
SYDE 556/750

Simulating Neurobiological Systems

Lecture 7: Temporal Basis Functions

Andreas Stöckel

Based on lecture notes by
Chris Eliasmith and Terrence C. Stewart

February 13, 2020

Accompanying Readings: Chapter 3 of Neural Engineering; see references

SYDE 556/750 Lecture Notes Andreas Stöckel

Contents

1 Introduction 1

2 Representing Functions 2

2.1 Sampling . 3

2.2 Basis Functions . 6

3 Representing the Past: The Delay Network 8

3.1 Implementing Delays as a Dynamical System . 8

3.2 Example: Implementing the Delay Network in Nengo 11

i

SYDE 556/750 Lecture Notes Andreas Stöckel

1 Introduction

0 1 2 3 4 5
Time t

1.0

0.5

0.0

0.5

1.0

1.5

In
pu

t u
(t)

0.0 0.2 0.4 0.6 0.8 1.0
Delay ′ (s)Present Past

Figure 1: Example of the “delay network” we are going to discuss in the lecture. The dotted line is the
input (t). The coloured lines correspond to delayed versions of the input signal. These delayed versions
are all decoded from the same function representation ƒ[t−θ,t] (θ′). This diagram has been generated by
decoding from a mathematically perfect implementation of the delay network. ⌨ Code

📌
Note: In this lecture we discuss a recent application of the Neural Engineering Framework,
the so called Delay Network developed by Aaron Voelker, first presented in [1], and dis-
cussed in more detail in his PhD thesis [2]. The Delay Network represents a function over
time in a neural population. A more general version of the Delay Network has been pre-
sented at NeurIPS 2019 as the “Legendre Memory Unit” (LMU) [3]. The LMU can be used
as a component within artificial Deep Neural Networks and outperforms other recurrent
architectures such as LSTMs in a variety of tasks.

As humans, we often feel as if we have a good recollection of events that happened in the
immediate past, where in this lecture, “immediate” refers to events happening within a few
seconds or even a fraction of a second. As events move into the more distant past, it be-
comes increasingly harder to recall details. In this lecture, we discuss a system that similarly
memorizes stimuli, remembers them for a certain period, and then gradually “forgets” them.

Mathematically speaking, what we would like to have a function ƒ[t−θ,t](θ′) which allows us to
access stimuli (t) in a time-interval from [t − θ, t], that is

ƒ[t−θ,t](θ′) = 
�
t − θ′� ,where 0 ≤ θ′ ≤ θ .

Put differently, ƒ[t−θ,t](0) will return the present stimulus (t), whereas ƒ[t−θ,t](θ) will return
the input θ seconds from the past.

1

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_07/media/code/delay_network_example.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

We would like to build a biologically plausible version of such a system. That is, we would like
to represent information about the immediate past in the current activity of a population of
neurons ƒ[t−θ,t] . In order to do this, we have to solve two problems that we discuss separately.

1. Function representation. So far we have seen how we can represent vectorial quantities
in a neural population. But how can we represent an entire function of the form ƒ[t−θ,t](θ′)
in a neural ensemble?

2. Updating the function representation. If we were somehow able to represent functions
in our neural population we still need to know how exactly to update this representation
over time.

📌 Note: Function representation is different from the “transformation” principle we already
discussed. In short, we are not interested in computing a function y = ƒ (x), but instead we
would like to represent the function ƒ itself in a neural population, i.e. have some way of
storing a mapping from a value x onto values y.

2 Representing Functions

For simplicity, and because it describes the problem we are trying to solve, let’s focus on
scalar functions over time ƒ (t), i.e., ƒ : R −→ R. How can we represent an interval [0, T) of such
a function in a neural population? We already know how a neural population can represent a
vector, so let’s rephrase the question. How can we represent functions as vectors?

First of all, if we have a parametrised function family ƒ (t;x) we want to represent (i.e., all linear
functions, all affine functions, all Normal distributions with a mean μ and standard-deviation
σ), then the function parameters can be described as a vector x that we could use:

ƒ (t;x) =mt , Linear function ⇒ x = �m� ,
ƒ (t;x) =mt + b , Affine function ⇒ x = �m,b

�
,

ƒ (t;x) = exp

�
− (t − μ)

2

σ2

�
, Gaussian ⇒ x = �μ, σ� .

