.query; content:"evil.com"; depth:8; \
fast_pattern; nocase; endswith; \
sid:1000023; rev:1;)
# Rule with dataset reference
alert dns anv anv -> anv anv \
(msg: "DNS Query to evil domain list": \
dns.query: dataset:isset.evil-dns:
sid:1000042; rev:1;)
```



Security Content Management (SCM) with Suricata

Native

- Rules
 - via pull action (e.g. via suricata-update)
 - Suricata reload (e.g. suricatasc)
- Datasets
 - distribution not handled at all by current tooling Download via curl?
 - Suricata reload (e.g. suricatasc)?

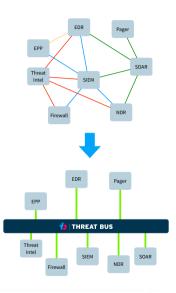
Downstream

- Bloom filters
 - Download via curl
 - FEVER reload via CLI or gRPC
- Sigma rules
 - SIEM-specific (periodic) triggering on logs

Security Content Management Challenges

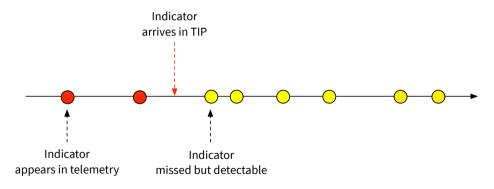
- Rule updating is the only supported method by the "default tooling"
 - No best practices on how to update datasets
 - Everything beyond rules happens downstream (not standardized)
- Inefficient bulk security content download
 - Traffic: feasible in low-bandwidth environment?
 - Granularity: is it worth sending updates for just one new IoC?
- 3 Roll out takes time and causes delay
 - Inevitable lower bound: time passes until rule can fire on sensor
 - Multiple steps involved
 - Trade-off: time to detection vs. overhead of rule reload
- A Rolling out content in a multi-sensor environment (MSSP, large corp)
 - Scalable rule dissemination to a large sensor fleet
 - Sensors may need different subsets of content

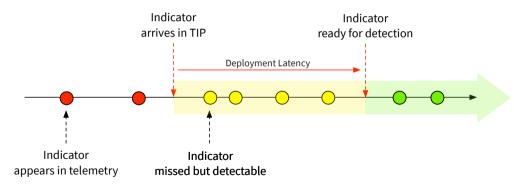
Addressing SCM Challenges

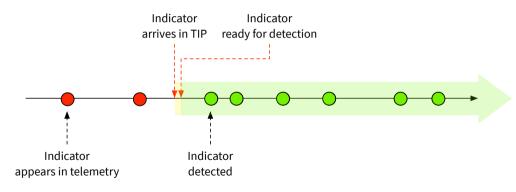

- Decouple expression of security content from application in Suricata
 - Ingress: many different formats of SC to consume (BLs, STIX feeds, etc.)
 - Egress: many ways to apply SC (Rules, datasets, etc.)
 - Have a common (standardized?) carrier data format
- Have a unified delivery path for security content
 - Consume SC from various sources (APIs, web sites, files)
 - Fine-grained updates, as opposed to simple bulk transfers
 - Real-time content publishing, as opposed to periodic polling
 - Publish/subscribe content distribution architecture

Threat Bus

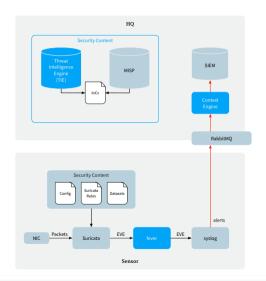
A message broker for real-time exchange of security content


- Standardized data plane: STIX 2.1
- Plugin based
 - Backbone: underlying transport channel (AMQP, Kafka, ...)
 - Apps: format and tool-specific connectors (Suricata, MISP, ...)
- Communication
 - Topics vs. snapshots
- Key benefits
 - Reduce tool integration complexity
 - Vendor-neutral communication across tools
 - Quick onboarding by re-using existing messaging infrastructure

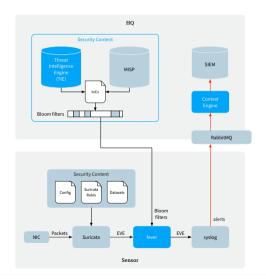

- Goal: use indicators for realtime detection as soon as they arrive
- Mechanism: apply delivered indicators in their native tool as soon as they arrive

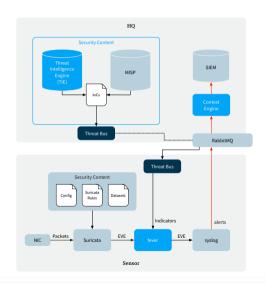

- Goal: use indicators for realtime detection as soon as they arrive
- Mechanism: apply delivered indicators in their native tool as soon as they arrive

- Goal: use indicators for realtime detection as soon as they arrive
- Mechanism: apply delivered indicators in their native tool as soon as they arrive



- Goal: use indicators for realtime detection as soon as they arrive
- Mechanism: apply delivered indicators in their native tool as soon as they arrive

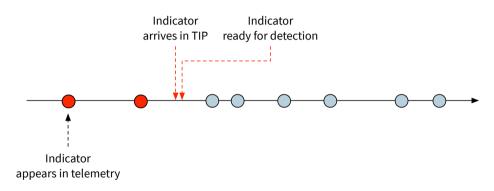

Forward Matching Architecture (I)


Forward Matching Architecture (II)

Forward Matching Architecture (III)

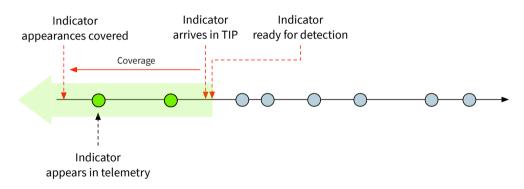
October 20-22, 2021

Forward Matching Demo


Problem: Indicator in the Past

- Goal: use indicators for realtime detection as soon as they arrive
 - Advanced attacker use initial vector only once
 - lacksquare Stay long under the defenders' radar (dwell time pprox 6 months)
 - Typical IR questions: how long has the attack been going on?
