
SYDE 556/750

Simulating Neurobiological Systems
Lecture 3 and 4: Population Representation

Terry Stewart

September 15 & 20, 2021
▶ Slide design: Andreas Stöckel
▶ Content: Terry Stewart, Andreas Stöckel, Chris

Eliasmith

1 / 28

video/visual_cortex_KE952yueVLA.webm

video/hippocampal_place_cells_lfNVv0A8QvI.webm

NEF Principle 1: Representation

NEF Principle 1 – Representation
Groups (“populations”, or “ensembles”) of neurons represent represent values via
nonlinear encoding and linear decoding.

2 / 28

Lossless Codes
U
V
W
X
Y
Z

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

Q
P

R
S
T

1
2
3
4
5
6
7
8
9
0

Encoding: a = f (x) Decoding: x = f −1(a)

3 / 28

Binary numbers: Nonlinear encoding, linear decoding

▶ Represent a natural number between 0 and 2n − 1 as n binary digits.

▶ Nonlinear encoding

ai =
(
f (x)

)
i =

{
1 if x − 2i ⌊ x

2i

⌋
> 2i−1 ,

0 otherwise .

▶ Linear decoding

x = f −1(a) =
n−1∑
i=0

2iai = Fa =
(
1 2 . . . 2n−1

)

a0
a1
...

an−1

 .

▶ This is a distributed code .

4 / 28

Binary numbers: Nonlinear encoding, linear decoding

▶ Represent a natural number between 0 and 2n − 1 as n binary digits.

▶ Nonlinear encoding

ai =
(
f (x)

)
i =

{
1 if x − 2i ⌊ x

2i

⌋
> 2i−1 ,

0 otherwise .

▶ Linear decoding

x = f −1(a) =
n−1∑
i=0

2iai = Fa =
(
1 2 . . . 2n−1

)

a0
a1
...

an−1

 .

▶ This is a distributed code .

4 / 28

Binary numbers: Nonlinear encoding, linear decoding

▶ Represent a natural number between 0 and 2n − 1 as n binary digits.

▶ Nonlinear encoding

ai =
(
f (x)

)
i =

{
1 if x − 2i ⌊ x

2i

⌋
> 2i−1 ,

0 otherwise .

▶ Linear decoding

x = f −1(a) =
n−1∑
i=0

2iai = Fa =
(
1 2 . . . 2n−1

)

a0
a1
...

an−1

 .

▶ This is a distributed code .

4 / 28

Binary numbers: Nonlinear encoding, linear decoding

▶ Represent a natural number between 0 and 2n − 1 as n binary digits.

▶ Nonlinear encoding

ai =
(
f (x)

)
i =

{
1 if x − 2i ⌊ x

2i

⌋
> 2i−1 ,

0 otherwise .

▶ Linear decoding

x = f −1(a) =
n−1∑
i=0

2iai = Fa =
(
1 2 . . . 2n−1

)

a0
a1
...

an−1

 .

▶ This is a distributed code .

4 / 28

Binary numbers: Nonlinear encoding, linear decoding

▶ Represent a natural number between 0 and 2n − 1 as n binary digits.

▶ Nonlinear encoding

ai =
(
f (x)

)
i =

{
1 if x − 2i ⌊ x

2i

⌋
> 2i−1 ,

0 otherwise .

▶ Linear decoding

x = f −1(a) =
n−1∑
i=0

2iai = Fa =
(
1 2 . . . 2n−1

)

a0
a1
...

an−1

 .

▶ This is a distributed code . But, not robust against additive noise!