If we represent x and t in the same neural population, we can evaluate ƒ (t;x) in the connection
from the pre- to the post-population according to NEF principle two.

In general, if we do not have any more information about the kind of function we would like
to represent, there are two (closely related) approaches to representing functions as vectors:
sampling/discretisation and basis functions. We discuss these two approaches in the following.

📌 Note: We can generalise what we discuss to multi-variate functions with vectorial output,
i.e. ƒ : Rd −→ Rd

′
. We can treat multi-dimensional output d′ > 1 as d′ independent

functions ƒ1, . . . , ƒd′ . For multi-dimensional inputs d > 1, we need to sample on a higher-
dimensional grid. When using basis functions, we need an appropriate basis ϕ : Rd −→ R.

2

SYDE 556/750 Lecture Notes Andreas Stöckel

2.1 Sampling

The idea of sampling is to measure the value of a function ƒ (t) at discrete, equally spaced
points x = (0, . . . , N−1), where

 = ƒ (t) = ƒ (Δt) , and Δt is the sampling interval.

The resulting vector x holds a representation of ƒ (t) over the interval [0, T), where T = NΔt.

If we wanted the reconstruct the value of the function at a point t that was not sampled, we
can in theory use one of many interpolation techniques to “guess” function values in between
samples. If our function is somewhat well-behaved, we would expect the quality of these
reconstructions to get better for smaller Δt. That is, the more sample points N we have over
the interval [0, T), the better the representation of the function (fig. 3).

Unfortunately, in general, for an arbitrary function ƒ (t), we need an infinite number of sample
points to perfectly represent it. Mathematically speaking this is true for any infinitesimally
small interval T → 0. A function can “drastically” change its value between any two infinitesi-
mally close points.

💡 Example: These restrictions even apply to continuous functions! The earliest example of
a “weird” continuous function that is not differentiable (i.e., not “smooth”) at any point is
the Weierstrass function published in 1872, defined as

ƒ () =
∞∑
n=0

n cos(πbn) , where 0 <  < 1, b is a positive odd integer, and b > 1 +
3

2
π .

Intuitively, this function is continuous at any point—after all, it is just a sum of cosines
(be careful though; counter-intuitively, an infinite sum of continuous functions can be
discontinuous). One can show that this function is not differentiable at any point.

2 0 2
x

2

1

0

1

2

f(x
)

1 0 1
x

2

1

0

1

2

0.2 0.0 0.2
x

0.0

0.5

1.0

1.5

2.0

Figure 2. Visualisation of the Weierstrass function for b = 11,  =
1+ 3

2 π
10 . Black rectangles corre-

spond to the region shown in the neighbouring plot to the right. No matter how far we “zoom” into

the function, there is an infinite amount of detail we would have to capture when sampling (this is

one of the properties of a fractal; note that this does not necessarily imply an infinite amount of

information in this function; the function is fully determined by two parameters , b). ⌨ Code

3

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_07/media/code/weierstrass.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

1
0
1

f(t
)

Continuous function

y1
y2

y3 y4 y5

y6

Sampled function (N = 6)

1
0
1

f(t
)

y1
y2

y3 y4 y5

y6

Linear interpolation (N = 6; RMSE=0.08)

y1
y2

y3 y4 y5

y6

Quadratic interpolation (N = 6; RMSE=0.08)

0.0 0.2 0.4 0.6 0.8 1.0
t

1
0
1

f(t
)

y1
y2

y3 y4 y5

y6

Cubic interpolation (N = 6; RMSE=0.1)

0.0 0.2 0.4 0.6 0.8 1.0
t

y1
y2

y3 y4 y5

y6

Nyquist reconstruction (N = 6; RMSE=0.2)

(a) Example 1: Bandlimit above 3Hz

1
0
1

f(t
)

Continuous function

y1
y2

y3
y4

y5
y6

Sampled function (N = 6)

1
0
1

f(t
) y1

y2

y3
y4

y5
y6

Linear interpolation (N = 6; RMSE=0.2)

y1
y2

y3
y4

y5
y6

Quadratic interpolation (N = 6; RMSE=0.09)

0.0 0.2 0.4 0.6 0.8 1.0
t

1
0
1

f(t
) y1

y2

y3
y4

y5
y6

Cubic interpolation (N = 6; RMSE=0.1)

0.0 0.2 0.4 0.6 0.8 1.0
t

y1
y2

y3
y4

y5
y6

Nyquist reconstruction (N = 6; RMSE=3e 05)

(b) Example 2: Bandlimit below 3Hz

Figure 3: Example illustrating sampling. A continuous function is sampled at N = 6 points (represented
as a “lollipop” plot). We can use various interpolation techniques to reconstruct (“guess”) the values
between individual sample points. In case the original function is bandlimited to a frequency below
N/2T = 3Hz (as in (b), but not (a)), the sample points uniquely define the function according to the
Nyquist-Shannon sampling theorem.

