
SYDE 556/750

Simulating Neurobiological Systems

Lecture 3: Representation

Andreas Stöckel

Based on lecture notes by
Chris Eliasmith and Terrence C. Stewart

January 14 & 16 & 21, 2020

Accompanying Readings: Chapter 2 of Neural Engineering

SYDE 556/750 Lecture Notes Andreas Stöckel

Contents

1 Introduction 1

2 Codes: Representing Information 2

2.1 Lossless Codes . 2

2.2 Lossy Codes . 3

3 Neural Representation 4

3.1 Neural Tuning Curves . 4

3.2 The Encoding Equation . 6

4 Decoding Represented Values 7

4.1 Computing Identity Decoders . 8

4.2 Sources of Noise in Neural Systems . 11

4.3 Computing Decoders Taking Noise Into Account . 12

4.4 Analysing Sources of Error . 16

5 Building a model of a neural population 17

5.1 Example: Horizontal Eye Position (1D) . 19

5.2 Example: Arm Movements (2D) . 21

5.3 Example: Higher-dimensional Tuning . 21

i

SYDE 556/750 Lecture Notes Andreas Stöckel

1 Introduction

📌
Note: In the last lecture, we had a look at a the Leaky Integrate-and-Fire neuron model
as an approximation of the behaviour of biological neurons. In this lecture, we discuss a
theory of neural representation. Together, these two ideas will give us a theory of what
“the neural code” may be.

In order to survive in natural environments, animals must build representations of their sur-
roundings. This includes the physical properties of objects in their vicinity, such as velocity,
location, colour, etc., but also non-physical properties such as whether an object is edible, or
dangerous. Of course such representations are not only limited to external objects, but may
carry information about the own body (e.g., “proprioception”, configuration of limbs; location
in space), up to abstract thought and emotions.

For now, and mostly because it is the easiest to reason about, we shall restrict ourselves to
relatively low-level representations of sensory information. In this case, the fact that a neuron
is representing an external quantity is directly evident from correlation between the quantity
and the neuron’s activity. We saw examples of such representations in the first lecture. For
example, in the classical Hubel and Wiesel experiment (📺 Video, [hubel1959receptive]),
neural activity is correlated with the location and orientation of a bar of light (an “edge”) within
the visual field. Similarly, in the case of place cells (📺 Video), neural activity is correlated with
the location of the animal in space.

A central claim of the Neural Engineering Framework (NEF) is that values x – e.g., the physical
quantities mentioned above – are represented in the neural activity  of groups of neurons.
Furthermore, we claim that there is a non-linear encoding process that translates a value into
a neural activity pattern, and a linear decoding process that estimates the represented value
from neural activity patterns.

NEF Principle 1 – Representation
Groups (“populations”, or “ensembles”) of neurons represent values via nonlinear encod-
ing and linear decoding.

We will first discuss the encoding and decoding of values in a more abstract sense, and then
propose a particular mechanism by which values are encoded in the NEF. Since encoding only
takes us half of the way, we then discuss decoding, in particular in the presence of noise in
the neural activities.

 Notaton: Scalars, functions are italic letters (d, n, N, ƒ ,. . .), vectors are bold lowercase
letters (,e, x), matrices are bold uppercase letters (A), sets are double-struck uppercase
letters (R, N). A→ B denotes a function mapping from the domain A onto a codomain B.

d ∈ N Dimensionality of the value represented by a neuron population

n ∈ N Number of neurons in a neuron population

N ∈ N Number of samples

1

https://youtu.be/KE952yueVLA
https://youtu.be/lfNVv0A8QvI

SYDE 556/750 Lecture Notes Andreas Stöckel

〈x,y〉 : Rk × Rk → R Dot product between two k-dimensional vectors x and y

G[J] : R→ R+ Neural response for an input current J (response curve)

(x) : Rd → R+ Neural response of neuron  in a neural population (tuning curve)

(x) : Rd → (R+)n Neural response of all neurons in a neural population

e ∈ Rd Encoding vector, or “preferred direction”, of neuron  in a population

α ∈ R The -th neuron’s gain factor

Jbis ∈ R The -th neuron’s bias current

xj ∈ Rd j-th (out of N) input sample

x̂j ∈ Rd Decoded j-th input sample

X ∈ Rd×N Matrix of input samples

A ∈ Rn×N Matrix of sampled population activities

d ∈ Rn Decoding vector for the -th neuron in the population

D ∈ Rd×n Decoding matrix

2 Codes: Representing Information

Human societies have relied on exchanging coded information for millennia. Apart from written
and spoken language themselves, examples of such codes include flag semaphores, or Morse
code [2009itur].

These codes have in common that there is some kind of encoding process that turns an original
message x into a coded message , and a decoding process that reconstructs x from . If x
can be perfectly reconstructed, this is called lossless coding, otherwise lossy coding.