4 / 28

Lossy codes

▶ Lossy code
Inverse f −1 does not exist, instead approximate the represented value

Encoding: a = f (x) Decoding: x ≈ g(a)

▶ Examples
▶ Audio, image, and video coding schemes

(MP3, JPEG, H.264)

▶ Basis transformation onto first n principal components (PCA)

▶ Neural Representations

5 / 28

Lossy codes

▶ Lossy code
Inverse f −1 does not exist, instead approximate the represented value

Encoding: a = f (x) Decoding: x ≈ g(a)

▶ Examples
▶ Audio, image, and video coding schemes

(MP3, JPEG, H.264)

▶ Basis transformation onto first n principal components (PCA)

▶ Neural Representations

5 / 28

Lossy codes

▶ Lossy code
Inverse f −1 does not exist, instead approximate the represented value

Encoding: a = f (x) Decoding: x ≈ g(a)

▶ Examples
▶ Audio, image, and video coding schemes

(MP3, JPEG, H.264)

▶ Basis transformation onto first n principal components (PCA)

▶ Neural Representations

5 / 28

Tuning curves (I)

80 60 40 20 0

Sound intensity (dB)

0

200

400

600

800

Fi
ri

n
g

 r
a
te Auditory

cortex

Cochlear nerve

Trapezoid body

Superior
olivary complex

Medial geniculate

80 60 40 20 0 20 40 60 80 100
0

50

100

150

200

250

300

350

orientation (degrees)

fir
in

g
 r

a
te

 (
sp

ik
e
s/

s)

V1 data
best LIF fit
encoding function

6 / 28

Tuning curves (II)

7 / 28

▶ Last lecture: response curves:
a = G(J)

▶ This lecture: tuning curves:
a = f (x) = G(Ji(x))

▶ What sort of function can we try for
Ji(x)?

▶ Introduce a gain αi and a bias Jbias
i :

Ji(x) = αix + Jbias
i

ai(x) = G(αix + Jbias
i)

▶ αi controls the slope
▶ Jbias

i shifts curve left and right

80 60 40 20 0

Sound intensity (dB)

0

200

400

600

800

Fi
ri

n
g

 r
a
te Auditory

cortex

Cochlear nerve

Trapezoid body

Superior
olivary complex

Medial geniculate

10 5 0 5 10
Normalised input current J

0

50

100

150

200

250

Ou
tp

ut
 ra

te
 G

[J]
8 / 28

▶ Last lecture: response curves:
a = G(J)

▶ This lecture: tuning curves:
a = f (x) = G(Ji(x))

▶ What sort of function can we try for
Ji(x)?

▶ Introduce a gain αi and a bias Jbias
i :

Ji(x) = αix + Jbias
i

ai(x) = G(αix + Jbias
i)

▶ αi controls the slope
▶ Jbias

i shifts curve left and right

80 60 40 20 0

Sound intensity (dB)

0

200

400

600

800

Fi
ri

n
g

 r
a
te Auditory

cortex

Cochlear nerve

Trapezoid body

Superior
olivary complex

Medial geniculate

10 5 0 5 10
Normalised input current J

0

50

100

150

200

250

Ou
tp

ut
 ra

te
 G

[J]
8 / 28

▶ Does this work for all tuning curves?
ai(x) = G(αix + Jbias

i)

▶ a) increasing: Yes!
▶ b) decreasing: Yes! (just let αi be negative)

▶ or, better yet, introduce ei which is either 1 or -1 and keep αi to
be always positive. This keeps the two ideas (slope and
increase/decreasing) separate.

ai(x) = G(αi(eix) + Jbias
i)

▶ c) preferred stimulus: Need some sort of similarity measure

▶ But it shouldn’t be too complicated. So far we’ve only needed to
introduce multiplication and addition, which are both things
we’re pretty sure neurons can do, so let’s avoid adding anything
else if we don’t have to. Ideas?

ai(x) = G(αisim(ei , x) + Jbias
i)

9 / 28

▶ Does this work for all tuning curves?
ai(x) = G(αix + Jbias

i)

▶ a) increasing: Yes!