4

SYDE 556/750 Lecture Notes Andreas Stöckel

Guarantees for band-limited signals While the above restriction—namely, that we need
infinitely many points to represent any infinitesimally small interval of a function—is true for
general, mathematical functions, we have a much better guarantee regarding the required
number of required for “physical”, i.e., band-limited, signals.

This guarantee is the Nyquist-Shannon sampling theorem, which connects the discrete, sam-
pled world and continuous functions.

(The Nyquist-Shannon Sampling Theorem)
If ƒ (t) contains no frequencies greater than B then it is completely determined by samples
spaced Δt = 1

2B apart (N = 2BT equally spaced samples for a time-slice [0, T)). There is a
one-to-one mapping between the samples x and the function ƒ (t).

Note the emphasis on “one-to-one mapping”: if we have N = 2BT equally spaced samples of a
function with band-limit B, we can completely reconstruct the function without any losses. Of
course, if we have access to the function, we can measure the sample points.

In summary, this means that there is hope that we can represent physical signals by storing
just a few values. If we can guarantee that our function does not have any frequencies above
B, we only need to store N = 2BT samples; or, in other words we need to sample with a
frequency of ƒs = 2B (the “Nyquist Frequency”). So for a signal that is limited to 5Hz we only
need 10 samples per second to be able to perfectly reconstruct it. Conversely, there is no
reason to store significantly more than N samples—doing so would just be “wasting space”.

🌟 Aside: The Nyquist-Shannon Sampling Theorem and Audio Signals. There are some en-
gineering related reasons for sampling slightly faster than the Nyquist frequency. For
example, the absolute hearing threshold for (young) humans is about B = 20kHz. Corre-
spondingly, to record an audio signal meant for humans (i.e., music or speech recordings),
we can do the following: (1) band-limit the original signal to 20 kHz in the capture device,
(2) sample at ƒs = 40kHz. This allows us to perfectly reconstruct the band-limited signal
according to the Nyquist-Shannon sampling theorem. Since frequencies above 20 kHz are
not audible, the result will appear to humans exactly as the original signal.

However, this only works if we can trust our capture device (i.e., the microphone and
its amplifier circuit) to sharply cut off all frequencies above 20kHz. Unfortunately, such
perfect filters are impossible to implement as an analogue device. Frequencies slightly
above B will still pass through, albeit being attenuated. This violates the pre-condition of
the Nyquist-Shannon sampling theorem, leading to imperfect reconstructions (en effect
known as aliasing). Hence, it is better to sample faster than Nyquist, to give room for
frequencies in the signal that are (slightly) above B.

This is why common sampling rates for audio signals are 44.1kHz (CD audio), and 48kHz
(DVD audio). Much higher sampling of audio signals intended for human listening make no
sense, except for intermediate signals (i.e., for sidestepping the imperfect analogue filter
problem by sampling at a very high rate and applying a cheap and precise digital filter).

5

SYDE 556/750 Lecture Notes Andreas Stöckel

📌
Note: Online resources. For more information on the Nyquist-Shannon sampling theorem
in general, and its implications with respect to storing audio signals in particular, refer to
this material by Chris Montgomery (author/co-author of the Ogg Vorbis and Opus codecs):

• An excellent Video on the Nyquist Shannon sampling theorem, as well as quantisation:
Xiph.org Digital Show and Tell, Episode 2.

• An article on “24 bit / 192 kHz Music Downloads and why they make no sense”; this
may seem tangential but explains the above in much more detail.

