
SYDE 556/750

Simulating Neurobiological Systems

Lecture 6: Recurrent Dynamics

Andreas Stöckel

Based on lecture notes by
Chris Eliasmith and Terrence C. Stewart

February 4 & 6 & 11, 2020

Accompanying Readings: Chapter 8 of Neural Engineering

SYDE 556/750 Lecture Notes Andreas Stöckel

Contents

1 Introduction 1

2 Exploring Recurrent Connections 2

2.1 Implementing Recurrent Connections . 2

2.2 Experimenting With Recurrent Connections . 3

2.3 Analysis of the Previous Experiments . 7

3 Implementing Arbitrary Dynamical Systems 8

3.1 Transforming a Linear Time-Invariant (LTI) System . 9

3.2 Transforming an Additive Time-Invariant System . 10

3.3 Transforming Arbitrary Dynamical Systems . 10

3.4 Examples . 11

4 Dynamics in Biological Systems: Eye Control 13

i

SYDE 556/750 Lecture Notes Andreas Stöckel

1 Introduction

📌
Note: We have now discussed the first two principles of the Neural Engineering Frame-
work: Representation and Transformation. These two principles allow us to build feed-
forward networks, i.e., networks that can – mathematically speaking – be described as
acyclic directed graphs. In this lecture we will address the final principle: dynamics.

Biological neural networks are dynamical systems – that is, they perform computation over
time; the past state of the network influences present computations. So far, we discussed two
sources of dynamics: neuron models and synaptic filters. The types of dynamics exhibited
by these two sub-systems are usually relatively short-lived; the system “forgets” its previous
state quite quickly. In turn, this means that each population in a pure feed-forward network
will eventually “forget” events that happened more than a fraction of a second ago.

💡 Example: Short-term dynamics of neurons and synaptic filters. LIF neurons “forget” their
history whenever they emit a spike – causing them to be reset to their initial state. Fur-
thermore, synaptic time constants are usually in a range between 1ms to 100ms.

This is of course not what we observe in biological systems. Most animals appear to have
memories of events in the past. These “memories” span time-frames of seconds to years. In
theory, there are three ways to implement such “memory”:

• Complex neuron models. Biological neurons and realistic neuron models typically
posses more complex dynamics, such as firing rate adaptation. However, the effects
of firing rate adaptation typically last for a few seconds only and are thus not sufficient
to explain “memory” in biological systems.

• Changing connection weights over time. Another form of “memory” can be imple-
mented by changing synaptic weights over time. In the context of the NEF we refer to
this process as “learning”.

• Recurrent connections. Introducing “backwards” (or “recurrent”) connections into a
network could allow us to “remind” the network about it’s previous state, preventing the
network from “forgetting”.

Both learning and recurrent connections are valid solutions to the problem of neural networks
“forgetting” the history of their input. Typically, synaptic weight changes are regarded as
evoking longer term changes (minutes to years), whereas recurrent connections are a model of
shorter term changes in dynamics (seconds to minutes). In this lecture we focus on recurrence,
giving rise to the third principle of the Neural Engineering Framework.

NEF Principle 3 – Dynamics
Neural dynamics are characterized by considering neural representations as control theo-
retic state variables. We can use control theory (and dynamical systems theory) to analyse
and construct these systems.

1

SYDE 556/750 Lecture Notes Andreas Stöckel

2 Exploring Recurrent Connections

Before we take a deeper dive into the mathematics of neural dynamics, we first discuss how
we can implement recurrent connections in the context of an NEF network, followed by some
experiments in which we explore what happens for certain functions that are being computed
in the feedback function.

2.1 Implementing Recurrent Connections

x

y

z = g1(x) + g2(y)

g1(x)

g2(y)

A

B

C

(a) Feed forward network

u x = g(u) + f(x)
g(u)

f(x)

A B

(b) Recurrent network

Figure 1: Comparing a feed-forward and a recurrent neural network.

📌 Note: When we talk about recurrent connections in the context of the Neural Engineering
Framework, we typically refer to a single neuron population that is connected back to itself.
While this might seem a little strange, this section is meant to point out that recurrent
connections change virtually nothing in terms of the equations that we have used so far.