2.1 Lossless Codes

In the case of a lossless code, there exists an encoding function ƒ , as well as its inverse ƒ−1. It
holds

 = ƒ (x) , Encoding

x = ƒ−1() = g(ƒ (x)) . Decoding

Morse Code Morse code is an example of such a lossless coding scheme. A function ƒ takes
a character sequence and turns it into valid Morse code, consisting of dots (·) and dashes (−):

ƒ : S({A, . . . ,Z, })→M ,

ƒ−1 :M→ S({A, . . . ,Z, }) ,
where M ⊂ S({·,−}) is the set of valid Morse messages .

Here, S denotes the set of all sequences consisting of the given elements (i.e., the union over
all Cartesian powers).

2

SYDE 556/750 Lecture Notes Andreas Stöckel

Binary numbers As a more concrete example, let’s consider an n-bit binary coding of natu-
ral numbers. Here, our coded message  = (0, 1, 2, 3, . . . , n−1) where  ∈ {0,1}, while
our original value  is a natural number between zero and 2n − 1.
We can write down the encoding function ƒ

 =
�
ƒ ()

�
 =

1 if  − 2 � 
2

�
> 2−1 ,

0 otherwise .

This function is nonlinear – we cannot write it as a matrix-vector product. The decoding func-
tion ƒ−1 is given as

 = ƒ−1() =
n−1∑
=0

2 .

This function is linear in  because we can write it as a matrix-vector product

 = ƒ−1() = F =
�
1 2 . . . 2n−1

�


0
1
...

n−1

 .

Since a single value  is represented in multiple “units” (here: digits of a binary number), we
call this kind of coding scheme a distributed representation.

📌 Note: A precise definition of linearity is provided in the notes for Lecture 2.

We could imagine using such a binary coding scheme in the context of a neural network.
In a population of n neurons, each neuron  would represent one binary digit. However,
there are several problems with this approach.

• Individual units represent vastly different magnitudes. Since biological neural net-
works are noisy and we are using a linear decoding scheme, noise in the unit repre-
senting the digit  = 8 is amplified by a factor of 256 compared to noise in the unit
representing the digit  = 0.

• We assume that our units can only have two possible values, zero and one, whereas
neural units can have graded responses (cf. the response curve G[J]).

• The encoding function is quite complicated. There is no neurophysiological evidence
that brains use a binary coding scheme.

2.2 Lossy Codes

In contrast to lossless codes, lossy codes have no perfect inverse ƒ−1. Instead, we have a
decoding function g that approximates the original value. Mathematically, we have

 = ƒ (x) , Lossy Encoding

x ≈ g() = g(ƒ (x)) . Lossy Decoding

3

SYDE 556/750 Lecture Notes Andreas Stöckel

Examples of lossy codes In mathematics and engineering, examples of such lossy codes
include Principal Component Analysis (PCA; nonlinearly reduces a dataset onto its first n prin-
cipal basis vectors), and coding schemes for audio and images, such as MP3 and JPEG (these
coding schemes are based on the Discrete Cosine Transformation).

🌟 Aside: Surprisingly, the Discrete Cosine Transformation (DCT) turns out to be a close to
optimal linear transformation for the compression of natural signals. When computing
the PCA of a large corpus of natural images or audio (the PCA optimally ensures that
the most variance in the data is explained by the first dimensions), the resulting linear
transformation is very similar to the DCT. However, the DCT of a signal x can be computed
more efficiently (in O(d log(d))) compared to a general linear transformation (in O(d2)).

3 Neural Representation

As discussed in the introduction, there are some neuron populations in the brain that directly
represent information about stimuli in the environment. In order to better understand these
representations, we first have a look at so called tuning curves, mappings between external
stimuli and the neural activity.

After looking at some real-world data, we combine our observations into a general encoding
equation that captures as many properties of tuning curves as possible.

📌 Note: The coding scheme we are using for neural representation is both distributed and
(in practice) lossy. In contrast to binary coding, our distributed coding scheme is more
resilient to noise in the neural activities . Lossyness mostly stems from neurons having a
limited dynamic range (saturation effects) and – although this is not an inherent problem
of the coding scheme itself – noise in the neural system.

3.1 Neural Tuning Curves

In the last lecture, we have discussed neural response curves. Response curves are a mapping
between the current J injected into a neuron and the corresponding neural activities. Tuning
curves are a similar concept. However, instead of plotting the current J over the neural re-
sponse, we plot some varying (external) stimulus over the neural response. Figures 1 and 2
depict neural tuning curves as found in the neuroscience literature.

📌 Note: Tuning curves and internal stimuli. Neuroscientists usually define tuning curves
as the relationship between an external stimulus and the neural response. In the NEF
we extend this concept towards internal stimuli, i.e., neurons representing purely internal
states, such as short-term memory. The lack of such tuning curves in the literature may
be purely attributed to it being very hard to experimentally capture these relationships.

Overall, we can qualitatively distinguish between three types of tuning curves (cf. fig. 2d)

4

SYDE 556/750 Lecture Notes Andreas Stöckel

80 60 40 20 0

Sound intensity (dB)

0

200

400

600

800

Fi
ri

n
g
 r

a
te Auditory

cortex

Cochlear nerve

Trapezoid body

Superior
olivary complex

Medial geniculate

(a) Neural tuning curves for auditory processing

80 60 40 20 0 20 40 60 80 100
0

50

100

150

200

250

300

350

orientation (degrees)

fir
in

g
 r

a
te

 (
sp

ik
e

s
/s

)

V1 data
best LIF fit
encoding function

(b) Visual orientation tuning in V1.