📌 Note: Algorithm for the “Nyquist Reconstruction” of Functions. The Nyquist-Shannon
sampling theorem tells us that it is possible to perfectly reconstruct a function with band
limit B as long as we have N = 2BT equally spaced sample points. But how do we compute
this reconstruction for discrete signals in practice? Put differently, how do we convert N
sample points ′0, . . . , ′N into a densely sampled signal 0, . . . , M with M ≥ N. The answer
is to use the Fourier transformation of the sample points.

First consider the reverse direction. We’re given a signal with band limit B and M ≥ N
equally spaced sample points 0, . . . , M. We can then compute the corresponding Fourier
coefficients ω−M/2, . . . , ω0, . . . ωM/2. If a function is band-limited with band-width B, this
means that only the N = 2BT frequency coefficients ω−BT , . . . , ω0, . . . , ωBT are nonzero.
Discarding the zero-coefficients and converting the remaining N frequency coefficients
back to the time-domain results in 2BT equally spaced sample points in the time domain,
′0, . . . , ′N.
Hence, if we want to convert ′0, . . . , ′N to 0, . . . , M with M ≥ N, we perform the above
steps in reverse: we convert ′0, . . . , ′N to the Fourier domain, pad with leading and
trailing zeros so we have M frequency coefficients, and convert to the time-domain.

In practice, there are more efficient ways to do this (i.e., interlacing the signal with zeros,
applying the right FIR/IIR filter and selecting M samples). This process is also known as
sampling rate conversion.

2.2 Basis Functions

Another popular way of representing functions as vectors is to express them in terms of a
linear combination of a set of basis functions. Let ϕ1, . . . , ϕq be functions X ⊂ R −→ R. In case
we chose these basis functions well, we can approximate a wide range of ƒ with a low error
over some interval X by linearly combining the basis functions:

ƒ (t) ≈ ƒ̂ (t) =
q∑
=1

ϕ(t) . (1)

The vector x = (1, . . . , q) now encodes the function.

A different way of reading the above equation is that we can evaluate the encoded function
ƒ̂ (t) at a point t by computing a dot product 〈,x〉, where  = ϕ(t). Put differently, if we

6

https://xiph.org/video/vid2.shtml
https://people.xiph.org/~xiphmont/demo/neil-young.html

SYDE 556/750 Lecture Notes Andreas Stöckel

know the point t at which we want to evaluate ƒ̂ (t), we can pre-compute a  to decode the
represented function at this point.

Computing the vector coefficient of x for orthonormal function bases. Given the
above, how do we compute the x that encodes a function ƒ . To a degree, this depends on the
choice of the basis functions. In the special case of an orthonormal function basis, that is

〈ϕ, ϕj〉 =
∫
X

ϕ(t)ϕj(t)dt =

1 if  = j ,

0 otherwise ,

then each coefficient of x = (1, . . . , q) is just given as

 = 〈ϕ, ƒ 〉 =
∫
X

ƒ (t)ϕ(t)dt . (2)

📌 Note: Relationship between sampling and basis functions. Sampling can be seen as a
special case of using basis functions. In particular, if we choose a set of Dirac-δ functions
ϕ(t) = δ(t− Δt) as basis functions, then eq. (2) will exactly “read out” the function values
at Δt. This is just a consequence of the definition of the Dirac-δ (see the notes for lecture
two and four); it holds

 =
∫
X

ƒ (t)δ(t − Δt)dt = ƒ (Δt) .

📌 Note: Basis functions and the Fourier/Laplace transformation. Notice that this is very
similar to the equation underlying the Fourier or Laplace transformations that we saw
earlier in the course. This is exactly because these transformations can be described in
terms of an orthonormal function basis.

The same equation—i.e., computing the dot-product between value that should be repre-
sented and the basis—is also used when representing a vector in terms of an orthonormal
vector basis. In a sense, we are just computing “how similar” the represented value is to
each basis vector/function, giving us the vector coefficients with respect to the new basis.

Computing the vector coefficients of x in the general case. In the general case, we
can compute the coefficients of x by sampling and solving a least squares problem

x = rgmin
x

N∑
k=1

q∑
=1

�
ƒ (tk) − ϕ(tk)�2 ,

where t1, . . . , tN are a set of N sample points. Note that this is exactly the optimization problem
we solve when computing population decoders D. This is not a coincidence; the tuning curves
in a neuron ensemble form a set of basis vectors.

