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1 Introduction

📌
Note: Until now, we have been concerned with representation in individual populations
of neurons. However, we ultimately want to be able to build neural networks. This means
that we have to find a systematic way of connecting neural populations. Optimally, the
connections should be chosen in such a way that information represented in the popula-
tions is transformed in a useful way.

We postulated that groups of neurons represent d-dimensional quantities x using nonlinear
encoding. The encoding process can be further separated into two stages: translating an
input x into a per-neuron input current J and applying the neural nonlinearity.

The current J that is being injected into the -th neuron of a population is defined as

J = α〈e,x〉+ Jbis . (1)

For rate neurons, this input current is turned into a spike rate according to the rate approxima-
tion  = G[ J]. In the context of spiking neurons, the input current is translated into a spike
train (t), a sum of Dirac-δ pulses.

We further postulated that the value being represented by a population can be estimated using
a linear decoder D. For spiking neurons, we added a filtering step using a filter h

x̂ = D for rate neurons, x̂(t) =
�
(D(t))∗ h
�
(t) for spiking neurons. (2)

📌 Note: Decoder computation. We discussed two methods for computing decoders D.

For the first method, we generated a random set of samples arranged in a matrix X. Using
the spike rate approximation G[ J], we computed an activity matrix A and obtained D using
the solution to the L2-regularised least-squares problem

DT = (AAT + Nσ2)−1AXT ,

where we estimate σ to match the deviation between the spike rate estimate and the
actual spike rates occurring in the network.

The second solution was to use a random input function x(t), and the recorded (filtered)
population spike trains (t). We discretised these functions into matrices A and X and
used the unregularised solution to the least-squares problem to obtain D

DT = (AAT)−1AXT .

As mentioned in the last lecture, these two methods should result in approximately the
same decoders. While the second method is technically superior, as it accurately char-
acterises the noise present in the neural population, the first method is computationally
much cheaper. This is why – from now on – we will use the first method to compute the
decoders. We can then use this decoding matrix in conjunction with spiking neurons.
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Of course, just describing an individual population of neurons is not really useful when building
large-scale brain models. We ultimately would like to describe how information is transformed
while it is sent from one population of neurons to another. In the Neural Engineering Frame-
work, connections between neural populations are performing these transformations.

NEF Principle 2 – Transformation
Connections between populations describe transformations of neural representations. These
transformations are functions of the variables that are represented by neural populations.

When looking at transformations from the perspective of large-scale modelling, researchers
are usually confronted with two very different questions.

• How do brains learn transformations? In other words, how are the connection
weights between neuron populations formed in such a way during the lifetime of an ani-
mal that they implement a desired task.

• What are optimal connection weights that compute a certain transformation?
Here, we assume that a brain has already learned to optimally perform a certain task.
In that case, we would just like to know what the corresponding connection weights the
system could have learned are. We would then like to use these weights in our model.
Essentially, we are building a model of a system that is already an expert.

For now, we will mostly concern ourselves with the second question, i.e., we are trying to build
models of “adult” or “expert” systems already capable of solving a certain task. We postulate
what the transformation may be that the system has learned and compute the optimal weights
that implement this transformation. We will talk about learning, i.e., building a system that
learns connection weights while it is being executed in a later lecture.

📌 Note: Hypothesis generation and testing. We should pause here and wonder what the
scientific purpose of building neural models with optimal connection weights is. Especially
since we do not assume that the brain itself employs the techniques for computing func-
tion decoders we discuss below. So, if not providing a theory of how synaptic weights are
formed within brains, what is the purpose of the Neural Engineering Framework?

Most importantly, the Neural Engineering Framework can be used to test hypotheses re-
garding potential functions of neurobiological systems. That is, we can test whether such
a system could implement a certain function under optimal circumstances. Conversely, if
we are not able to implement a function using mathematically optimal connection weights
(but taking other constraints into account), we can rule out this hypothesis.