Figure 1: (a) Neural firing rates in different brain regions involved in auditory processing as a func-
tion of sound intensity in cats. Figure adapted from [mann1997nervous] (Chapter 8), data from
[katsuki1969neural]. ⌨ Code used to plot the data. (b) Example of visual orientation tuning of a
cell in primary visual cortex of a macaque monkey. Figure copied from [eliasmith2003neural], fig. 3.1.

(a) (b) (c) (d)

Figure 2: Tuning curves of individual neurons in visual cortex (layer V1) for mice running in the dark.
(a-c) Neural firing rates over the running speed of the mouse. (d) Histogram over tuning curve types.
Figures copied from [saleem2013integration].

5

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_03/media/code/audition.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

i. Responses that increase with the intensity of the stimulus (stimulus and neural response
are positively correlated; cf. figs. 1a and 2a).

ii. Responses that decrease with the intensity of the stimulus (stimulus and neural response
are negatively correlated; cf. fig. 2c).

iii. Responses that have a preferred stimulus; their response is maximal if the stimulus has a
certain value and decreases if the value deviates from that value (cf. figs. 1b and 2b).

Tuning curves of type i. can be easily explained by rescaling and offsetting the neural input
current J to match the data. In other words, we have a simple current translation function J()
that converts the stimulus  into a current J that is being injected into the -th neuron of our
population:

J() = α + Jbis , (1)

where α is the so called gain factor and Jbis is the bias. These parameters are different for
each neuron in the population and model the diverse neural responses of individual neurons
within the same brain area. Tuning curves of type ii. can be generated by choosing a negative
gain α.

💡 Example: You can try to find parameters that qualitatively match the tuning curves in
figs. 1 and 2 by playing around with the gain and offset parameters in ⌨ this Jupyter
Notebook.

This leaves us with tuning curves of type iii., i.e. tuning curves having a preferred value. We
generate these tuning curves by extending the current translation function eq. (1) to accepting
vectorial quantities as input.

3.2 The Encoding Equation

In order to generate tuning curves that qualitatively match all types of tuning curves we have
seen above, we let our value x be a d-dimensional vector. The dimensionality of the repre-
sented value d is specific to each neuron population. We can then choose the dot product as
a measure of similarity (see note below):

J(x) = α〈x,e〉+ Jbis ,

where α, Jbis are the gain and bias terms for the -th neuron in the population, e ∈ Rd is the
neuron’s encoding – or “preferred direction vector”, and 〈·, ·〉 denotes the dot product between
two vectors. Note that e is always normalised to unit length, that is ‖e‖ = 1.

📌 Note: The dot product (also: inner product, scalar product) 〈x,y〉 of two vectors x,y ∈ Rd
is defined as

〈x,y〉 =
d∑
=0

y .

6

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_03/media/code/tuning_curve_experiments.ipynb
https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_03/media/code/tuning_curve_experiments.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

We implicitly treat all vectors as column vectors; a vector x ∈ Rd is implicitly a d × 1
matrix (i.e., a matrix of d rows and a single column). Hence, by the definition of matrix
multiplication, the dot product is also given as

〈x,y〉 = xTy (matrix dimensions: (1 × d) × (d × 1)→ (1 × 1)) .
In particular, note that the dot product can be interpreted as a vector similarity measure.
Namely, according to the Euclidean dot product formula

〈x,y〉 = cos(∠(x,y))‖x‖‖y‖ ,
where ‖ · ‖ denotes the standard L2-norm, and ∠(·, ·) is the angle inscribed between two
vectors. Hence, the dot product is maximal if the angle between the two vectors is zero
(they are pointing in the same direction, the cosine is +1) and zero if the two vectors
are orthogonal. It is minimal (the cosine is −1) if the two vectors are pointing in exactly
opposite directions.

Combining the current J(x) with the neuron response curve G[J] (where, again, G is specific
to each neuron population) yields the “encoding equation”, which describes the nonlinear
representational encoding process performed by each neuron within a population

(Encoding Equation)

(x) = G
�
J(x)

�
= G

�
α〈x,e〉+ Jbis

�
. (2)

Example: 1D Encoder In the case of a one-dimensional encoder, the encoding “vector” can
either be +1 or −1. This corresponds to o neurons that are either more active in the presence
of a stimulus (positive encoder), or neurons that are more active in the absence of a stimulus
(negative encoder).

Example: 2D Encoder Figure 3b shows a tuning curve in a 2D representational space. Note
that moving along the unit-circle in 2D-space generates the “preferred direction” tuning curve
type observed in nature.

4 Decoding Represented Values

As we have seen in the binary coding example above, some codes possess a “complex”, non-
linear encoding scheme, but can be decoded using a simple linear decoder. Neuroscientists
have similarly found that they can use a simple linear decoding scheme to extract represented
values from neural populations – we will later discuss some more examples.

