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NEF Principle 1: Representation

NEF Principle 1 — Representation
Groups (“populations”, or “ensembles”) of neurons represent represent values via
nonlinear encoding and linear decoding.
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Lossless Codes
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x=f"1(a)

Decoding:

a=f(x)

Encoding:
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N —
Binary numbers: Nonlinear encoding, linear decoding

» Represent a natural number between 0 and 2" — 1 as n binary digits.
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Binary numbers: Nonlinear encoding, linear decoding

» Represent a natural number between 0 and 2" — 1 as n binary digits.

» Nonlinear encoding

1 oifx =21 >21,

0 otherwise.

ai = (f(x)); = {
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N —
Binary numbers: Nonlinear encoding, linear decoding

» Represent a natural number between 0 and 2" — 1 as n binary digits.

» Nonlinear encoding

1 oifx =21 >21,
0 otherwise.

ai = (f(x)); = {

» Linear decoding

ao
n—1 ) a
x=f"1(a) = 22’3; =Fa=(1 2 ... 21
i=0
an—1

» This is a distributed code . But, not robust against additive noise!
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e
Lossy codes

> Lossy code
Inverse f~1 does not exist, instead approximate the represented value

Encoding: a = f(x) Decoding: x ~ g(a)
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e
Lossy codes

> Lossy code
Inverse f~1 does not exist, instead approximate the represented value

Encoding: a = f(x) Decoding: x ~ g(a)
> Examples

» Audio, image, and video coding schemes
(MP3, JPEG, H.264)

» Basis transformation onto first n principal components (PCA)
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e
Lossy codes

> Lossy code
Inverse f~1 does not exist, instead approximate the represented value

Encoding: a = f(x) Decoding: x ~ g(a)

> Examples

» Audio, image, and video coding schemes
(MP3, JPEG, H.264)

» Basis transformation onto first n principal components (PCA)

» Neural Representations
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Tuning curves (1)
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Tuning curves (1)
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v

Last lecture: response curves:
a=G(J)

This lecture: tuning curves:
a=f(x)=G(Ji(x))

What sort of function can we try for
Ji(x)?

Introduce a gain a; and a bias J,bias:
Ji(x) = ajx + JPBs
ai(x) = Glayjx + JP18s)

«; controls the slope
JPias shifts curve left and right

Firing rate

Output rate G[J]
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» Does this work for all tuning curves?

2
bias K
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» Does this work for all tuning curves?

. 12
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» Does this work for all tuning curves?

» a) increasing: Yes!

» b) decreasing: Yes! (just let «; be negative)

» or, better yet, introduce e; which is either 1 or -1 and keep «; to
be always positive. This keeps the two ideas (slope and

ai(x) = G(ajx + J,bias)

increase/decreasing) separate.

ai(x) = G(aj(ejx) 4+ JP1s)
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» Does this work for all tuning curves?
ai(x) = G(ayjx + JP12)

>

IS
.

> a) increasing: Yes!
» b) decreasing: Yes! (just let a; be negative) e

> or, better yet, introduce e; which is either 1 or -1 and keep «; to (g Punspesdloms)
be always positive. This keeps the two ideas (slope and

increase/decreasing) separate. ‘ ‘\“\\%
ai(x) = G(ai(eix) + J7™) 2

-
d158

» c) preferred stimulus: Need some sort of similarity measure oo
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» But it shouldn't be too complicated. So far we've only needed to
introduce multiplication and addition, which are both things b
we're pretty sure neurons can do, so let’s avoid adding anything 10
else if we don't have to. Ideas? 5

a,-(x) = G(a,-sim(e,-,x) + J;bias) 1 10 30

Run speed (cm s")
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e
Encoders: Preferred Direction Vectors

P The represented value x doesn’t have to be a scalar
» What if it's a vector?
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e
Encoders: Preferred Direction Vectors

P The represented value x doesn’t have to be a scalar
» What if it's a vector?