Revisiting a neural population receiving input from two pre-populations As we dis-
cussed in the last lecture, fig. 1a depicts an ensemble C receiving input from two pre-ensembles
A and B. Mathematically, each neuron  in the post-population C receives an input current JC (t)

JC (t) =

wA

 ,
�
Apre ∗ h
�
(t)
�
+

wB

 ,
�
Bpre ∗ h
�
(t)
�
+ Jbis , where wA

 =
�
EDg1
�
 and w

B
 =
�
EDg2
�
 ,

where Apre and 
B
pre are the activities of the pre-populations A, B, respectively. The function h

is the synaptic filter, E is a matrix of post-population encoders, Dg1 is decoding the function
g1(x) from population A, Dg2 is decoding the function g2(y) from the pre-population population
B. Then, the value z represented by the population is approximately z = ƒ (x) + ƒ (y).

Recurrent populations We can use the same setup as above to implement the recurrent
connection depicted in figure fig. 1b. Here, a population B represents a value x and receives
input from both a pre-population A representing a value , as well as itself – representing the
value x. That is, each neuron  in B receives the current

JB (t) =

wA

 ,
�
Apre ∗ h
�
(t)
�
+

wB

 ,
�
Bpre ∗ h
�
(t)
�
+ Jbis , where wA

 =
�
EDg1
�
 and w

B
 =
�
EDg2
�
 .

Notice that apart from names, there is virtually no difference between the previous two equa-
tions. The population B approximately represents the value x = g()+ ƒ (x). In terms of control

2

SYDE 556/750 Lecture Notes Andreas Stöckel

theory, the variable  is the input to our system, whereas the variable x is the represented
value. The function g(x) is a function transforming our input, the function ƒ (x) is the feedback
function.

📌 Note: When implementing a computer simulation that contains recurrent connections,
each occurrence of a population pre-activity pre should be interpreted as the pre-population
activity from the last timestep.

Note that this will introduce a delay of one timestep each time a new set of populations is
connected. While not much of an issue in general, this delay is not part of the continuous
equations that are being simulated. The implementation of the Neural Engineering Frame-
work in Nengo is thus a little more clever and will only introduce delays if it has to; it will
not introduce a delay on pure feed-forward connections.

2.2 Experimenting With Recurrent Connections

The above equations illustrate how recurrent connections are implemented and what the rep-
resented value of the recurrently connection is. To get some intuition for the dynamics of such
a system, we can test different feedback functions ƒ (x). Figure 2 depicts the behaviour of a
population of LIF neurons representing a one-dimensional value along with various feedback
functions and various synaptic filter time constants.

📌 Note: The synaptic filter h(t) we are using here is the exponential low pass

h(t) =


1
τe
−t/τ if t ≥ 0 ,

0 if t < 0 .
(1)

This a version of the general synaptic filter discussed in lecture four (in particular n = 0).
For this specific case, we can compute the normalisation factor c in closed form. It holds
c = 1

τ . To see that this factor is correct, we can compute the integral∫ ∞
0

h(t)dt =
∫ ∞
0

1

τ
e−t/τ dt =

1

τ

�− τe−t/τ�∞0 = 1

τ

�
0 + τ
�
= 1 .

Feedback ƒ () =  + 1 The dynamics of the system for a feedback function ƒ () =  + 1 are
depicted in fig. 2a. The resulting system converges to a value slightly above one. The rate of
convergence is determined by the time constant τ and the scaling of the feedback function;
an increase of the time constant by a factor c seems to result in similar dynamics as dividing
the feedback function ƒ by c.

📌 Note: This system only converges to a fixed value due to saturation of the neural re-
sponses. For example, if we replace the LIF neurons with rectified linear units, the state 
will diverge monotonically towards infinity.