In general, having a linear decoder means that we can estimate the value x̂ represented by a

7

SYDE 556/750 Lecture Notes Andreas Stöckel

x1

1.0 0.5 0.0 0.5 1.0
x2

1.0
0.5

0.0
0.5

1.0

Ac
tiv

ity
 a

 (s
1)

0
10
20
30
40
50
60
70

(a) 2D neuron tuning curve

2 0 2
Angle on the unit circle (rad)

0

10

20

30

40

50

60

Ac
tiv

ity
 a

 (s
1)

(b) 1D projection along the unit circle

Figure 3: 2D neuron tuning curve for the encoding vector e = (1/
p
2,1/
p
2). (a) 3D surface plot of the

2D neuron tuning curve. Axes correspond to the magnitude of the first two components of the repre-
sented value x = (1, 2). Orange arrow corresponds to the encoding vector. Dotted line corresponds to
the unit circle. (b) Neural activity along the unit circle is qualitatively similar to the bell-shaped tuning
curves observed in biology. ⌨ Code

neural population by multiplying its current activity  with a decoding matrix D:

() = G
�
α〈x,e〉+ Jbis

�
, Encoding

x̂ = D . Decoding

In the special case of a population representing a scalar value (i.e., the represented dimen-
sionality d = 1) we have

() = G
�
α〈, e〉+ Jbis

�
, Encoding

̂ = 〈d,〉 =
n∑
=1

d . Decoding

Now that we now how to decode the represented value x in principle, we of course have to
somehow compute these decoders.

4.1 Computing Identity Decoders

In order to compute the decoders, we first have to think about what the decoders should
optimally do. The roles of the decoders is to estimate the represented value. In the optimal
case we would like the decoded value x̂ to be equal to or as close as possible to the encoded
value x. That is, in general, we would like to minimize the average error E (also called a loss
function)

rgmin
D

E =
1

|X|
∫
X

‖x − x̂‖dx = 1

|X|
∫
X

‖x − D(x)‖dx , (3)

8

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_03/media/code/2d_encoder.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

where X is a compact subspace of the possible represented values in Rd we are interested
in, and |X| denotes the area or volume of that subspace – dividing by |X| ensures that we are
actually computing the average.

📌 Note: The dynamic range of a neural representation is limited due to neural saturation and
noise – it is not possible to represent all real numbers in a single neuron population. This
is why we are using this “weird” integral over a subspace X – we must restrict ourselves
to a range of numbers we want to be able to decode well.

The quantifier compact is just a mathematical technicality that ensures that X is actually
a “closed range” we can integrate over, and not just individual vectors picked from Rd.

Mathematical derivation In order to make the math a little more digestible, assume that
we want to find the decoders for scalar represented values (d = 1) and that the represented
values we are interested in are over the interval X = [−1,1]. The above equation becomes

rgmin
d

E = rgmin
d

1

2

∫ 1

−1

Ç
( − 〈d,()〉)2 d = rgmin

d

1

2

∫ 1

−1

�
 −

n∑
=1

d()

�2
d . (4)

This equality holds because eliminating the strictly monotonic square root does not change
the location of the minimum. Since this is a quadratic equation we know that there is exactly
one extremum. In this particular case, we also know that this extremum must be a minimum
(since the quadratic term has a positive sign). Hence, we can find the d that minimizes the
error by differentiating with respect to individual d and setting the derivative to zero:

∂E

∂d
=
1

2

∫ 1

−1
2

 −

n∑
j=1

djj()

!
(−()) d =

∫ 1

−1

n∑
j=1

j()dj()d −
∫ 1

−1
()d

!
= 0 .

Rearranging yields the following equality at ∂E
∂d
= 0:∫ 1

−1
()d =

∫ 1

−1

n∑
j=1

j()dj()d =
n∑
j=1

dj

�∫ 1

−1
j()()d

�
.

Upon closer inspection we see that this is a system of n linear equations over d = (d1, . . . , dn).
Hence, we can write this in matrix notation as ϒ = d, where

(ϒ) =
∫ 1

−1
()d , ()j =

∫ 1

−1
j()()d .

Further evaluation of the integrals is – generally speaking – not possible in closed form. What
we can do however is to approximate the integrals by (randomly) sampling. We pick N sample
points 1, . . . , N. Then, the above equation becomes (approximately)

1

N

N∑
k=1

(k)k =
1

N

n∑
j=1

dj
N∑

k=1

j(k)(k) .

The factor 1/N accounting for the discretisation of the integral cancels out. In matrix notation,
letting (A)k = (k) and ξ = (1, . . . , k) we get

d = −1ϒ ≈ (AAT)−1AξT , where ϒ ≈ Aξ and  ≈ AAT .