» There's a simple similarity-like measure for vectors: the dot product

d
(xy) = xiys = cos(£(x,3) x|y
i=0

a,-(x) = G(oa,-(e,-, X) + J’bias)

» Constrain g; to be a unit vector

» Note that for scalar x, the only two unit vectors are +1 and -1
> So the increasing / decreasing scenario is a special case of this!
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Preferred Directions in Higher Dimensions: Representing 2D Values

Activity a (s—1)
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Preferred Directions in Higher Dimensions: Representing 2D Values
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e
Decoding

» Non-linear Encoding and Linear Decoding

aj = Glai(x,ej) + J,bias] , Encoding
x =Da Decoding

» How do we find D?
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e
Decoding

» Non-linear Encoding and Linear Decoding

aj = Glai(x,ej) + J,bias] , Encoding
x =Da Decoding

» How do we find D?

P Least-squares minimization

1 1
argmin E = / |x —x[|dx = / |x — Da(x)|| dx
D IX] Jx X] Jx
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e
Decoding via Least-squares Minimization

» Find the minimum decoding error

1 1
argminE—/Hx—i dx—/ x — Da(x)|| dx
g = o [ = slax= o [ - Dago)]

» Can't do that analytically (in general), so let's sample

N
argnri)inE— ZHX, Da(x;)]|
i=0
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e
Decoding via Least-squares Minimization

Let's write this in matrix form, where Aj = aj(xx) and X = (x1,...,xn)
We want ATDT = X7

So AA'DT = AXT

(AAT)"TAA'DT = (AAT)~1AXT

D7 = (AAT)"1AXT

In Python, D = np.linalg.1lstsq(A.T, X.T, rcond=None) [0].T

vVvvyVvVvVvVvyyy

(where Aisan x N array and X is a d x N array)

14/28



Decoding
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Sources of Noise in Biological Neural Networks

>
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Sources of Noise in Biological Neural Networks

>

>

Axonal jitter
Active axonal spike propagation

Vesicle release failure
10-30% of pre-synaptic events cause
post-synaptic current

Neurotransmitter per vesicle
Varying amounts of neurotransmitter
lon channel noise

lon-channels are “binary”, stochastic
Thermal noise

Network effects

Simple, noise-free inhibitory/excitatory
networks produce irregular spike trains

PRESYNAPTIC
NEURON

Synaptic vesicle

Neurotransmitter

Neurotransmitter
transporter,

Voltage-gated
ion channel

Receptor POSTSYNAPTIC

NEURoﬁ\\

» How to model? Gaussian noise
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e
NEF Principle 0: Noise

NEF Principle 0 — Noise
Biological neural systems are subject to significant amounts of noise from various
sources. Any analysis of such systems must take the effects of noise into account.
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Decoding Noisy A Without Taking Noise Into Account

Population Tuning Curves Ideal and Decoded Value Error (RMSE = 0.65)
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Decoding Noisy A Accounting for Noise

Population Tuning Curves Ideal and Decoded Value Error (RMSE = 0.16)
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Summary: Building a model of neural representation (Encoding)

Encoding

Population Tuning Curves

» Select d, possible range x € X, usually 200
X = {x[ x| < r,x € Rd} (r=1)
— 150
» Select number of neurons n N
. . Y]
> Select tuning curves, maximum rates S 100
= ej, aj, JpiBs o
> Sample e; from unit-sphere i 50
> Uniformly distribute x-intercept,
maximum rate
(U T

I I
-1.0 -0.5 0.0 0.5 1.0

» Encoding equation:
Represented value x

ai(x) = Glai(e;, x) + S
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Summary: Building a model of neural representation (Decoding)

Ideal and Decoded Value
Decoding 1.0
== |deal
» Uniformly sample N samples from X, A Decoded
X:(xl,...,xN) e '
el
» Compute A, where (A)j = a;(xk) % 0.0 -
9]
» Decoder computation: a
DT = (AAT + No1) TAXT —0:51
» Decoding equation: -1.0 , , ,
X — DA -1.0 -0.5 0.0 0.5 1.0

Represented value x
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Analysing Sources of Errors

Error due to noise Eise

1078 4 == 1/n
] —— Neurons
S .1
5 10 3
o i
3
-10

g 10!