3

SYDE 556/750 Lecture Notes Andreas Stöckel

0.00 0.25 0.50 0.75 1.00
t (s)

1
0
1

f(x) = x + 1, = 5 ms

u(t) State x(t)

0.00 0.25 0.50 0.75 1.00
t (s)

1
0
1

f(x) = x + 1, = 20 ms

0.00 0.25 0.50 0.75 1.00
t (s)

1
0
1

f(x) = x + 1, = 100 ms

0.00 0.25 0.50 0.75 1.00
t (s)

1
0
1

f(x) = 4x + 4, = 20 ms

0.00 0.25 0.50 0.75 1.00
t (s)

1
0
1

f(x) = x + 1, = 20 ms

0.00 0.25 0.50 0.75 1.00
t (s)

1
0
1

f(x) = 1
5 (x + 1), = 20 ms

(a) Exploring the feedback function ƒ (x) =  + 1

0.0 0.5 1.0
t (s)

1

0

1
f(x) = x, = 100 ms

u(t) State x(t)

0.0 0.5 1.0
t (s)

1

0

1
f(x) = x, = 100 ms

0.0 0.5 1.0
t (s)

1

0

1
f(x) = x, = 100 ms

0.0 0.5 1.0
t (s)

1

0

1
f(x) = x, = 100 ms

0.0 0.5 1.0
t (s)

1

0

1
f(x) = x, = 20 ms

0.0 0.5 1.0
t (s)

1

0

1
f(x) = 0.6x, = 20 ms

(b) Exploring the feedback function ƒ (x) = −

0.0 0.5 1.0
t (s)

0

1
f(x) = x2, = 100 ms

u(t) State x(t)

0.0 0.5 1.0
t (s)

0

1

f(x) = x2, = 100 ms

0.0 0.5 1.0
t (s)

1

0
f(x) = x2, = 100 ms

0.0 0.5 1.0
t (s)

0

1
f(x) = x2, = 100 ms

0.0 0.5 1.0
t (s)

0

1
f(x) = x2, = 100 ms

0.0 0.5 1.0
t (s)

0

1
f(x) = x2, = 100 ms

(c) Exploring the feedback function ƒ (x) = 2s

Figure 2: Exploring the effect of different feedback functions ƒ (x), input signals (t), and synaptic time
constants τ on the dynamics of a single-population network. 100 LIF neurons, decoded data are filtered
with a 10ms time-constant exponential low-pass. ⌨ Code

4

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_06/media/code/dynamics_experiments.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t (s)

0.0

0.2

0.4

0.6

0.8

1.0

Impact of the synaptic filter time-constant

u(t)
(u h)(t)

= 1 ms
= 5 ms
= 10 ms
= 20 ms
= 40 ms
= 80 ms

Figure 3: Dynamics of a feed-forward system for varying synaptic time constants τ. 1000 LIF neurons,
decoded data are filtered with a 1ms time-constant exponential low-pass. ⌨ Code

Feedback ƒ () = − The dynamics of a system with the feedback function ƒ () = − are
depicted in fig. 2b. The system converges to exactly one half of the input (t). Rearranging
the function describing the represented value  yields

 = g() + ƒ () =  − ⇔  =


2
.

This explains why the function converges to a steady state of 
2 ; however, this analysis does

not help us to understand the dynamics of the system (e.g., the bottom half of fig. 2b).

Feedback ƒ () = 2 The dynamics for a feedback function ƒ () = 2 are depicted in fig. 2c.
The system converges to (t) for inputs (t) ⪅ 0.4 but diverges for larger values. Interestingly,
once the system is in a state with  > 0.4, it will not converge back to (t) for values of (t)
between approximately 0.2 and 0.4. This means that the system has some kind of memory.
For negative inputs (t) the system approximately converges to 1

2(t).

Mathematical Analysis

📌
Note: While the above examples give us a feeling for what the dynamics of a neural sys-
tem with recurrent connection might look like, these systems remain quite mysterious. We
need to perform some mathematical analysis in order to truly understand these networks.

In order to gain a better understanding of recurrent dynamics, let’s first revisit a simple feed-
forward network. Figure 3 shows a single neuron population with varying synaptic filter time-
constants τ. As we can see, the dynamics of the system almost exclusively depend on the

5

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_06/media/code/dynamics_experiments.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

filter time constant. Furthermore, as we have already discussed, it does not matter whether
we apply the filter before or after the encoding process. Correspondingly, it is sufficient to
analyse dynamics in terms of represented values and to ignore individual neurons.

📌 Note: Assumptions. As so often, we will ignore the fact that we are dealing with vectorial
quantities in the following subsection and instead assume that d = 1. That being said, all
equations also hold for higher-dimensional representations.