Furthermore, building working functional models of neural systems remains challenging,
even under the “optimal synaptic weights” assumption. Hence, the Neural Engineering
Framework is not only an important tool for testing hypotheses (“can a function in theory
be implemented in a certain way?”), but also for explorative generation of hypotheses
(“this works within the NEF, could the brain be doing this?”).
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2 Building a Communication Channel

The simplest possible transformation is the identity function. Assume that we have two neural
populations A and B, where A represents a d-dimensional vector x ∈ Rd using n neurons, and
B represents a vector y ∈ Rd′ using m neurons. We would now like to send the value x from A
to B (assuming that d = d′), such that when simulating the network x and y are approximately
the same at all times. This type of transformation is also called a communication channel,
since we are merely sending information from one point in the system to another point in the
system without altering it.

Let’s try to think about how to build a communication channel “computing” y = x in a biolog-
ically plausible neural network. Then, in the next section, we will take what we have learned
and apply it to arbitrary transformations y = ƒ (x).

2.1 Sequential Decoding and Encoding

Given what we know so far, the simplest way of building a communication channel is by
sequential encoding and decoding. We are decoding the value x̂ represented by a population A,
followed by subsequent re-encoding of that value as y, the value represented by population B.
Figure 1 depicts the overall setup, including the individual encoding stages, neural nonlinearity
and the decoder.

An example of this type of communication channel is depicted in fig. 2. As we can see, se-
quential decoding and re-encoding to transfer to the represented value from population A to
population B seems to work, although there is a slight time delay between the two populations
due to the synaptic filters.

📌 Note: Location of the synaptic filter. Notice that the synaptic filters h are missing in
fig. 1. In biology, the synaptic filter would be placed at each individual connection from a
pre-neuron to a post-neuron (see below).

However, since we assume that h is a linear filter (this is because we model the filter using
convolution) and that it has a unit DC gain, placement of the filter does – mathematically
speaking – not matter as long as it is placed before the nonlinearity of each neuron layer.

2.2 Synaptic Weights

Evidently, the method discussed above works. Unfortunately, it is biologically implausible.
While neurons are often characterised as belonging to different “populations” or “layers”,
there is no equivalent of a dedicated decoder and encoder in biological neural networks that
somehow translates between these layers. Instead, as we have discussed in previous lectures,
individual neurons are connected via synapses.

Typically, there is an individual synapse for each connection from a pre-neuron j to a post-
neuron . Mathematically, we model synapses as having two properties: a synaptic weight j,
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Figure 1: Illustration of the process of encoding and decoding values represented in two populations of
neurons. If we wanted to build a communication channel without taking biology into account, we could
just decode the value represented in population A and then re-encode it in population B.
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Figure 2: Experiment depicting the effect of sequential decoding and re-encoding. Top: tuning curves
of the two neural populations. Bottom: Representations decoded from population A and B. The decoded
output from A is fed as an input into the population B. Notice that the represented value is minimally
delayed in population B.
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Figure 3: In biology, there are no encoders and decoders – individual neurons are connected via synapse,
and we model each synapse as a synaptic weight j (where  is the post-neuron index, and j is the pre-
neuron index). We arrange these weights in a matrix

�
W
�
j =j

as well as a synaptic filter h. The filter h describes the translation from a pre-neuron spike
into a post-synaptic current, whereas the weight j determines the magnitude of the current.
Notice that we can arrange the synaptic weights j into a matrixW ∈ Rm×n.
We can categorize synaptic weights j into three different types:

• Excitatory synapses j > 0: Excitatory synapses are characterized by evoking a pos-
itive post-synaptic current. That is, a spike from a pre-neuron arriving at an excitatory
synapse will, on average, increase the firing rate of the post-neuron.

• Inhibitory synapses j < 0: Conversely, inhibitory synapses are characterized by evok-
ing a negative post-synaptic current. Spikes arriving at inhibitory synapses will decrease
the average firing rate of the post-neuron.

• No connection j = 0: By writing down a connection weight matrix W, we implicitly
assume that there is all-to-all connectivity between two populations of neurons. However,
if a synaptic weights j happens to be exactly zero, this is equivalent to there being no
connection between the pre-neuron j and the post-neuron .