▶ b) decreasing: Yes! (just let αi be negative)
▶ or, better yet, introduce ei which is either 1 or -1 and keep αi to

be always positive. This keeps the two ideas (slope and
increase/decreasing) separate.

ai(x) = G(αi(eix) + Jbias
i)

▶ c) preferred stimulus: Need some sort of similarity measure

▶ But it shouldn’t be too complicated. So far we’ve only needed to
introduce multiplication and addition, which are both things
we’re pretty sure neurons can do, so let’s avoid adding anything
else if we don’t have to. Ideas?

ai(x) = G(αisim(ei , x) + Jbias
i)

9 / 28

▶ Does this work for all tuning curves?
ai(x) = G(αix + Jbias

i)

▶ a) increasing: Yes!
▶ b) decreasing: Yes! (just let αi be negative)

▶ or, better yet, introduce ei which is either 1 or -1 and keep αi to
be always positive. This keeps the two ideas (slope and
increase/decreasing) separate.

ai(x) = G(αi(eix) + Jbias
i)

▶ c) preferred stimulus: Need some sort of similarity measure

▶ But it shouldn’t be too complicated. So far we’ve only needed to
introduce multiplication and addition, which are both things
we’re pretty sure neurons can do, so let’s avoid adding anything
else if we don’t have to. Ideas?

ai(x) = G(αisim(ei , x) + Jbias
i)

9 / 28

▶ Does this work for all tuning curves?
ai(x) = G(αix + Jbias

i)

▶ a) increasing: Yes!
▶ b) decreasing: Yes! (just let αi be negative)

▶ or, better yet, introduce ei which is either 1 or -1 and keep αi to
be always positive. This keeps the two ideas (slope and
increase/decreasing) separate.

ai(x) = G(αi(eix) + Jbias
i)

▶ c) preferred stimulus: Need some sort of similarity measure
▶ But it shouldn’t be too complicated. So far we’ve only needed to

introduce multiplication and addition, which are both things
we’re pretty sure neurons can do, so let’s avoid adding anything
else if we don’t have to. Ideas?

ai(x) = G(αisim(ei , x) + Jbias
i)

9 / 28

Encoders: Preferred Direction Vectors

▶ The represented value x doesn’t have to be a scalar
▶ What if it’s a vector?

▶ There’s a simple similarity-like measure for vectors: the dot product

⟨x, y⟩ =
d∑

i=0

xiyi = cos(∠(x, y))∥x∥∥y∥

ai(x) = G(αi⟨ei , x⟩+ Jbias
i)

▶ Constrain ei to be a unit vector
▶ Note that for scalar x , the only two unit vectors are +1 and -1
▶ So the increasing / decreasing scenario is a special case of this!

10 / 28

Encoders: Preferred Direction Vectors

▶ The represented value x doesn’t have to be a scalar
▶ What if it’s a vector?
▶ There’s a simple similarity-like measure for vectors: the dot product

⟨x, y⟩ =
d∑

i=0

xiyi = cos(∠(x, y))∥x∥∥y∥

ai(x) = G(αi⟨ei , x⟩+ Jbias
i)

▶ Constrain ei to be a unit vector
▶ Note that for scalar x , the only two unit vectors are +1 and -1
▶ So the increasing / decreasing scenario is a special case of this!

10 / 28

Preferred Directions in Higher Dimensions: Representing 2D Values

x1

1.0 0.5 0.0 0.5 1.0
x2

1.0
0.5

0.0
0.5

1.0

Ac
tiv

ity
 a

 (s
1)

0
10
20
30
40
50
60
70

11 / 28

Preferred Directions in Higher Dimensions: Representing 2D Values

x1

1.0 0.5 0.0 0.5 1.0
x2

1.0
0.5

0.0
0.5

1.0

Ac
tiv

ity
 a

 (s
1)

0
10
20
30
40
50
60
70

2 0 2
Angle on the unit circle (rad)

0

10

20

30

40

50

60

Ac
tiv

ity
 a

 (s
1)

11 / 28

Decoding

▶ Non-linear Encoding and Linear Decoding

ai = G
[
αi⟨x, ei⟩+ Jbias

i
]
, Encoding

x̂ = Da Decoding

▶ How do we find D?