Furthermore, we will assume that the synaptic filter is the same for both the synapses from
the pre-populations, as well as the synapses filtering the recurrent connections. Often,
we will find that the recurrent connections have a longer time constant than the input
connections. However, the equations we derive still work reasonably well.

Analysing Neural Network Dynamics

The equation detailing the recurrence relationship  = g() + ƒ () did not not take time into
account and thus does not include the synaptic filter. Assuming that both the input and the
recurrent connections are filtered by the same filter (see the assumptions listed above) we get
the following dynamical system:

(t) =
�
h∗
�
g() + ƒ ()
��
(t) =
∫ ∞
−∞

h(t′)
�
g((t − t′)) + ƒ ((t − t′))�dt′ .

Unfortunately, and as we have seen in previous lectures, the convolution operator is a little
unwieldy. We could eliminate the convolution by switching to the Fourier Domain, however,
there is an alternative, more powerful alternative: the Laplace transformation L{ƒ} = F(s).

📌 Note: The Laplace transformation is a more general version of the Fourier transformation.

L{ƒ} = F(s) =
∫ ∞
0

ƒ (t)e−st dt ,

where s is a complex-valued parameter s = σ + ω. Notice that the Laplace and Fourier
transformation are almost the same if we let σ = 0; the major remaining difference are the
integration boundaries. Since the lower integration boundary of the Laplace transform is
zero (instead of −∞ in the case of the Fourier transformation), the Laplace transformation
is more suitable for causal systems.

The Laplace and Fourier transformation share many commonalities, including linearity,
and the fact that convolution becomes multiplication. Importantly however, it also holds

L
�
dƒ

dt

�
= L
�
ƒ̇
	
= sF(s) ,

that is, a time-differental just turns into multiplication with the variable s. This makes the
Laplace transformation an important tool for dealing with differential equations.

6

SYDE 556/750 Lecture Notes Andreas Stöckel

The Laplace-transform of the first-order exponential low-pass filter in eq. (1) becomes:

L{h} =
∫ ∞
0

h(t)e−st dt =
∫ ∞
0

1

τ
e−t′/τe−st′dt′ =

∫ ∞
0

1

τ
e−t′(1/τ+s)dt′

=

− 1

τ
�
1
τ + s
�
∞
0

=
1

1 + sτ
= H(s) .

Hence, we can rewrite the dynamical system we were looking at in the Laplace domain

X(s) = H(s)
�
G(s) + F(s)
�⇔X(s)(1 + sτ) = G(s) + F(s)⇔ sX(s) =

1

τ

�
G(s) + F(s) − X(s)� .

Converting back to the time domain we get the following differential equation

(Recurrent connection differential equation)

d

dt
(t) =

1

τ

�
g((t)) + ƒ ((t)) − (t)� . (2)

📌
Note: Canonical dynamical system, phase portraits, and equilibria. The canonical form of
time-independent a dynamical system

d

dt
x(t) = ϕ((t),x(t))

where ϕ(, ) is an arbitrary function mapping an input  and the state  onto a state
differential. We can draw the function ϕ(, ) as a so called phase portraits by drawing an
arrow corresponding to the state update in an - coordinate system (fig. 4).

The points where ϕ(, ) = 0 are called equilibria (singular: equilibrium). An equilibrium
can be either stable, or unstable. Intuitively, an equilibrium is stable if a small perturbance
causes the system to converge back to the equilibrium. An equilibrium is unstable, if small
perturbances cause the system to drift away from the equilibrium point.

Mathematically, one can compute whether a point (x,) is an unstable equilibrium by
computing the Jacobi J matrix of ϕ at that point and determining whether any of the real
components of the eigenvalues of J are positive.

2.3 Analysis of the Previous Experiments

Given the differential equation in eq. (2) we can now analyse the dynamics of the systems we
explored above. Note that in all cases our input translation function g() = .

Analysing ƒ () = + 1 For this particular feedback function, our dynamical system becomes

d

dt
(t) =

d

dt
ϕ((t), (t)) =

1

τ

�
(t) + (t) + 1 − (t)� = 1

τ

�
(t) + 1
�
.

Looking at the phase portrait for ƒ (, ) =  − 2 in fig. 4, we can see that this function will
diverge for inputs (t) ̸= −1.