9

SYDE 556/750 Lecture Notes Andreas Stöckel

1.0 0.5 0.0 0.5 1.0
Represented value x

0

50

100

150

200
Fir

in
g

Ra
te

 (H
z)

Population Tuning Curves

1.0 0.5 0.0 0.5 1.0
Represented value x

1.0

0.5

0.0

0.5

1.0

De
co

de
d

x

Ideal and Decoded Value

Ideal
Decoded

1.0 0.5 0.0 0.5 1.0
Represented value x

0.075

0.050

0.025

0.000

0.025

Er
ro

r x
x

Error (RMSE = 0.02)

Figure 4: Example of decoding the represented values from a population of neurons. Left: Tuning
curves for a population of ten neurons. Tuning curves were chosen such that the -intercepts of the
tuning curves are sampled from a uniform distribution over the interval [−1,1]. The maximum firing
rate over that interval is uniformly sampled from [100,200]. Neuron encoders were randomly selected
to be either +1 or −1. Middle: Represented value and the decoded value on the same plot. Right:
Decoding error ̂ − . ⌨ Code

In general, solving eq. (3) directly (i.e., without assuming d = 1 and X = [−1,1]), we get

(Computing decoders without taking noise into account)

DT ≈ (AAT)−1AXT . (5)

Here, A =
�
(x1), . . . (xN)

�
is a matrix containing the population activities as column vectors

for each sample xk. X = (x1, . . . ,xk) is a matrix containing each input sample as a column
vector.

To summarize, in order to solve for decoders we first randomly sample a set of N values
X = (x1, . . . ,xk) we would like to represent. Using the encoding equation in eq. (2) we then
compute what the population activities would be for each of these samples, giving us A =�
(x1), . . . (xN)

�
. We then plug these matrices into eq. (5), giving us the decoding matrix D.

Figure 4 shows an example depicting the overall encoding and decoding process.

📌 Note: Least squares. The problem we just solved is a linear least squares optimisation
problem, and the solution given in eq. (5) has been independently discovered in the early
19th century by the mathematicians Adrien-Marie Legendre and Carl Friedrich Gauss.

📌 Note: Moore-Penrose Pseudo Inverse. The term “(AAT)−1A” is also called Moore-Penrose
Pseudo Inverse of a matrix A. It is sometimes written as A+ . The name “Pseudo Inverse”
stems from the fact that it performs an inverse-like operation for non-square matrices.

🐍
10

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_03/media/code/computing_decoders.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

In Python, you can solve the above linear least-squares problem using the following code:

import numpy as np

A = np.array(...) # n x N array

X = np.array(...) # d x N array

D = np.linalg.lstsq(A.T, X.T, rcond=None)[0].T

Have a look at the documentation of lstsq for a precise description of its behaviour.

4.2 Sources of Noise in Neural Systems

We now know how to compute linear decoders D that estimate the value represented by an
ensemble of neurons. However, we implicitly made the assumption that each neuron perfectly
implements its response curve G[J]. We know that this is not true in biological systems.

Noise due to spike rate estimation errors The response curve G[J] is only a first-order
approximation of a neuron’s behaviour. We know that in real biological systems neurons com-
municate using spikes – and it is impossible to perfectly estimate it’s firing rate over a short
time window (cf. the time and frequency uncertainty principle [gabor1946theory]). This
measurement error can be interpreted as noise.

Biological sources of error Nervous systems contain various sources of error, including,
but not limited to the following (cf. [gerstner2002spiking], Chapter 5.1)

• Axonal jitter. The action potential transmission speed varies between spikes. This is
because action potentials are transported actively, i.e., they do not travel along the axon
due to passive electrical properties of the axon, but are constantly renewed at the so
called “Nodes of Ranvier”.

• Neurotransmitter vesicle release failure. Only 10-30% of pre-synaptic spikes gener-
ate a post-synaptic event – one reason being that the release of neurotransmitter vesicles
is stochastic.

• Amount of neurotransmitter per vesicle. The amount of neurotransmitters in a vesi-
cle varies between vesicles. The intensity of the post-synaptic response depends on the
specific vesicle that releases neurotransmitter into the synaptic cleft.

• Ion channel noise. The excitatory and inhibitory post-synaptic currents are generated
by ion-channels in the neuron’s cell membrane opening and closing in response to receiv-
ing neuro transmitters. These ion-channels are binary: they can either be fully open or
fully closed. The graded nature of post-synaptic currents stems from the fact that many
ion-channels open and close in a stochastic fashion.

11

https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsq.html

SYDE 556/750 Lecture Notes Andreas Stöckel

1.0 0.5 0.0 0.5 1.0
Represented value x

0

50

100

150

200
Fir

in
g

Ra
te

 (H
z)

Population Tuning Curves

1.0 0.5 0.0 0.5 1.0
Represented value x

1.0

0.5

0.0

0.5

1.0

De
co

de
d

x

Ideal and Decoded Value

Ideal
Decoded

1.0 0.5 0.0 0.5 1.0
Represented value x

1

0

1

Er
ro

r x
x

Error (RMSE = 0.65)

Figure 5: Decoding the represented value from a population of neurons with added noise (Gaussian,
μ = 0, σ = 0.1mx(A)). See fig. 4 for the complete description. ⌨ Code

• Thermal noise. In general, on the level of molecular biology, many processes rely on
stochastic events triggered by thermal noise – this can be seen as an explanation of the
noisiness of – among others – the above processes.

• Network effects. Even simple, non-noisy recurrent networks of excitatory and inhibitory
spiking neurons can produce highly irregular spike patterns.

