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1 Introduction

Note: So far we have mostly been concerned with representing vectors x in populations
of neurons. In this lecture we instead think about the representation of symbols, leading
up to the Semantic Pointer Architecture (SPA) which we will discuss in the next lecture.

As discussed at the beginning of the course, our ultimate goal is to build models of human
brains, and, by extension, human cognition. So far, it might seem as if we had not made much
progress in this direction. What we have discussed up to this point is “merely” allowing us to
represent vectors in a population of neurons, to compute transformations of those represented
values within the connections between populations, and to build dynamical systems treating
the represented values as control-theoretic state variables.

In particular, one hallmark of human cognition is language, and it is not clear how to apply
the NEF to language, or facts expressed in language. Examples of language-based statements
that we may want to encode are sentences such as “the number eight comes after the number
nine”, “all dogs chase cats”, or “Anne knows that Bill thinks that Charlie likes Dave”.

We attempt to solve this problem by first having a look at other modelling approaches in Cogni-
tive Neuroscience. In particular, we will have a look at so called Vector Symbolic Architectures
(VSAs), which can be easily mapped onto the NEF. In the next lecture we then use VSAs to
build a particular model of cognition, the Semantic Pointer Architecture (SPA).

2 Neural Theories of Cognition

Note: For more details on the theories of cognition listed here, have a look at Chapter 9
of “How to Build a Brain” [M].

Traditionally, both cognitive scientists and early computer scientists working on artificial intel-
ligence have constructed theories of cognition that involve processing structured information
using symbol-based representational frameworks, such as predicate logic. For example, the
statements mentioned above could be written like this (this notation is supposed to resemble
predicate logic):

e “The number eight comes after the number nine”: isSucc(EIGHT, NINE).
e “All dogs chase cats”: VxVy (isDog(x) A isCat(y)) — doesChase(x, y).
e “Anne knows that Bill thinks that Charlie likes Dave":

knows(ANNE, “thinks(BILL, ‘likes(CHARLIE, DAVE)')").

Both computer scientists and cognitive scientists have built cognitive models that are roughly
based on representations akin to the ones listed above. These “symbolic” approaches are
generally quite successful in modelling certain aspects of human cognition and can be made
to fit behavioural data. However, they do not answer the question of how these symbols are
represented and manipulated within a human brain.
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2.1 Jackendoff’s Challenges for Cognitive Neuroscience

In his 2002 book “Foundations of Language: Brain, Meaning, Grammar, Evolution” [2], linguist
Ray Jackendoff poses four challenges aimed at cognitive neuroscientists who aim to build a
neural model of language. These challenges are

e The Binding Problem. Suppose you see a red square and a blue circle. How does the
concept of “red” get bound with the concept of “square”, and how is it kept separate from
“blue” and “circle”?

e The Problem of Two. Consider the sentence “the little star is besides the big star”. How
do we keep those two uses of the concept “star” separate? For example, if there was a
group of neurons representing the concept of “star”, how can this group of neurons both
represent the “little star”, the “large star”, as well as the fact that the two stars are next
to each other?

e The Problem of Variables. Grammar imposes certain rules on sentences. For example,
it is “correct” to say “blue x”, if x is a noun, but not “blue y”, if y is a verb. Correspond-
ingly, the question is how these rules, which rely on placeholders, or “variables”, are
represented in the brain.

e Working Memory versus Long-Term Memory. We can both use sentences (and keep
them in working memory; i.e., current neural activities), while also being able to store
them for very long times (long-term memory; synaptic weights). A neural architecture of
language must explain how sentences can be transferred from working memory to long-
term memory and back. In other words, we must be able to turn representations from
neural activities into synaptic weight changes.

2.2 Solution Attempt 1: Neural Synchrony (Oscillations)

One relatively early theory of how the “binding problem” could be solved is the LISA architec-
ture [3], which has been developed in the early 1990s. This architecture solves the binding
problem by proposing to exploit “neural synchrony”.

A central idea of this approach is that individual groups of neurons represent concepts. This is
a so called localist representation; individual spatially colocated groups of neurons correspond
to individual concepts. Higher-level concepts can be created by connecting groups of neu-
rons. For example, the neurons representing the symbol “cat” can be connected to neurons

n o u

representing the concepts “furry”, “solitary”, and “animal” (cf. fig. ).