7

SYDE 556/750 Lecture Notes Andreas Stöckel

Popular basis functions So what are some popular basis functions that people use to repre-
sent functions over time? As mentioned above, we have already seen the Fourier and Laplace
transformation, which—at least in their discrete versions—can be thought of as a basis trans-
formation.

Another popular (orthonormal) basis is the discrete cosine basis and the associated discrete
cosine transformation (DCT, cf. fig. 4). There are multiple versions of the DCT basis. One
particular version is given as

ϕ(t) = cos
�
( − 1)πt� for t ∈ X = [0,1] . (Discrete Cosine Basis)

Another popular set of basis functions (which are orthogonal, but not orthonormal) is the
Legendre basis (fig. 5). This is a so called “polynomial” basis, which means that the th basis
function is a Polynomial of order  − 1 (or  when counting from zero). The (shifted) Legendre
basis is given as

ϕ(t) = P̃(t) = (−1)−1
−1∑
k=0

�
n

k

��
n + k

k

�
(−t)k for t ∈ X = [0,1] . (Shifted Legendre Basis) (3)

3 Representing the Past: The Delay Network

We discussed two techniques for representing functions as vectors. The first technique, sam-
pling, has taught us that there are mathematical guarantees regarding the representation of
bandlimited functions. As long as our function ƒ is band-limited, we know that we can per-
fectly represent an interval X as a finite number of coefficients x = (1, . . . , N). The higher
the maximum frequency B in the signal, the more coefficients are required to represent it. This
relationship is less clear for the second technique we discussed, basis functions, but in prac-
tice, since many function space representations map higher frequencies onto basis functions
ϕ(t) higher indices , similar constraints hold here as well.

However, it is still unclear how to encode a function ƒ in a neural ensemble as a vector x. If
we were given a set of samples 1, . . . , N, we could either use those samples directly as our
function representation, or alternatively, if we wanted to represent these points with respect
to an orthonormal/orthogonal function basis, we can use a linear transformation to transform
the samples into the corresponding function space.

This still does not answer the question of where these samples come from. In particular, given
the goal that we want to represent a sliding window over the past, we need a technique to
somehow readjust our representation x in each time step.

3.1 Implementing Delays as a Dynamical System

In order to solve this problem, let’s start fresh and think about this from a different perspective—
we will come back to what we discussed in the previous section at the end.

8

SYDE 556/750 Lecture Notes Andreas Stöckel

2

1

0

1

(t)

Cosine Basis (q = 2)

1 2

0.0 0.2 0.4 0.6 0.8 1.0
t

1

0

1

f(t
)

RMSE = 0.25

f(t) = 0.02 1(t) 0.55 2(t)

2

1

0

1

(t)

Cosine Basis (q = 4)

1 2 3 4

0.0 0.2 0.4 0.6 0.8 1.0
t

1

0

1

f(t
)

RMSE = 0.16

f(t) = 0.02 1(t) 0.55 2(t) 0.10 3(t) 0.24 4(t)

2

1

0

1

(t)

Cosine Basis (q = 6)

1 2 3 4 5 6

0.0 0.2 0.4 0.6 0.8 1.0
t

1

0

1

f(t
)

RMSE = 0.038

f(t) = 0.02 1(t) 0.55 2(t) 0.10 3(t) 0.24 4(t) + 0.17 5(t) 0.14 6(t)

Figure 4: Representing a function (dotted line in the bottom plots) with a variable number q of cosine
basis functions over the interval X = [0,1]. The error goes to zero as q increases.

9

SYDE 556/750 Lecture Notes Andreas Stöckel

2

1

0

1

(t)

Legendre Polynomials (q = 2)

1 2

0.0 0.2 0.4 0.6 0.8 1.0
t

1

0

1

f(t
)

RMSE = 0.21

f(t) = 0.02 1(t) + 0.71 2(t)

2

1

0

1

(t)

Legendre Polynomials (q = 4)

1 2 3 4

0.0 0.2 0.4 0.6 0.8 1.0
t

1

0

1

f(t
)

RMSE = 0.14

f(t) = 0.02 1(t) + 0.71 2(t) 0.09 3(t) + 0.40 4(t)

2

1

0

1

(t)

Legendre Polynomials (q = 6)

1 2 3 4 5 6

0.0 0.2 0.4 0.6 0.8 1.0
t

1

0

1

f(t
)

RMSE = 0.086

f(t) = 0.02 1(t) + 0.71 2(t) 0.09 3(t) + 0.40 4(t) + 0.33 5(t) + 0.06 6(t)

Figure 5: Representing a function (dotted line in the bottom plots) with a variable number q of shifted
Legendre polynomials over the interval X = [0,1]. The error goes to zero as q increases.