▶ Least-squares minimization

arg min
D

E =
1

|X|

∫
X
∥x − x̂∥dx =

1

|X|

∫
X
∥x − Da(x)∥dx

12 / 28

Decoding

▶ Non-linear Encoding and Linear Decoding

ai = G
[
αi⟨x, ei⟩+ Jbias

i
]
, Encoding

x̂ = Da Decoding

▶ How do we find D?
▶ Least-squares minimization

arg min
D

E =
1

|X|

∫
X
∥x − x̂∥dx =

1

|X|

∫
X
∥x − Da(x)∥dx

12 / 28

Decoding via Least-squares Minimization

▶ Find the minimum decoding error

arg min
D

E =
1

|X|

∫
X
∥x − x̂∥dx =

1

|X|

∫
X
∥x − Da(x)∥dx

▶ Can’t do that analytically (in general), so let’s sample

arg min
D

E =
1

N

N∑
i=0

∥xi − Da(xi)∥

13 / 28

Decoding via Least-squares Minimization

▶ Let’s write this in matrix form, where Aik = ai(xk) and X = (x1, . . . , xN)

▶ We want AT DT = XT

▶ So AAT DT = AXT

▶ (AAT)−1AAT DT = (AAT)−1AXT

▶ DT = (AAT)−1AXT

▶ In Python, D = np.linalg.lstsq(A.T, X.T, rcond=None)[0].T
▶ (where A is a n x N array and X is a d x N array)

14 / 28

Decoding

1.0 0.5 0.0 0.5 1.0
Represented value x

0

50

100

150

200

Fir
in

g
Ra

te
 (H

z)

Population Tuning Curves

1.0 0.5 0.0 0.5 1.0
Represented value x

1.0

0.5

0.0

0.5

1.0

De
co

de
d

x

Ideal and Decoded Value

Ideal
Decoded

1.0 0.5 0.0 0.5 1.0
Represented value x

0.075

0.050

0.025

0.000

0.025

Er
ro

r x
x

Error (RMSE = 0.02)

A AT DT AT DT − XT

15 / 28

Sources of Noise in Biological Neural Networks
▶ Axonal jitter

Active axonal spike propagation
▶ Vesicle release failure

10-30% of pre-synaptic events cause
post-synaptic current

▶ Neurotransmitter per vesicle
Varying amounts of neurotransmitter

▶ Ion channel noise
Ion-channels are “binary”, stochastic

▶ Thermal noise
▶ Network effects

Simple, noise-free inhibitory/excitatory
networks produce irregular spike trains

Synaptic vesicle

Voltage-gated
ion channel

Receptor

Neurotransmitter

Neurotransmitter
transporter

PRESYNAPTIC

NEURON

POSTSYNAPTIC

NEURON

POSTSYNAPTIC

NEURON

▶ How to model?

16 / 28

Sources of Noise in Biological Neural Networks
▶ Axonal jitter

Active axonal spike propagation
▶ Vesicle release failure

10-30% of pre-synaptic events cause
post-synaptic current

▶ Neurotransmitter per vesicle
Varying amounts of neurotransmitter

▶ Ion channel noise
Ion-channels are “binary”, stochastic

▶ Thermal noise
▶ Network effects

Simple, noise-free inhibitory/excitatory
networks produce irregular spike trains

Synaptic vesicle

Voltage-gated
ion channel

Receptor

Neurotransmitter

Neurotransmitter
transporter

PRESYNAPTIC

NEURON

POSTSYNAPTIC

NEURON

POSTSYNAPTIC

NEURON

▶ How to model?
16 / 28

Sources of Noise in Biological Neural Networks
▶ Axonal jitter

Active axonal spike propagation
▶ Vesicle release failure

10-30% of pre-synaptic events cause
post-synaptic current

▶ Neurotransmitter per vesicle
Varying amounts of neurotransmitter

▶ Ion channel noise
Ion-channels are “binary”, stochastic

▶ Thermal noise
▶ Network effects

Simple, noise-free inhibitory/excitatory
networks produce irregular spike trains

Synaptic vesicle

Voltage-gated
ion channel

Receptor

Neurotransmitter

Neurotransmitter
transporter

PRESYNAPTIC

NEURON

POSTSYNAPTIC

NEURON

POSTSYNAPTIC

NEURON

▶ How to model? Gaussian noise
16 / 28

NEF Principle 0: Noise

NEF Principle 0 – Noise
Biological neural systems are subject to significant amounts of noise from various
sources. Any analysis of such systems must take the effects of noise into account.