Concepts are bound by neurons representing the concept oscillating at the same frequency.
That is, for our example of “red square and blue circle”, the neuron populations of these
concepts would oscillate synchronously in phase, while separate, currently active concepts
oscillate with a different frequency and/or out of phase.
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Figure 1: The LISA architecture. Boxes corresponds to groups of neurons representing individual con-
cepts, lines to synaptic conncetions. Concepts are “bound” by neurons oscillating at the same frequen-
cy/phase. Figure copied from Figure 9.1 in Eliasmith, 2013 [0], which is in turn adapted from Hummel
and Holyoak, 2003 [3].

Let’s evaluate this architecture.

© The architecture solves the binding problem.

The architecture assumes localist representation, i.e., a few neurons represent a single
concept. Most evidence points towards at least a distributed representation.

It is unclear how this architecture would solve the “problem of two” - maybe the same
symbol used multiple times could oscillate with two superimposed frequencies.

This architecture cannot solve Jackendoff’'s third and fourth challenge.

@ It is unclear how these oscillations are generated and controlled in the first place, i.e.,
how is language translated into activation of these localist representations?

@ Furthermore, it us unclear how the representations are processed—which mechanism is
reading out the oscillations and decides which neural ensembles are active together?

@ Finally, we have an exponential explosion of neurons required to represent all kinds of
different concepts. For example, assume that there are 104 symbols. Then, we have on
the order of 108 possible second-order combinations of symbols (“subpropositions”), and
on the order of 1016 possible propositions. This already exceeds the number of neurons
in the brain by a factor of one to ten thousand.
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Figure 2: Neural Blackboard Architecture. (a) Groups of neurons represent concepts (words)—they
are connected via a switchboard circuit (symbolised by & and depicted in panels (b) and (c)) to slots
corresponding to individual roles in a sentence. These roles are then combined via switchboards into
higher-level sentences. Image copied from Figure 9.2 in Eliasmith, 2013 [[@], which is in term adapted
from van der Velde and de Kamps, 2006 [4].

2.3 Solution Attempt 2: Neural Blackboard Architecture

An attempt at solving all four problems posed by Jackendoff is the “Neural Blackboard Architec-
ture” by van der Velde and de Kamps [4]. The idea is to solve the exponential growth problem
posed by synchrony approaches by introducing switchboard circuits that can arbitrarily route
signals from neurons representing individual concepts to so called “assemblies” represent-
ing bound concepts. These high level concepts can then be associated with specific roles a
concept might have in a sentence.

© This approach has a much lower resource consumption than LISA.
© Can solve all four of Jackendoffs challenges (according to the authors).
© Explains limitations of human sentence representation.
This is still a (at least partially) localist representation.
@ Uses a very particular structure that does not really seem to match biology.
@ Uses a very large number of neurons; about 500 x 10° to represent simple sentences.

@ Only considers sentence representation, but not the individual control structures.
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2.4 Solution Attempt 3: Vector Operators

As mentioned, both approaches discussed above are localist. We could instead try to decouple
concepts from the underlying neural substrate. That is, populations of neurons can represent
different symbols, and “send” represented symbols for processing to other groups of neurons.

This would be more in line with the kind of information processing suggested by the NEF.
Knowing that we can represent vectors in neural populations, we could represent symbols as
vectors x € R?. For now, let’s assume that these vectors x are randomly generated.

This idea is actually quite old, and there have been multiple suggestions as for how to symbol
vectors x and y could be bound together. One approach suggested by Smolensky in 1990 [5]
is to simply use a tensor product x ® y, a generalisation of a vector outer product to matrices:

az b]_ a1b1 a1b2 alb3
a |®| by |=]|azxb1 azxby azbs (Outer product)
as b3 asbi1 asby asbs
(011 (bll b1z a1o bi1 bi12
a1l a1z b1 b1z b21 b2z b21 b2z
® (Tensor product)
a1 a2 b21  b22

B 1 bi1 b2 s bi1 b2
\ b21 b2> bz1 b3
aiibi1 aiibiz aizbii aizbiz
aiibz1 aiibzz aizbzi aizbzz

az1b11 azibiz azxbii az2biz
az1bz1 azibzz azab21 az2b22

This way, two vectors x, y can be bound without losing any information. In contrast to just
stacking the two vectors (which would also not incur any information loss), the tensor product
has some nice mathematical properties, and can, as outlined by Smolensky in his paper, to a
degree be easily implemented in a neural substrate.

© Solves the binding problem and the problem of two.
Unclear how to solve Jackendoff’s third and fourth challenge.