7

SYDE 556/750 Lecture Notes Andreas Stöckel

2 1 0 1 2
State x

2

1

0

1

2
In

pu
t u

Phase portrait for u + 1

2 1 0 1 2
State x

2

1

0

1

2

In
pu

t u

Phase portrait for u 2x

2 1 0 1 2
State x

2

1

0

1

2

In
pu

t u

Phase portrait for u + x2 x

Figure 4: Phase portraits (see note) for the dynamical systems corresponding to the three feedback
functions we experimented with. Blue lines correspond the equilibria of the dynamical system ƒ (, );
dotted blue line corresponds to unstable equilibria. ⌨ Code

Analysing ƒ () = − For this feedback function, our dynamical system becomes

d

dt
(t) =

d

dt
ϕ((t), (t)) =

1

τ

�
(t) − 2(t)� ,

which can be re-written as
d

dt
(t) =

d

dt
ϕ((t), (t)) =

2

τ

�
(t)

2
− (t)
�
,

Looking at the phase portrait for ƒ (, ) =  − 2 in fig. 4, we can see that this system has an
line-attractor at  = 

2 .

Analysing ƒ () = 2 For this feedback function, our dynamical system becomes

d

dt
(t) =

d

dt
ϕ((t), (t)) =

1

τ

�
(t) + (t)2 − (t)� .

This system can be re-written as a dynamical system with two attractors

d

dt
(t) =

1

τ

�
(t) − 1 +
p
1 − 4(t)

2

��
(t) − 1 −
p
1 − 4(t)

2

�
.

These two attractors are visible in the phase portrait for ϕ(, ) =  + 2 −  (fig. 4); however,
we can see that one attractor (on the left side of the portrait) is stable, whereas the other
attractor is unstable (right side).

3 Implementing Arbitrary Dynamical Systems

We have seen how we can analyse the dynamics emerging from a certain input and feedback
function pair g(), ƒ (x). In other words, given a feedback function ƒ (x) and an input func-
tion g() we can find the corresponding dynamical system ϕ(,x). This raises the question
whether we can also invert this process, i.e., given a dynamical system ϕ(,x) find the feed-
back and input function ƒ (x), g() that implement this dynamical system in a neural context.

8

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_06/media/code/phase_portraits.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

A

B ∫u(t) x(t)+

(a) Canonical LTI system

A'

B'u(t) x(t)h+

(b) Neural LTI system

Figure 5: Comparison between an LTI system being evaluated using an integrator, compared to the
corresponding neural implementation. Our goal is to find matrices A′ and B′ such that the two systems
are equivalent.

3.1 Transforming a Linear Time-Invariant (LTI) System

We will first look at a special case, a linear time-invariant dynamical system (LTI). This is a
dynamical system of the form

ϕ(,x) = Ax + B , where  ∈ Rd′ ,x ∈ Rd,A ∈ Rd×d,B ∈ Rd′×d ,
and A is a matrix describing the feedback and B is a matrix describing a mapping from the
input onto the state differential.

Normally, we would implement an LTI system using a perfect integrator. Integration of the
differential gives us a new state, which is fed back for the computation of the next state
differential (fig. 5a).

However, when building neural networks, we do not have access to a perfect integrator. In-
stead, we have the synaptic filter h, which can be seen as a “leaky integrator”. Hence, we
are looking for a way to rewrite the dynamical system ϕ(,x) into a new dynamical system
ϕ′(,x), such that ϕ′ is equivalent to ϕ in the context of a leaky integrator (fig. 5b). In particu-
lar, we would like to find another LTI system

ϕ′(,x) = A′x + B′ .

Writing the canonical dynamical system and the neural dynamical system in the time domain
we get

d

dt
x(t) = Ax(t) + B(t) , x(t) =

�
h∗
�
A′x + B′
� �
(t) .

We would like to find A′ and B′ such that the two systems behave in the same way. Converting
to the Laplace to eliminate the convolution we get

sX(s) = AX(s) + BU(s) , X(s) = H(s)(A′X(s) + B′U(s)) .