17 / 28

Decoding Noisy A Without Taking Noise Into Account

1.0 0.5 0.0 0.5 1.0
Represented value x

0

50

100

150

200

Fir
in

g
Ra

te
 (H

z)

Population Tuning Curves

1.0 0.5 0.0 0.5 1.0
Represented value x

1.0

0.5

0.0

0.5

1.0

De
co

de
d

x

Ideal and Decoded Value

Ideal
Decoded

1.0 0.5 0.0 0.5 1.0
Represented value x

1

0

1

Er
ro

r x
x

Error (RMSE = 0.65)

18 / 28

Decoding Noisy A Accounting for Noise

1.0 0.5 0.0 0.5 1.0
Represented value x

0

50

100

150

200

Fir
in

g
Ra

te
 (H

z)

Population Tuning Curves

1.0 0.5 0.0 0.5 1.0
Represented value x

1.0

0.5

0.0

0.5

1.0

De
co

de
d

x

Ideal and Decoded Value

Ideal
Decoded

1.0 0.5 0.0 0.5 1.0
Represented value x

0.4

0.2

0.0

0.2

Er
ro

r x
x

Error (RMSE = 0.16)

19 / 28

Summary: Building a model of neural representation (Encoding)
Encoding
▶ Select d , possible range x ∈ X, usually

X =
{

x | ∥x∥ ≤ r , x ∈ Rd} (r = 1)

▶ Select number of neurons n

▶ Select tuning curves, maximum rates
⇒ ei , αi , Jbias

i
▶ Sample ei from unit-sphere
▶ Uniformly distribute x -intercept,

maximum rate

▶ Encoding equation:
ai(x) = G

[
αi⟨ei , x⟩+ Jbias

i
] 1.0 0.5 0.0 0.5 1.0

Represented value x

0

50

100

150

200

Fir
in

g
Ra

te
 (H

z)

Population Tuning Curves

20 / 28

Summary: Building a model of neural representation (Decoding)

Decoding
▶ Uniformly sample N samples from X,

X =
(
x1, . . . , xN

)
▶ Compute A, where (A)ik = ai(xk)

▶ Decoder computation:
DT =

(
AAT + Nσ2I

)−1AXT

▶ Decoding equation:
X̂ = DA 1.0 0.5 0.0 0.5 1.0

Represented value x

1.0

0.5

0.0

0.5

1.0

De
co

de
d

x

Ideal and Decoded Value

Ideal
Decoded

21 / 28

Analysing Sources of Errors

101 103

Number of neurons n

10 11

10 10

10 9

10 8

Sq
ua

re
 e

rro
r

Error due to noise Enoise

1/n
Neurons

101 103

Number of neurons n

10 10

10 7

10 4

10 1

Sq
ua

re
 e

rro
r

Error due to static distortion Edist

1/n2

1/n4

Neurons

E =
1

2

∫ 1

−1

(
x −

n∑
i=1

diai(x)
)2

dx︸ ︷︷ ︸
Edist

+
1

2
σ2

n∑
i=1

d2
i︸ ︷︷ ︸

Enoise

22 / 28

Example: Horizontal Eye Position (1D)
a

0 100 200 300 400 500
0

750

Fr
eq

ue
nc

y
(s

pi
ke

s
s–

1)

0 100 200 300 400 500
0

750

Fr
eq

ue
nc

y
(s

pi
ke

s
s–

1)

10

H

Time (ms)

Time (ms)

H

b c

150

250

200

40 20 0 20 40

100

50

0

Left Right

D
is

ch
ar

ge
 r
at

e
(s

pi
ke

s
s–

1)

Eye position (deg.)

so

mr
sr

lr

mr

io

ir

lr

sr so

Top View

Front View

23 / 28

Example: Horizontal Eye Position (1D) (cont.)