@ The method scales extremely poorly. Every time two vectors are bound, the dimension-
ality of the resulting structure is squared; we need d? dimensions when binding two
d-dimensional vectors. In general, for n binding operations we need d" dimensions.

Note: Symbolic Architectures and Neuroscience. All methods discussed so far are trying
very hard to map purely symbolic architectures onto a neural substrate. In a sense, neural
aspects are treated as mere implementation details. This is an instance of the top-down
approach we discussed at beginning of the course: mapping high-level cognitive architec-
tures onto biology. In a sense, the hope is that, if successful, neurons would not matter.
This is (unfortunately) an assumption many cognitive scientists make.
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3 Vector Symbolic Architectures

The last idea—using vectors x to represent symbols and to then use an operator such as
® to bind them—seems to be reasonable, and fits the Neural Engineering Framework quite
well. However, what we would like to have is an operator that maintains the dimensionality
of the vectors (i.e., takes two vectors of dimensionality d as an input and outputs a vector of
dimensionality d), while still allowing us to reconstruct information about the operands.

Example: Using “+” as a binding operator. Let’s reconsider the “Binding Problem” as orig-
inally posed above. We would like to represent the fact that we are seeing a blue square
and a red circle. Hence, we could—for now, randomly—generate four d-dimensional vector
representing these four concepts, where d is relatively large, for example d = 64.

To keep us from having to come up with letters x, y, z, w, ... for each concept and remem-
ber the mapping between letter and concept, we will just write the vector corresponding
to each concept in capital letters, like so: BLUE, RED, CIRCLE, SQUARE. Keep in mind that
this is just notation; each of these words is a (random), d-dimensional vector.

Our first attempt at representing the above concept could be to just sum these vectors
X = BLUE + SQUARE + RED + CIRCLE.

However, notice that mere addition of symbol vectors does not allow us to distinguish
which colour belongs to which object. Correspondingly, “+” is not a good choice as a
binding operator, but may be used to represent that two separate concepts are currently
active.

Mathematically, what we would like is an operator @ with the following properties

®:RIxRI— RY, (preservation of dimensionality)
x~(xey)oy !, (approximately reversible)
O~ (xay x),0~(xay,y). (dissimilar to inputs)

As we have discussed in the above example, the last property ensures that two concepts that
are bound to each other cannot be confused with the original concepts. This prevents us from
using an operator such as “+" as a binding operator, which preserves similarity, as graphically
depicted in fig. B, and as can be easily shown:

(x+y,%) = (%, %)+ {x,y) ~ |x||* + 0,

assuming that x and y are two high-dimensional random vectors, which are likely to be orthog-
onal. We will still use “+"” to combine multiple concepts into one symbolic vector.

The use of (random) vectors x along with a binding operator ® to construct cognitive symbolic
architectures have been called “Vector Symbolic Architectures” (VSAs) by Gayler, 2003 [B].
In the same paper, Gayler argues that such architectures can solve all four challenges put
forward by Jackendoff.
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Figure 3: Similarity preservation and approximate reversibility of circular convolution. The + operator
preserves similarity between x, y (both the penguin and the cat are still visible), whereas circular convo-
lution @ does not (neither the penguin nor the cat are visible). Convolving x @ y with the pseudo-inverse
x~1 and y~! creates an image that is more similar to y and x, respectively. The use of images in this
example does not imply that we usually apply these methods to uncompressed images. @ Code
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Nt Example: Possible Binding Operators. Among others, the following binding operators
Q\ have been proposed for use in vector symbolic architectures:

(XOR)

(Hadamard Product)

DF
DG
DH
DE

(Circular Convolution)

(Outer Product)


https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_10/media/code/cconv_similarity.ipynb
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3.1 Example: Encoding Sentences

We can use the binding operator “®” and the plus operator “+” to compress multiple symbols
into a single vector. For example, we can now write the above example as

X =BLUE @ SQUARE + RED @ CIRCLE.
We can use the reversibility property to “ask questions”. For example, “which object is blue?”

y = (BLUE ® SQUARE + RED @ CIRCLE) @ BLUE™!
= (BLUE ® SQUARE) ® BLUE™! + (RED @ CIRCLE) @ BLUE™!
~ SQUARE + RED @ CIRCLE @ BLUE™! ~ SQUARE.

“noise”

Note that we call the term RED ® CIRCLE @ BLUE™! “noise” because it does not correspond
to any meaningful symbol without our vocabulary. Correspondingly, due to the linearity of
addition, we know that the vector ~ SQUARE + “noise” is highly similar to SQUARE, but to no
other symbol in our vocabulary—this is what we mean by the last approximate equality in the
above equation.