 - Impossible to detect with forward matching

Backward Matching



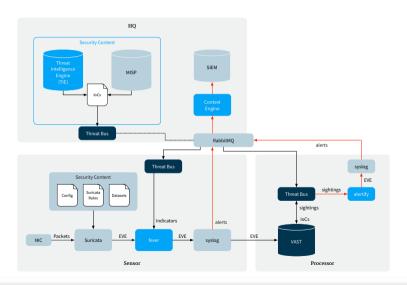
■ Solution: backward matching

■ Conceptually simple: SIEM search

Backward Matching

■ Solution: backward matching

■ Conceptually simple: SIEM search


Security Content Management Challenges

- Transparency: make live and retro alerts look identical for analysts
 - Fever: unified EVE JSON
- Automation: trigger searches automatically (across sensor fleet)
 - Threat Bus via RabbitMQ backbone
- Scalability: low-latency search && large number of queries
 - VAST (see SuriCon 2019)
- Retention: span at least attacker dwell time
 - Compaction (coming soon in VAST)

Backward Matching Architecture

Backward Matching Demo

Result Situation

Indicator ready for detection Coverage Coverage

Summary

- Security content matching in Suricata telemetry poses various challenges
 - Distribution
 - Matcher update
 - Historical data
- Solution
 - Forward matching assisted by Threat Bus and FEVER
 - Backward matching assisted by Threat Bus and VAST
- Everything available as Free Software

Tenzir Plug

If you don't want to re-build this yourself, we can help with:

- Build SOCs using open tools
- Operationalize threat intelligence
- Enable advanced threat detection use cases

Commercially available VAST plugins

- High-speed IoC matching (FEVER for all data formats)
- Passive inventorization using EDR and NDR telemetry
- Compaction: incremental aging of events for long retention/detection windows
- **NetFlow parser** for v5, v9, v10 (IPFIX)

Future Work

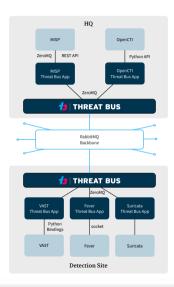
- Generalize Threat Bus data format:
 - STIX bundles containing SCOs
 - More structure ⇒ better response
 - Generate stateful rules
 - e.g. first lookup of 8.8.8.8 followed by HTTP GET to evil.com
- Publish Suricata Rules on topic for indicator SDO
 - Pattern-type: suricata
 - Topic: stix2/indicator/suricata
- Use Threat Bus for configuration distribution
 - e.g. dynamic update of address and port groups

HTTP SERVERS: "\$HOME NET" SMTP SERVERS: "\$HOME NET" SOL SERVERS: "\$HOME NET" DNS SERVERS: "\$HOME NET" TELNET SERVERS: "\$HOME NET" AIM SERVERS: "\$EXTERNAL NET" DC SERVERS: "\$HOME NET" DNP3 SERVER: "\$HOME NET" DNP3 CLIENT: "\$HOME NET" MODBUS CLIENT: "\$HOME NET" MODBUS SERVER: "\$HOME NET" ENIP CLIENT: "\$HOME NET" ENIP SERVER: "\$HOME NET"

20/24

```
"type": "domain-name",
"spec_version": "2.1",
"id": "domain-name--3c10e93f-798e-5a26-a0c1-08156efab7f5",
"value": "evil.com"
"type": "indicator".
"spec_version": "2.1".
"id": "indicator--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f".
"created": "2016-04-06T20:03:48.000Z".
"modified": "2016-04-06T20:03:48.000Z",
"indicator_types": ["malicious-activity"],
"name": "Evil Domain".
"pattern": "[ domain-name:value = 'evil.com' ]",
"pattern_type": "stix",
"valid_from": "2016-01-01T00:00:00Z"
```

Thanks for your attention!



Backup Slides

Threat Bus Architecture