10

SYDE 556/750 Lecture Notes Andreas Stöckel

One way of remembering a window of time [t− θ, t] is to implement a delay of θ seconds as a
dynamical system. This may sound a little counter intuitive—how does implementing a delay
help us to remember all the information within a time-window [t − θ, t]? Actually, thinking
about this a little more, when building a dynamical system that implements a delay, there is
no way around remembering the entire time-window. There has to be information about all the
time points in the interval [t − θ, t] in the system, because—as time t progresses—any point
within that interval will eventually be located at t − θ.

• Motivation: Implement a perfect delay of a time θ in the Neural Engineering Framework.

• This can be seen as a dynamical system. In the Laplace Domain, a perfect delay is e−sθ.

• Use Padé approximants up to a degree q to compute an LTI system approximating e−sθ.
This system has a one-dimensional input (t) and an internal state x(t) of dimension q:

x(t) = Ax(t) + B(t) (4)

θA = j ∈ Rq×q , j =

(2 + 1)(−1)  < j ,

(2 + 1)(−1)−j+1  ≥ j , (5)

θB = b ∈ Rq , b = (2 + 1)(−1) . (6)

• We can implement this LTI system as a neural ensemble using the transformation

A′ = τA +  ,

B′ = τB .

• The state x ∈ Rq represents more information than just the input θ seconds ago. It
represents the state at every point in time up to θ seconds.

• In fact, x represents the function ƒ[t−θ,t]
�
θ′
θ

� ≈  (t′ − θ′) in the Legendre basis


�
t′ − θ′� ≈ ƒ[t−θ,t] �θ′

θ

�
=

q∑
=1

P̃

�
θ′
θ

�
(t) .

• When representing x in neurons, we can not only decode delays but any function using
information from the past θ seconds.

• This network implements an optimal recurrent neural network remembering a slice of the
past, as so called “reservoir”.

3.2 Example: Implementing the Delay Network in Nengo

The above may seem a little abstract—correspondingly, we use this section to describe how
to actually implement the Delay Network in Python.

11

SYDE 556/750 Lecture Notes Andreas Stöckel

Step 1: Computing the matrices A, B. First, we need to compute A and B as defined in
eq. (6). These matrices depend on two paramters: q, the number of state dimensions, and
θ, the length of the time window. The following code has been adapted from Aaron Voelker’s
nengolib1 library and computes these matrices in a few lines of Python.

🐍 def make_delay_network(q, theta):

Q = np.arange(q, dtype=np.float64)

R = (2 * Q + 1)[:, None] / theta

j, i = np.meshgrid(Q, Q)

A = np.where(i < j, -1, (-1.)**(i - j + 1)) * R

B = (-1.)**Q[:, None] * R

return A, B

Step 2: Computing the equivalent neural LTI system matrices. We can then turn these
matrices into the feedback and input matrices A′ and B′ for a recurrently connected neural
ensemble as discussed in the previous lecture. To this end, we use a generic function that
takes τ, A, and B and outputs the adapted matrices A′ and B′.

🐍 def make_nef_lti(tau, A, B):

Ap = tau * A + np.eye(A.shape[0])

Bp = tau * B

return Ap, Bp

Step 3: Computing a Delay Decoder. In order to decode a delay θ′ from the function
representation x according to eq. (1), we need to evaluate the Legendre polynomials at θ′

θ .
Numpy implements Legendre polynomials in its np.polynomial module, so we do not have to
worry about writing code for eq. (3) ourselves.

🐍 def make_delay_decoder(q, thetap, theta=1.0):

ts = np.array(thetap / theta) # Compute the ratio between thetap and theta

return np.array([np.atleast_1d(

Evaluate the Legendre polynomial of order "i" shifted to [0, 1] at "ts"

np.polynomial.Legendre([0] * i + [1], [0, 1])(ts)) for i in range(q)])

Step 4: Building the network. Using Nengo, we use the system matrices A′ and B′ to
implement the recurrent neural network.