9

SYDE 556/750 Lecture Notes Andreas Stöckel

Let’s expand the right equation and bring it into the same form as the left equation:

X(s) =
1

1 + sτ
(A′X(s) + B′U(s))

⇔X(s)(sτ + 1) = A′X(s) + B′U(s)
⇔ sτX(s) = A′X(s) + B′U(s) − X(s) = (A′ − )X(s) + B′

⇔ sX(s) =
1

τ
(A′ − )X(s) + 1

τ
B′ .

Comparing to our target equation we get

A =
1

τ

�
A′ − � , B =

1

τ
B′ .

Rearranging yields

(Neural implementations of LTI dynamical systems)

A′ = τA +  , B′ = τB . (3)

3.2 Transforming an Additive Time-Invariant System

We can apply the same math to a non-linear time-invariant dynamical system ϕ that can
be decomposed into an input translation function g() and a feedback function ƒ (x), that is
ϕ(,x) = g() + ƒ (x). Note that this is more general as a linear time-invariant system – since
g and ƒ can be non-linear functions – but not quite a general dynamical system.

Assuming that our target system is ϕ′(,x) = g′() + ƒ ′(x), i.e., we would like to find the input
translation function g′ and the feedback function ƒ ′ to use in our neural system. Using the
same approach as above, we get

X(s) = H(s)
�
G(U(s)) + F(X(s))

�
⇔ sX(s) =

1

τ

�
F(X(s)) − X(s)�+ 1

τ
G(X(s)) .

Transforming back to the time domain, comparing to the target system and rearranging yields

(Neural implementation of additive time-invariant dynamical systems)

ƒ ′(x) = τƒ (x) + x , g′() = τ . (4)

3.3 Transforming Arbitrary Dynamical Systems

The textbook is also giving an equation that allows us to transform an arbitrary, time-variant
dynamical system d(t)

dt = ϕ(,x, t). In this general case we get

′(U(s), X(s), s) =
1

τ
(U(s), X(s), s) + X(s) .

As we can see, we generally have to scale our dynamical system by 1
τ and feed back the

current state in order to “remind” the system of its past.

10

SYDE 556/750 Lecture Notes Andreas Stöckel

3.4 Examples

In this example we are using the above equations in order to implement some common dy-
namical systems in a neural network.

Integrator An integrator is defined as the following dynamical system:

d(t)

dt
=  ,

that is, if we write this as a canonical LTI system (eq. (3)), we get

d(t)

dt
= Ax + B , where A = 0,B =  .

Plugging the matrices A and B into eq. (3), we get

A′ =  , B′ = τ .

Figure 6 shows an integrator implemented in a neural ensemble. In order to verify that our
neural implementation is working correctly, we can compute the ideal response.

In particular, for the step function input (left diagram) we get

(t) =


0 if t < 0.1 ,

1 if 0.1 ≤ t < 1.1 ,

0 if 1.1 ≤ t ,
(t) =
∫ t
0
(t′)dt′ =


0 if t < 0.1 ,

t − 0.1 if 0.1 ≤ t < 1.1 ,

1 if 1.1 ≤ t .
We can see that the neural population seems to drift from the ideal value of one, but stays rel-
atively constant afterwards. Such errors are inevitable. Neural implementations of dynamical
systems are always approximations. As we have discussed before, errors in neural represen-
tations are caused by (at least) two kinds of error: static distortion and noise. Analysing the
impact of noise on the dynamics is hard. However, we can analyse this drift by drawing the
phase-portraits taking the error due to static distortion into account fig. 7.

For the sine wave input (middle diagram) we would expect

(t) = sin(2πt) , (t) =
∫ t
0
sin(2πt′)dt′ =

�
− cos(2πt

′)
2π

�t
0
=
1 − cos(2πt)

2π
.

This is also approximately what the neural ensemble is computing.

Oscillator An oscillator can be easily written down in terms of the following LTI system

A =

�
0 −ω
ω 0

�
, B = 0

where ω is the angular velocity. Applying eq. (3) we get

A′ =
�
1 −τω
τω 1

�
, B′ = 0 .

The dynamics of the resulting network are depicted in fig. 8. The phase portrait is shown in
fig. 9. Notice how the limited dynamic range of the neurons naturally restricts the maximum
amplitude of the oscillation.