We can use this technique to write down more interesting concepts, such as the sentences we
talked about in the previous section:

e “The number eight comes after the number nine”:

NUMBER @ EIGHT + SUCC @ NINE.

e “The dog chases the cat":

DOGe® SUBJ + CAT ® 0BJ + CHASE @ VERB.

¢ “Anne knows that Bill thinks that Charlie likes Dave”:

SUBJ @ ANNE + ACT @ KNOWS + 0BJ@
(SUBJ @BILL +ACT @ THINKS + 0BJ®
(SUBJ @ CHARLIE + ACT @ LIKES + 0BJ ® DAVE)).

Note: Graceful degradation. The information we can pack into a single vector x is limited!
The larger the number of binding operations, and the number of additions, the lower the
precision of operations such as the approximate inverse. While this may sound bad, hu-
mans have similar limitations: for example, the nesting depth of sentences, or the number
of objects we can keep in working memory is limited. This makes for interesting predictions
if we use VSAs to model cognitive phenomena.
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3.2 Circular Convolution

In the following, we are going to focus on circular convolution as a binding operator. Circular
convolution has been used in signal processing for a long time, but has been proposed by Tony
Plate in the 1990s as a binding operator [[Z]. Circular convolution of two vectors z=x®Yy is
defined as

(Circular Convolution)

d—1 a
zi= ij)/i—j mod d » where x,y,z e R, andamodb:a—blEJ. (1)
j=0

This operator has the properties we demanded above. A pseudo-inverse x~1 according to the
above definition is given as

-1 -1
(Xo X1 X2 ... Xd=2 Xd—l) = (Xo Xd—1 Xd—2 ... X2 Xl) ,
i.e., all elements except for the first one are reversed in order.

Note: For most vectors, one can also solve for a more precise inverse by solving a least-
squares problem, i.e., minimizing the error |ly@x@x—1—y||2. However, the pseudo-inverse
as defined above is sufficient in most cases.

One potential problem with circular convolution as defined in eq. (0l), especially with respect
using it in conjunction with the NEF, is that the operator requires d2 multiplications of vector
coefficients. This means, that, if, for example, d = 256, then we need to perform 65536
multiplications. This is a little concerning, particularly because even just multiplying a single
pair of scalars with a reasonably small error requires on the order of one hundred pre-neurons.
Correspondingly, we would end up with requiring about 6 x 10°® neurons just for convolving
two semantic pointers.

Luckily, just as “normal” convolution, circular convolution can be expressed as a simple multi-
plication in the Fourier domain

z=DFT YDFT(x)® DFT(y)),

where @ is element-wise multiplication, or the so-called “Hadamard” product. Recall that the
discrete and inverse discrete Fourier transformation are just linear basis transformations, so
we can rewrite the above equation as

z=T1(Txo Ty),

where T is the constant (complex-valued) matrix describing the Fourier transformation for a
d-dimensional vector. As discussed in the lecture about transformations, we can easily com-
pute any linear transformation T in the connection between two neuron populations by simply
multiplying the decoder D with T. Hence, all we are left with is d complex-values multiplica-
tions. Circular convolution is implemented in nengo.networks.CircularConvolution as an
efficient NEF network.
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3.3 Example: Encoding Numbers

Another fun example is encoding integers. Suppose that we have a symbol ONE representing
the number one. Then, we can define integers as repeated binding of this vector with itself

TWO = ONE @ ONE,
THREE = ONE @ TWO = ONE ® ONE @ ONE,
NUMBER-k = ONE® ONE® ... ® ONE .

k-times

Using what we know about the relationship between circular convolution and the discrete
Fourier transformation, we can also write the above as

NUMBER-k = DFTY(DFT(ONE)X),
where exponentiation operator “-K” corresponds to element-wise exponentiation.

Note: Representing continuous values as symbol vectors. Notice that this allows us to
represent any continuous scalar k, and not just integers! We will come back to this when
we discuss spatial semantic pointers.

Note: Unitary vectors. One potential problem with this approach is that the magnitude
of the vector x might exponentially increase with repeated binding. We thus want binding
by ONE to preserve inner products. A symbol vector x with this property is called a unitary
vector. “Unitary” because binding with this vector results in “unit” scaling (i.e., no scaling,
or scaling by a factor of one). Mathematically, a unitary vector is a vector x with the
following property

lly @ x|| = |ly|| for ally e RY.