📌 Note: Synaptic filters and synaptic weights. Notice that we could collapse the synaptic
weight j into the synaptic filter. In other words, instead of assuming that all synapses
have the same synaptic filter, we could assign a scaled version of h to each synapse,
resulting in synaptic filters hj =jh.

The reason why we are not building our model in this way is solely due to computational
complexity. By assuming that all synapses have the same synaptic filter h, we can (as
mentioned in the previous note) exploit the linearity of convolution and collapse all convo-
lutions into a single one.
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2.3 Synapse Models and Biological Correlates

As noted above, the synaptic weights j, as well as the presence of a synaptic filter h, are
integral parts of a synapse model. That is, these two properties are a high-level abstraction of
what is actually happening in biology.

In particular, the synapse model h summarizes the mechanisms that result in the distinct
shape of the post-synaptic current, whereas the magnitude of the post-synaptic current is
summarized in the weights j. In biology, the magnitude of the response is influenced by a
multitude of factors.

• Presence of a synapse. If there is no connection between two neurons, the magnitude
of the response, and thus j, is zero.

• Neurotransmitter type. The type of neurotransmitter emitted by the pre-synapse de-
termines whether the post-synaptic current is excitatory or inhibitory. In biology, each
neuron can only produce one kind of neurotransmitter, a fact known as Dale’s princi-
ple [1]. Correspondingly, neurons themselves act (in most cases) either excitatorily or
inhibitorily on the post-neuron.

• Synaptic physiology. Among other factors, the number of synaptic vesicles, amount
of neurotransmitter within a vesicle, number of receptors in the post synapse, determine
the magnitude of the response.

Furthermore, a pre-neuron may connect to the same post-neuron multiple times. As an
extreme example of this, consider individual neurons in the Inferior Olive of the cerebel-
lum, which connect to Purkinje cells via axons called “climbing fibres”. Surprisingly, each
Inferior Olive neuron connects to exactly one Purkinje cell, yet it does thousands of times.

Note that these properties can change over time, essentially modulating the synaptic
weights; these longer-term changes in synaptic physiology are exactly what we refer to
as the aforementioned learning.

📌 Note: Current-based synapses. In case we define our filter h as follows

h(t) =


1
τe
−t/τ if t ≥ 0 ,

0 otherwise ,

the specific synapse model we are using here is commonly referred to as a “current-
based synapse model with exponential decay”. “Current-based” because we assume that
synapses directly translate spikes into synaptic currents, “exponential decay” because of
the form of the synaptic filter [2].

Of course, far more complex synapse models exist. We are going to talk about some of
those – in particular conductance-based synapses (not to be confused with conductance-
based neuron models, such as the Hodgkin Huxley model) – in more detail when we talk
about incorporating more biological realism into the Neural Engineering Framework.
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Figure 4: Decoding and encoding as linear operators. We can rearrange the linear parts of the encoding
process into an encoding matrix E.

2.4 Computing Synaptic Weights

We now know that our previous approach – sequential decoding and re-encoding – works, but
is biologically implausible because it does not describe neural connectivity in terms of synaptic
weights j. However, looking at the underlying equations we will see that this is not really
true, and that we can in fact continue to use decoding and re-encoding as a mathematical
abstraction.

Combining the current-encoding equation from eq. (1) with the decoding equation from eq. (2),
we can write current that is being injected into the -th neuron of the post-poulation as part of
the decoding and re-encoding process as

J = α〈e,D(x)〉+ Jbis .

Where (x) is the activity of the pre-population and D is the identity decoder of the pre-
population. Expanding the scalar product and rearranging we get

J = α
d∑

k=1

ek
n∑
j=1

dkjj(x) + Jbis = α
d∑

k=1

n∑
j=1

ekdkjj(x) + Jbis

=
n∑
j=1

α
d∑

k=1

ekdkj︸ ︷︷ ︸
j

j(x) + Jbis =
n∑
j=1

jj(x) + Jbis .

That is, we have now re-written the post-current of neuron  purely in terms of a weighted sum
of the pre-activities and a bias current. The coefficients j can be interpreted as exactly the
weights we have been looking for.