▶ Step 1: System Description
▶ What is being represented?

▶ x is the horizontal eye position

▶ What is the tuning curve shape?
▶ Linear, low τref, high τRC

▶ ei ∈ {1,−1}

▶ Firing rates up to 300 s−1

▶ Step 2: Design Specification
▶ Range of values

▶ X = [−60, 60]

▶ Amount of noise
▶ About 20% of max(A)

▶ Step 3: Implementation
▶ Choose tuning curve parameters

▶ Compute decoders

24 / 28

Example: Arm Movements (2D)

25 / 28

Example: Arm Movements (2D) (cont.)

▶ Experiment by Georgopoulos et al., 1982
▶ Preferred arm movement directions ei

▶ Idea: Population Vectors, decode using

x̂ =

n∑
i=1

ai(x)ei = EA

⬤+ Good direction estimate

⬤– Cannot reconstruct magnitude

The NEF does not use population vectors!

26 / 28

Example: Arm Movements (2D) (cont.)

▶ Experiment by Georgopoulos et al., 1982
▶ Preferred arm movement directions ei

▶ Idea: Population Vectors, decode using

x̂ =

n∑
i=1

ai(x)ei = EA

⬤+ Good direction estimate

⬤– Cannot reconstruct magnitude

The NEF does not use population vectors!

26 / 28

Example: Arm Movements (2D) (cont.)

▶ Experiment by Georgopoulos et al., 1982
▶ Preferred arm movement directions ei

▶ Idea: Population Vectors, decode using

x̂ =

n∑
i=1

ai(x)ei = EA

⬤+ Good direction estimate

⬤– Cannot reconstruct magnitude

The NEF does not use population vectors!

26 / 28

Example: Arm Movements (2D) (cont.)

▶ Experiment by Georgopoulos et al., 1982
▶ Preferred arm movement directions ei

▶ Idea: Population Vectors, decode using

x̂ =

n∑
i=1

ai(x)ei = EA

⬤+ Good direction estimate

⬤– Cannot reconstruct magnitude

The NEF does not use population vectors!

26 / 28

Example: Arm Movements (2D) (cont.)

▶ Step 1: System Description
▶ What is being represented?

▶ x the movement direction
(or hand position)

▶ What is the tuning curve shape?
▶ Bell-shaped

▶ Encoders are randomly
distributed along the unit circle

▶ Firing rates up to 60 s−1

▶ Step 2: Design Specification
▶ Range of values

▶ X = {x | ∥x∥ ≤ r , x ∈ R2}

▶ Amount of noise
▶ About 20% of max(A)

▶ Step 3: Implementation
▶ Choose tuning curve parameters

▶ Compute decoders

27 / 28

Example: Higher Dimensional Representation

1
2
3

4

5

6

3

7

7

7

8 9

10

▶ Vestibular system senses head
acceleration in 3D

▶ Axis aligned, must choose ei ∈{
[1, 0, 0], [−1, 0, 0], . . . , [0, 0,−1]

}
▶ Same as three 1D populations

▶ Slightly lower precision

▶ Encoders affect accuracy

28 / 28

Example: Higher Dimensional Representation

1
2
3

4

5

6

3

7

7

7

8 9

10

▶ Vestibular system senses head
acceleration in 3D

▶ Axis aligned, must choose ei ∈{
[1, 0, 0], [−1, 0, 0], . . . , [0, 0,−1]

}
▶ Same as three 1D populations

▶ Slightly lower precision

▶ Encoders affect accuracy

28 / 28

Administration

▶ Assignment 1 has been released.

The due date is October 4, 2021.

Image sources

Title slide
“The Ultimate painting.”
Author: Clark Richert.
From Wikimedia.

https://commons.wikimedia.org/wiki/File:%22The_Ultimate_painting%22.jpg