Given these considerations, we should add a zeroth principle to the NEF:1

NEF Principle 0 – Noise
Biological neural systems are subject to significant amounts of noise from various sources.
Any analysis of such systems must take the effects of noise into account.

Modelling Noise To test whether our modelling framework still holds when we take noise
into account, we should somehow be able to include noise to our models. There are two
potential ways how we can accomplish this. Either we add more detail to our neuron models
and simulate the noise sources, or we – for now – simply add noise from a distribution to our
neural activities .

Figure 5 depicts the decoding accuracy when adding Gaussian noise to the neural activities. As
clearly visible, our current method for computing the decoders is incapable of properly dealing
with this noise.2 Can we do better? Let’s go back to the drawing board and do some more
math.

4.3 Computing Decoders Taking Noise Into Account

The formula for computing the decoders given in eq. (5) has three problems.
1 In the text this principle is called an “addendum” and listed as the fourth principle. I think that this principle is
so fundamental that it should be number zero in the list. 2 To be fair, the example depicted in fig. 5 has been

consciously chosen to be close to a worst-case scenario.

12

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_03/media/code/computing_decoders.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

1. As discussed above, neural activities are always noisy (see discussion above) – we did not
account for this in our derivation of eq. (5).

2. From a mathematical perspective, AAT may not always be invertible – this may happen if
individual rows/columns in A are linearly dependent.

3. From a numerics perspective, even if AAT happens to be invertible (in a mathematical
sense), doing so may be numerically instable if individual rows/columns in A are almost
linearly dependent. This may happen if some neurons have approximately the same pa-
rameters.

Interestingly, addressing the first problem, i.e., taking noise into account when deriving eq. (5),
will magically solve the other two problems.

Mathematical derivation Again, we derive the math under the assumption that d = 1
(i.e., we are representing scalar values), but the result can be easily generalised to multiple
dimensions.

Furthermore, we assume that there is independent noise sampled from a Gaussian distribution
with mean zero and a standard deviation σ superimposed onto each neural activitiy. That is,
whenever we try to measure the neural activity of neuron  for an input , we really get a value
(x) + η, where η is a random variable that has been sampled from N (0, σ2).

Plugging this into our derivation from above and minimizing the expectation value E, we get

rgmin
d

E = rgmin
d

E

1
2

∫ 1

−1

�
 −

n∑
=1

d
�
() + η

��2
d


η

where η ∼ N (0, σ2)

= rgmin
d

E

∫ 1

−1

�
 −

n∑
=1

d() −
n∑
=1

dη
��2

d


η

= rgmin
d

1

2

∫ 1

−1

�
 −

n∑
=1

d()

�2
d +

1

2

n∑
=1

n∑
j=1

ddjE
�
ηηj

�
η,ηj

.

Note that the cross-terms in the above double-sum disappear: the expectation value of the
product between two independent, mean zero random variables is zero. We get

rgmin
d

E = rgmin
d

1

2

∫ 1

−1

�
 −

n∑
=1

d()

�2
d +

1

2

n∑
=1

d2 E
�
η2
�
η
.

Since the mean of the distribution is zero, the remaining expectation value is exactly the
variance of η:

rgmin
d

E = rgmin
d

1

2

∫ 1

−1

�
 −

n∑
=1

d()

�2
d +

1

2
σ2

n∑
=1

d2 . (6)

13

SYDE 556/750 Lecture Notes Andreas Stöckel

1.0 0.5 0.0 0.5 1.0
Represented value x

0

50

100

150

200
Fir

in
g

Ra
te

 (H
z)

Population Tuning Curves

1.0 0.5 0.0 0.5 1.0
Represented value x

1.0

0.5

0.0

0.5

1.0

De
co

de
d

x

Ideal and Decoded Value

Ideal
Decoded

1.0 0.5 0.0 0.5 1.0
Represented value x

0.4

0.2

0.0

0.2

Er
ro

r x
x

Error (RMSE = 0.16)

Figure 6: Decoding the represented value from a population of neurons with added noise (Gaussian,
μ = 0, σ = 0.2mx(A)) while accounting for noise. See fig. 4 for the complete description. ⌨ Code

📌 Note: Equivalence of “taking Gaussian noise into account” and L2-regularisation. Equa-
tion (6) can be interpreted in a different, but extremely useful manner. Essentially, our
error expression is exactly the same as when we set out to derive this equation without
noise, cf. eq. (4). The difference is that we penalize the magnitude of the coefficients d:
the larger |d|, the larger the error E will be.

Adding such a weight penalisation term is commonly referred to as regularisation. Gener-
ally, Lℓ-regularisation (where ℓ is a positive number, usually one or two) adds the following
loss term to E:

λ
n∑
=1

|d|ℓ ,

where λ is the so called “regularisation factor”. Hence, in the case above, we are using L2
regularisation with λ = σ2

2 .

The effect of regularisation is the following: when solving for d, we try to balance between
minimizing the error and not having large decoder coefficients d2 . Since the coefficients
are being squared, the optimal solution will be small, non-zero decoder coefficients that
effectively “average” over the activities from multiple neurons. This averaging is also able
to reduce the impact of noise on the activities.