Comparing fig. 1 to fig. 4 provides an alternative view on the above equations. Essentially, we
can collapse the linear parts of the encoding process (multiplication with the encoding vectors
e and scaling by α) into a single matrix E. We then have two chained linear operators,
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described by the decoding matrix D and the encoding matrix E. The synaptic weight matrix
W is then given as the product between the two, that isW = ED.

Using these synaptic weights W is hence mathematically equivalent to sequential decoding
and re-encoding. Whenever we want to have access to the biologically plausible synaptic
weights we can just compute ED; otherwise we can continue to use encoders and decoders.

📌 Note: Low-rank matrices, factorization, and computational complexity. There is a good
reason why we should continue to use sequential decoding and re-encoding in our simula-
tions of neurobiological systems: once again, this boils down to computational complexity.

The above figure illustrates the process of multiplying to matrices C = AB, where A ∈ Rm×n,
B ∈ Rn×k, and C ∈ Rm×k. Naïvely, each cell in C is the inner product between two vectors
of size n. Since there are m × k cells in the matrix C, the overall complexity is in O(mkn),
or O(n3) for the special case m = k = n. There are more clever, yet mostly impractical
algorithms that (as of writing) bring the complexity down to O(n2.3728639) (see Wikipedia).

The computational complexity of multiplying the pre-population activities  ∈ Rn with the
weight matrixW ∈ Rm×n is hence O(nm), that is O(n2) for the special case n =m.

Conversely, assume that the dimensionality represented by the neuron populations A and
B is d. The decoding process x̂ = D has a computational complexity of O(dn), the encod-
ing process J = Ex̂+ Jbis has a complexity of O(dm). That makes for a total complexity of
O(d(n + m)), which is approximately O(dn) for n = m. Further assuming that d is a small
constant we get a linear complexity O(n) for the sequential decoding and re-encoding
process, compared to the quadratic complexity O(n2) for the full weight matrix.

Correspondingly, sequential decoding and re-encoding saves a lot of time compared to
using actual synaptic weights, and is one of the reasons why Nengo is so fast compared
to other spiking neural network simulators.

This trick is a special case of a more general concept called matrix factorisation. That
is, matrix multiplication with a matrix A ∈ Rm×k is much faster if A can be decomposed –
or factorised – into the product of two smaller matrices A = A1A2, where A1 ∈ Rm×n and
A2 ∈ Rn×k, where the smallest possible n for which such a product can be found is also
called the rank of a matrix. We can thus losslessly factorise a matrix and compute a fast
matrix product if the matrix is of low rank, that is n <min{m,k}.

8
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3 Approximating Arbitrary Functions

Being able to build a communication channel using sequential decoding and re-encoding –
which, as we have discussed above, is equivalent to using a biologically plausible synaptic
weight matrix W = ED – does not seem to be particularly exciting. After all, we set out to
compute arbitrary transformations y = ƒ (x). However, we are actually quite close to our goal.

3.1 Computing Linear Function Decoders

As a special case, let’s first think about computing arbitrary linear transformations ƒ (x) = Fx,
where F ∈ Rd

′×d transforms the d-dimensional value represented by the neural population A
into a d′-dimensional value that is going to be represented by the population B.

Again, we can sequentially decode using D, then apply our linear transformation F, and finally
re-encode the transformed value for the post-population using E. All these operations being
linear, we can just roll the linear transformation F into the decoder D, giving us a specialised
function decoder Dƒ = FD ∈ Rd′×n. Consequently, we could compute a synaptic weight matrix
Wƒ = EDƒ = EFD that performs the desired transformation.

3.2 Computing Nonlinear Function Decoders

We can generalise the above idea of a function decoder Dƒ to nonlinear functions. This can be
accomplished by slightly adapting the optimization problem we are solving when computing
the decoder. Instead of minimising the error ∥x̂ − x∥ (where x̂ = D(x)) over the space of
represented values X, we can minimise the error ∥ŷ − ƒ (x)∥, where ŷ = Dƒ(x):

Dƒ = rgmin
Dƒ

1

|X|
∫
X

Dƒ(x) − ƒ (x)2 dx .
Note that this is essentially the same equation we were looking at when solving for the identity
decoder – the only difference being that x has been replaced by ƒ (x) = y.