3.4 Example: Raven’s Progressive Matrices

Raven’s progressive matrices is a commonly used IQ test developed in 1936. Questions on the
test typically consist of 3 x 3 matrices filled with symbols arranged according to an unknown,
“hidden” rule. One of the cells in the matrix is empty, and participants are asked to complete
the matrix according to the rule by choosing one of eight possible cells. Figure @ shows two
examples of what the test could conceptually look like (these are not actual questions on the
test; the actual test is kept secret and has not changed since 1936).

Perhaps surprisingly, this 1Q test can be solved with a relatively high precision using Vector
Symbolic Architectures. To this end, consider the example in fig. and assume that we
already have a vision system that translates each cell into a corresponding vector represen-
tation. We can argue that this is a problem that we could solve really well using a modern
convolutional neural network.

10
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Figure 4: Examples similar to Raven’s Progressive Matrices. Participants are asked to select one of

eight possible answers that completes the matrix according to the rules underlying its construction.

Given this translation between vision and symbol vector, each of the eight given cells could
be described in the following way:

Cl1=0NEe®P1, C5=FOUR®P1+ FOUR®P2,
C2=0NE®Pl+ONE®P2, C6=FOUR®Pl+ FOUR® P2+ FOUR® P3,
C3=0NE®Pl1+ ONE®P2+ ONE®P3, C7=FIVEe®P1,

C4=0NE®Pl1+ ONE® P2+ ONE®P3, C8=FIVE®Pl+ FIVE®P2.

We can then extract the hidden “rule”, or “transformation” between the cells using the pseudo-
inverse (here, we're only looking at the “horizontal” rule from one cell to the next)

Tl=C2@C17t, T4=C6@C57%,
T2=C03@C27 1, T5=C8e@(C77 1,
T3=C5@C47 L,

Assuming the rule is consistent, we should be able to extract a clean version of the rule by just
averaging these five vectors:
TL+ T2+ T34+ T4+T5
= z .
Then, we can make a prediction as for what the ninth cell should contain:

C9=C8@T~FIVE®PLl+FIVE®P2+ FIVE®P3.

11
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Note: For more detail on the Raven’s Progressive Matrices particular example, see [8].
Also, have a look at this video showing Spaun solving this task: @ Video. This is based
on a memory system showing both recency and primacy effects observed in humans:
0 Video.

3.5 Revisiting Jackendoff’s Challenges

The above example demonstrated that we can solve cognitively challenging tasks using vector
symbolic architectures (VSAs). Before we extend VSAs into the semantic pointer architecture
(SPA) in the next lecture, let’s revisit Jackendoff’'s challenges, and discuss in how far VSAs are
able to solve these.

e The Binding Problem. We already discussed this in the example above. In short, if we
have concepts such as RED, BLUE, SQUARE, and CIRCLE, we can use the binding operator
@ to bind concepts, and the addition operator + for concepts that are active at the same
time. For example, “red square and blue circle” becomes

RED ® SQUARE + BLUE @ CIRCLE.

e The Problem of Two. This problem is concerned with the question of how the same
concept can be active at the same time in two different contexts. We also had a glance
at a solution to this particular problem above: we can simply use symbols denoting the
role of individual concepts. Consider the sentence “the little star is besides the big star”.
We can express this in the following way:

0BJ1@® (TYPE®STAR+SIZE@®LITTLE)+ 0BJ2@® (TYPE® STAR+ SIZE®BIG)+ REL @ BESIDES

e The Problem of Variables. Here the problem was that language seems to be governed
by abstract rules using placeholders. For example, we know that the adjective RED can
only be followed by a noun. This rule could be expressed at

RULE = RED @ NOUN.
Then, a variable that can be substituted into the position of “NOUN" is given as
VAR = BALL @ NOUN~1,
Binding the variable with the rule results in the desired concept:

RULE @ VAR = (RED @ NOUN) @ (BALL @ NOUN™Y)
=RED @ BALL @ (NOUN @ NOUN™1)
~ RED @ BALL.
Note that we did not demand binding operators @ to be commutative in general; however,

circular convolution happens to be commutative. For the above to work with a non-
commutative binding operator, we can define VAR as NOUN™! @ BALL.

12
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e Working vs. Long-Term Memory. This problem can be solved quite easily by con-

sidering vector symbolic architectures implemented on top of the NEF. Neural activities
correspond to concepts that are currently in working memory. Long term memory cor-
responds to synaptic weights, and hence to functions transforming these concepts—for
example, on possible function is an associative long-term memory.
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