We can now continue to solve for d as above. After some linear algebra, we arrive at the
following equation (here, directly for arbitrary represented dimensions d ≥ 1)

(Computing decoders taking noise into account)

DT ≈ �AAT + Nσ2
�−1

AXT , where  is the n × n identity matrix (7)

Adding a scaled version of the identity matrix to AAT ensures that the resulting matrix is
always invertible. If σ2 is large enough, this inversion is possible in a numerically stable way.

14

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_03/media/code/computing_decoders.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

As visible in fig. 6, the decoding error is now in an acceptable range, even if we add noise to
the pre-population.

🐍 In Python, you can solve the above regularised linear least-squares problem using the
following code:

import numpy as np

A = np.array(...) # n x N array

X = np.array(...) # d x N array

D = np.linalg.lstsq(

A @ A.T + 0.5 * N * np.square(sigma) * np.eye(n), A @ X.T,

rcond=None)[0].T

Using lstsq is numerically more stable than manually inverting the matrix using a function
such as np.linalg.inv.

📌 Note: Alternative derivation of eq. (7). The matrix A ∈ Rn×N contains samples of neural
activities for different represented values. In particular, we have n rows (one for each
neuron in the population) for N samples x1, . . . ,xN in each row. Furthermore, we assume
that there is Gaussian noise superimposed onto our measurements. So we have

A =

1(x1) + η1,1 . . . 1(xN) + η1,N
...

. . .
...

n(x1) + ηn,1 . . . n(xN) + ηn,N

 , where η,j ∼ N (0, σ2)

=

1(x1) . . . 1(xN)
...

. . .
...

n(x1) . . . n(xN)

+
η1,1 . . . η1,N

...
. . .

...
ηn,1 . . . ηn,N


= AGT + E .

The matrix AGT is a hypothetical matrix of unknown “ground truth” values and E is the
matrix of zero mean Gaussian noise terms. Looking at the term AAT from eq. (5) we find

AAT = (AGT + E)(AGT + E)T = AGTA
T
GT + AGTET + EAT

GT + EE
T .

The expectation value of the terms AGTET and EAT
GT is zero:

E
��
AT
GTE

�
j

�
E
= E

��
ETAGT

�
j

�
E
= E

� N∑
k=1

(xk)ηj,k
�
E
= E

� N∑
k=1

j(xk)η,k
�
E
= 0 ,

whereas the term E
�
ETE

�
evaluates to Nσ2. Hence, for N → ∞ (which, according to the

law of large numbers, is bringing us close to the expectation value), we get

(AAT)−1AXT ≈ (AGTA
T
GT + Nσ2)−1AGTXT .

15

SYDE 556/750 Lecture Notes Andreas Stöckel

101 103

Number of neurons n

10 11

10 10

10 9

10 8

Sq
ua

re
 e

rro
r

Error due to noise Enoise

1/n
Neurons

101 103

Number of neurons n

10 10

10 7

10 4

10 1

Sq
ua

re
 e

rro
r

Error due to static distortion Edist

1/n2

1/n4

Neurons

Figure 7: Error due to noise (left) and error due to static distortion (right). Experiment for a population
of LIF neurons with randomly distributed tuning curves and firing rates between 100 s−1 to 200 s−1,
uniform -intercepts over [−1,1], and σ = 0.01. ⌨ Code

Comparing this to eq. (7), we see that we implicitly assume in eq. (7) that our randomly
sampled activities A are equal to the hidden ground truth AGT, which – on average – is
correct, since we assume that η,j has a zero mean. We then manually add the term Nσ2,
which we would get if we let N go towards infinity – without actually needing infinitely
many samples. Pretty clever, since this saves us a lot of time!

However, the other way round, this derivation shows us that we don’t really need to add
the term Nσ2 to our sampled activities if only N is large enough (in particular, N� n).

4.4 Analysing Sources of Error

We mentioned earlier that neural representations are lossy – we cannot perfectly reconstruct
the represented value x. Looking at our loss function E in eq. (6), we see that we modelled
the error as caused by two separate effects

E =
1

2

∫ 1

−1

�
 −

n∑
=1

d()

�2
d︸ ︷︷ ︸

Edist

+
1

2
σ2

n∑
=1

d2︸ ︷︷ ︸
Enoise

. (8)

The left term, Edist, describes errors caused by static distortion, whereas the right term, Enoise,
describes errors due to noise.

Errors due to static distortion These errors are caused by the shape of the neural tuning
curves. Since we assume that the tuning curves are not changing over time, we call this error
“static”. To be more precise, Edist is caused by the fact that we are trying to decode the linear
identity function using a linear decoder. Hence, if our tuning curves are, well, “curved” (such
as tuning curves based on LIF neurons), the decoder must somehow eliminate that curvature.
The only way to accomplish this for a linear decoder is to find the right weighted average

16

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_03/media/code/error_experiment.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

over the tuning curves. However, in general, for randomly distributed tuning curves, there is
no way to perfectly decode a linear function from nonlinear tuning curves. Hence, there will
always be some degree of error due to static distortion.