As before, we can discretise the integral by sampling N samples xk ∈ X. Then, the function
decoder Dƒ ∈ Rd′×n is given as

(Function Decoder)

Dƒ =
�
(AAT + Nσ2)−1AYT

�T
, where
�
Y
�
k =
�
ƒ (xk)
�
 . (3)

Again, this is the same decoder computation equation as before. All we did is replacing the
matrix X ∈ Rd×N by a matrix Y ∈ Rd

′×N, where each yk = ƒ (xk). In case ƒ (x) = x (the identity
function), this method is exactly equivalent to the equation we used to compute the identity
decoder D. Figure 5 shows some examples of various functions being decoded from a neural
population. The quality of the function approximation depends on the number of pre-neurons,
as well as the properties of the function we are trying to compute.
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(a) Function decodings for n = 10 pre-synaptic neurons
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(b) Function decodings for n = 100 pre-synaptic neurons

Figure 5: Decoding arbitrary univariate functions ƒ from two neuron populations with different neuron
counts n. The decoding error E (depicted is the RMSE) decreases with the number of neurons, yet
depends on the kind of function that is being computed. ⌨ Code
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Figure 6: Computing functions of values represented in multiple pre-populations. In general, if repre-
sented values are spread across multiple pre-populations, we can only compute linear combinations of
functions of the represented values (a). In order to compute nonlinear functions of multiple values, all
values need to be represented in a higher-dimensional neuron population (b). A special case is dendritic
computation, where nonlinear effects within the synapses of a neuron are exploited in order to compute
nonlinear multivariate functions of values not represented in the same pre-population.

📌 Note: Quality of function decodings. When decoding a function ƒ from a neural population,
we are only approximating that function – the same way we were approximating the iden-
tity function when computing the identity decoder. Hence, we will see some error when
computing transformations.

As mentioned above, and as visible in fig. 5, the decoding error depends on the number
of pre-neurons n – the more neurons, the smaller the error. Of course, when encoding
the decoded value in the post-population, we are adding an representational error by
representing the decoded value in a population of m neurons.

Furthermore, the error depends on the specific function ƒ we are trying to compute. In
general, depending on the shape of the neural tuning curves, we can decode smooth,
continuous functions quite well, whereas “jagged”, discontinuous functions are not well
approximated by decoding from a population of neurons. We analyse why that is in a
future lecture about analysing representations.

3.3 Multiple Pre-Populations

We can now approximate arbitrary transformations ƒ (x) in the connections between two neu-
ron ensembles. Essentially, we just compute a function decoder Dƒ and then perform sequen-
tial decoding and re-encoding, which on demand can be turned into a biologically plausible
neural network with a synaptic weight matrixWƒ = EDƒ .

The next question would be what happens if we connect multiple pre-populations to the same
post-population. In the Neural Engineering Framework, we assume that we just sum the post-
synaptic currents evoked by both pre-populations. Hence, the current J flowing into the -th
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pre-neuron is

J = 〈e,Dƒ1〉+ 〈e,Dg2〉+ Jbis ,

where 1 are the activities of the first pre-population, 2 are the activities of the second pre-
population, Dƒ is a function decoder decoding ƒ from the first-propulation, and Dg decodes g
form the second pre-population. Note that we can rewrite the above equation as

J = 〈e,Dƒ1 + Dg2〉+ Jbis ≈ 〈e, ƒ (x1) + g(x2)〉 ,
where x1 and x2 are the values represented by the two pre-populations. This means that we
are essentially computing the sum of the two functions.

Note that this does not allow us to compute non-linear multivariate functions such as ϕ(, y) =
y, if  and y are represented in separate pre-populations. However, we can compute multi-
plication by representing  and y in a two-dimensional population representing z = (, y), and
then decode ϕ out of this population (fig. 6).
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