🐍 q, theta, tau = 6, 0.5, 0.1

Ap, Bp = make_nef_lti(tau, *make_delay_network(q, theta)) #

dec_250 = make_delay_decoder(q, 0.25, theta) # 250ms delay

with nengo.Network() as model:

1 https://github.com/arvoelke/nengolib

12

https://github.com/arvoelke/nengolib

SYDE 556/750 Lecture Notes Andreas Stöckel

nd_in = nengo.Node(nengo.processes.WhiteSignal(

high=2.0, period=10.0, rms=0.5))

nd_out = nengo.Node(size_in=1)

ens_x = nengo.Ensemble(

n_neurons=500, dimensions=q,

intercepts=nengo.dists.CosineSimilarity(q + 2))

nengo.Connection(nd_in, ens_x, transform=Bp, synapse=tau)

nengo.Connection(ens_x, ens_x, transform=Ap, synapse=tau)

nengo.Connection(ens_x, nd_out, transform=dec_250.T)

When executing this network, ens_x represents the q-dimensional state vector x that encodes
the past θ seconds in the Legendre function space, i.e., ƒ[t−θ,t] in the notation used above. We
could for example use the PES learning rule to learn a function that depends on ƒ[t−θ,t] . In the
above example, we just chose to compute a delay—the output node nd_out will contain the
input delayed by 250ms.

📌 Note: Using the cosine similarity distribution as intercept distribution. You may have
noticed the line intercepts=nengo.dists.CosineSimilarity(q + 2) in the above code.
This selects the tuning curve intercepts according to the distribution of the cosine similarity
between random vectors in q + 2 dimensions. Doing this is useful when building high-
dimensional neural ensembles—without adapting the intercepts, many neurons end up
not firing at all over large ranges of the represented space. With the adapted intercepts,
the input current distribution stays approximately constant. See this Jupyter Notebook by
Terrence C. Stewart and this tech report [4] for more details.

References

[1] Aaron R. Voelker and Chris Eliasmith. “Improving Spiking Dynamical Networks: Accurate
Delays, Higher-Order Synapses, and Time Cells”. In: Neural Computation 30.3 (Mar. 2018),
pp. 569–609. DOI: 10.1162/neco_a_01046. URL: https://www.mitpressjournals.org/
doi/abs/10.1162/neco_a_01046.

[2] Aaron R. Voelker. “Dynamical Systems in Spiking Neuromorphic Hardware”. PhD thesis.
Waterloo, ON: University of Waterloo, 2019. URL: http://hdl.handle.net/10012/14625.

[3] Aaron R. Voelker, Ivana Kaji, and Chris Eliasmith. “Legendre Memory Units: Continuous-
Time Representation in Recurrent Neural Networks”. In: Advances in Neural Information
Processing Systems. 2019.

[4] Aaron R. Voelker, Jan Gosmann, and Terrence C. Stewart. Efficiently Sampling Vectors
and Coordinates from the N-Sphere and n-Ball. Waterloo, ON: Centre for Theoretical Neu-
roscience, Jan. 2017. DOI: 10.13140/RG.2.2.15829.01767/1. URL: https://www.
researchgate.net/publication/312056739_Efficiently_sampling_vectors_and_

coordinates_from_the_n-sphere_and_n-ball.

13

https://github.com/tcstewar/testing_notebooks/blob/master/Intercept%20Distribution%20.ipynb
https://doi.org/10.1162/neco_a_01046
https://www.mitpressjournals.org/doi/abs/10.1162/neco_a_01046
https://www.mitpressjournals.org/doi/abs/10.1162/neco_a_01046
http://hdl.handle.net/10012/14625
https://doi.org/10.13140/RG.2.2.15829.01767/1
https://www.researchgate.net/publication/312056739_Efficiently_sampling_vectors_and_coordinates_from_the_n-sphere_and_n-ball
https://www.researchgate.net/publication/312056739_Efficiently_sampling_vectors_and_coordinates_from_the_n-sphere_and_n-ball
https://www.researchgate.net/publication/312056739_Efficiently_sampling_vectors_and_coordinates_from_the_n-sphere_and_n-ball

	Introduction
	Representing Functions
	Sampling
	Basis Functions

	Representing the Past: The Delay Network
	Implementing Delays as a Dynamical System
	Example: Implementing the Delay Network in Nengo