10-1 —

T T
10! 103

Number of neurons n

1 /1 o
E:Q/ x = diaj(x)
1 i=1

Square error

Error due to static distortion Eg;.;

1071 4
1074 +
1077 .
—-= 1/n? DN
10-10 4 ot 1n* "
—— Neurons
T T
10t 103

Number of neurons n

2 n
1
dx + 502 §. 1 d?
1=

Edist

Enoise

22/28



Example: Horizontal Eye Position (1D)

b

Frequency (spikes s~1)

Frequency (spikes s-1)

750
0 : : . . .
0 100 200 300 400 500
Time (ms)
750
o
0- T ; : : :
0 100 200 300 400 500
Time (ms)

C

Discharge rate (spikes s1)

250

200 +

150 —

100 —

504

Left

T T Tt T T T 1
40 20 0 20 40 Right

Eye position (deg.)

23/28



N —
Example: Horizontal Eye Position (1D) (cont.)

> Step 1: System Description > Step 2: Design Specification
> What is being represented? > Range of values
> X = [-60,60]

P> x is the horizontal eye position
> Amount of noise
» What is the tuning curve shape? > About 20% of max(A)

> Linear, low Tyef, high Trc .
» Step 3: Implementation

> e c{l -1} » Choose tuning curve parameters

.. -1
» Firing rates up to 300s > Compute decoders
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Example: Arm Movements (2D)
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Example: Arm Movements (2D) (cont.)

» Experiment by Georgopoulos et al., 1982
» Preferred arm movement directions e;

» Idea: Population Vectors, decode using

X = Z aj(x)e; = EA
i=1
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Example: Arm Movements (2D) (cont.)

» Experiment by Georgopoulos et al., 1982
» Preferred arm movement directions e;

» Idea: Population Vectors, decode using
n
X = Z aj(x)e; = EA
i=1

& Good direction estimate
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Example: Arm Movements (2D) (cont.)

» Experiment by Georgopoulos et al., 1982
» Preferred arm movement directions e;

» Idea: Population Vectors, decode using
n
X = Z aj(x)e; = EA
i=1

& Good direction estimate

Q Cannot reconstruct magnitude
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Example: Arm Movements (2D) (cont.)

» Experiment by Georgopoulos et al., 1982
» Preferred arm movement directions e;

» Idea: Population Vectors, decode using
n
X = Z aj(x)e; = EA
i=1

& Good direction estimate

@ Cannot reconstruct magnitude

The NEF does not use population vectors!
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N —
Example: Arm Movements (2D) (cont.)

> Step 1: System Description »> Step 2: Design Specification
» What is being represented? > Range of values
> x the movement direction > X ={x||x|| <rxecR?}

(or hand position)
> Amount of noise
» What is the tuning curve shape? > About 20% of max(A)
> Bell-shaped

> Encoders are randomly > Step 3: Implementation

distributed along the unit circle » Choose tuning curve parameters

—1

> Firing rates up to 60s » Compute decoders
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Example: Higher Dimensional Representation
<)

P Vestibular system senses head
acceleration in 3D

» Axis aligned, must choose e; €
{[1,0,0],[-1,0,0],...,[0,0,—1]}

-- evenly distributed decoders
—— axis only decoders

square error
3

10 10° 10
N (number of neurons)

Same as three 1D populations

» Slightly lower precision
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Example: Higher Dimensional Representation

0

P~ 10
/ ) == evenly distributed decoders
—— axis only decoders
10"k
s
5]
©10
]
10°F
“074 0 ‘2 3
10 10 10 10
N (number of neurons)
P Vestibular system senses head » Same as three 1D populations

acceleration in 3D
» Axis aligned, must choose e; €
{[1, 0,0],[-1,0,0],...,]0,0, —1]} » Encoders affect accuracy

» Slightly lower precision
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Administration

> Assignment 1 has been released.

The due date is October 4, 2021.



Image sources

Title slide

“The Ultimate painting.”
Author: Clark Richert.
From Wikimedia.


https://commons.wikimedia.org/wiki/File:%22The_Ultimate_painting%22.jpg