11

SYDE 556/750 Lecture Notes Andreas Stöckel

0 1 2 3 4
Time t (s)

0.0

0.2

0.4

0.6

0.8

1.0

Step function input

u(t)
State x(t)

0 1 2 3 4
Time t (s)

1.5
1.0
0.5
0.0
0.5
1.0
1.5

Sine input

u(t) State x(t)

Figure 6: Dynamics of an integrator implemented using a neural ensemble. Decoded values filtered
with a 100ms first-order exponential low pass. The right plot shows the phase portrait of the system
implemented by the neural population. ⌨ Code

2 1 0 1 2
State x

2

1

0

1

2

In
pu

t u

Phase portrait (optimal)

2 1 0 1 2
State x

2

1

0

1

2
In

pu
t u

Phase portrait (neural)

Figure 7: Phase portraits of the optimal (left) and neural (right) implementation of an integrator. ⌨ Code

0.0 0.2 0.4 0.6 0.8 1.0
Time t (s)

1.5

1.0

0.5

0.0

0.5

1.0

Neural Oscillator

u(t) State x(t) State x(t)

Figure 8: Oscillator with ω = 4π (i.e., a frequency of 2Hz). The input in the beginning is required in
order to kickstart the oscillator. ⌨ Code

12

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_06/media/code/nef_implementations.ipynb
https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_06/media/code/nef_implementations.ipynb
https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_06/media/code/nef_implementations.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

2 1 0 1 2
State x

2

1

0

1

2
In

pu
t u

Phase portrait (optimal)

2 1 0 1 2
State x

2

1

0

1

2

In
pu

t u

Phase portrait (neural)

Figure 9: Phase portraits of the optimal (left) and neural (right) oscillator dynamics. ⌨ Code

0.0 2.5 5.0 7.5 10.0 12.5
Time t (s)

30

20

10

0

10

20

St
at

e

State over time

10 0 10
x0

20

10

0

10

20
x 1

2D slice of the state space

Figure 10: Neural implementation of the Lorentz Attractor. ⌨ Code

Lorentz Attractor A variant of the Lorentz Attractor is given as

dx(t)

dt
=

 102(t) − 101(t)
−1(t)3(t) − 2(t)

1(t)2(t) − 8
3 (3(t) + 28) − 28

 .
we can use eq. (4) to implement this system as a neural ensemble. An example showing this
attractor is given in fig. 10.

4 Dynamics in Biological Systems: Eye Control

As an example of a dynamical system in biology, we can have a look at horizontal eye control.
We know that horizontal eye position is controlled within a part of the brainstem called “Nuclei
Prepositus Hypoglossi”. In particular, we know that this part of the brain receives an eye
velocity  as an input (t) and outputs an eye position (t), which in turn is translated into
corresponding muscle tensions.

13

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_06/media/code/nef_implementations.ipynb
https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_06/media/code/nef_implementations.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

0 1 2 3 4 5
Time t (s)

0.0

0.2

0.4

0.6

0.8

1.0
Eye control dynamics

Stimulus
Position
Velocity

Figure 11: Simple horizontal eye control model

The optimal dynamical system that turns a velocity signal into a position is an integrator. We
know from above how to implement a perfect integrator. However, further experiments reveal
that the neural circuit in the Nuclei Prepositus Hypoglossi is not a perfect integrator. If a
person is told to fixate a point, and we afterwards turn the light off while telling the person to
still look into the same direction, their eye will drift back to the centre. This is not due to some
mechanical effect in the motor system, but due to the representation produced by the Nuclei
Prepositus Hypoglossi converging back to zero. This “drift to the centre” can be modelled as a
leaky integrator with an exponential decay with a time constant τeye of approximately 70 s.

Correspondingly, we get the following differential equation describing the dynamics of the
horizontal eye control system

̇(t) = − 1

τeye
 +  .

This is an LTI system. The corresponding NEF model would thus be

A′ = τ − 1

τeye
+ 1 , B′ = τ .

14

	Introduction
	Exploring Recurrent Connections
	Implementing Recurrent Connections
	Experimenting With Recurrent Connections
	Analysis of the Previous Experiments

	Implementing Arbitrary Dynamical Systems
	Transforming a Linear Time-Invariant (LTI) System
	Transforming an Additive Time-Invariant System
	Transforming Arbitrary Dynamical Systems
	Examples

	Dynamics in Biological Systems: Eye Control