📌 Note: Of course, we can construct edge-case tuning curve distributions in which perfect
decoding is possible. For example, consider two ReLU neurons representing a scalar value
with encoder e1 = 1 and encoder e2 = −1 (gain and bias are 1 and 0 for both neurons,
respectively). Then, the decoder d = (1,−1) will perfectly decode the represented value.

Errors due to noise The term Enoise is giving us an estimate of the amount of error caused
by noise, under the assumption that the noise is actually from a Gaussian distribution with
variance σ2. Intuitively, this error depends on the magnitude of the decoding coefficients –
if all decoding coefficients are zero, noise is effectively eliminated (although, of course, the
static distortion error Edist would be large in this case). The larger the decoding coefficients,
the more noise is transported from the neural activities  to the decoded values x̂.

Error for varying neuron counts n Given equation eq. (8) we can estimate the amount of
error caused by static distortion versus the amount of error caused by noise in the neural ac-
tivities as we change the number of neurons n. The (square) error due to noise is proportional
to 1/n, the error due to distortion is proportional to 1/n2 (cf. fig. 7).

5 Building a model of a neural population

With the knowledge we gained above, let’s discuss how to practically build a model of a neu-
ron population representing a d-dimensional vector x. This can be roughly mapped onto the
methodology described in the textbook [eliasmith2003neural], Chapter 1.5.

Step 1 and 2: System Description and Design Specification First, we have to make
a decision regarding the dimensionality d of the quantity x we want to represent, as well as
what the range of values X is. Normally, we define X as a d-dimensional hyper-ball with radius
r, that is X =

�
x | ‖x‖ ≤ r,x ∈ Rd	 (typically r = 1).

Furthermore, we have to specify how many neurons n are in the population, and what their tun-
ing curves are. This will have an impact on the precision with which the values are represented.
The tuning curves will determine the parameters we choose for α, Jbis , e.

In case we have no specific information about the tuning curves, we select these parameters
for each neuron in the population such that. . .

• . . . the encoders e are uniformly sampled from the unit-sphere. This can be achieved by
sampling each encoder component from a normal distribution (i.e., a Gaussian distribu-
tion with mean zero and variance one) and normalising the vectors to length one.

17

SYDE 556/750 Lecture Notes Andreas Stöckel

Figure 8: Extraocular muscles and typical activity of motor neurons. (a) Anatomical drawing of the
muscles controlling eye position. (b) Neural activity and eye position over time. (c) Neural activity over
eye position for two abducens motor neurons. There is a linear relationship between eye position and
firing rate. Caption and figure copied from [sparks2002brainstem].

• . . . the maximum neural firing rate is limited to the maximum rate we observe in biology.
The maximum firing rate is the rate we get when the represented value x is aligned with
the encoding vector e, i.e. 〈x,e〉 = r. Typically, the maximum firing rates of a population
should be uniformly distributed between 100 s−1 to 200 s−1. Note that Nengo uses a
maximum firing rate from 200 s−1 to 400 s−1, which is too large for most brain regions.

• . . . the -intercepts, i.e., the value of 〈x,e〉 at which the neuron just starts to have a
nonzero activity, should be uniformly sampled from [−r, r].

Step 3: Implementation After we have chosen the parameters above, we can encode
values x in the population. In other words, we can take an x and compute the neural population
response (x) according to the encoding equation. We can then uniformly sample N samples
x1, . . . ,xN from X and compute neural activation matrix A.

Finally, this allows us to compute the decoders D according to eq. (7), where σ depends
on the amount of noise we expect in the neural activities. As a rule of thumb, a value of
σ = 0.2mx(A) is a good starting point.

📌 Note: This might all still seem a little abstract – for this reason, you will implement all
these steps in Assignment 1.

18

SYDE 556/750 Lecture Notes Andreas Stöckel

50 0 50
Eye position x (deg)

0

50

100

150

200

250

300

Fi
rin

g
ra

te
 (s

1)

Population tuning curves

50 0 50
Eye position x (deg)

60
40
20

0
20
40
60

De
co

de
d

va
lu

e
x

Decoding

Decoded value
Ideal

Figure 9: Model of eye position representation. Left: Population tuning curves. Right: Ideal versus
actual decoding under noise. ⌨ Code

5.1 Example: Horizontal Eye Position (1D)

Figure 8 is taken from a review paper on the neural circuits involved in eye position control
[sparks2002brainstem]. The depicted neural activities show the firing rates of neurons
forming the abducens nerve, which is directly connected to the muscles controlling eye loca-
tion. As visible in the figure, there is an almost linear relationship between the eye position
(in degrees) and the neural activity. In addition to neurons exhibiting a positive relationship
between eye position and firing rate (“on” neurons, as depicted in the figure), there are also
neurons with the opposite relationship (“off” neurons).

We can now go through the three steps described above and try to build a neural ensemble
that represents eye location. See fig. 9 for an example.

• Step 1: System Description

– What is being represented?

∗ Represented quantity  is the
horizontal eye position

– What do the tuning curves look like?

∗ Extremely linear, low τref, high
τRC

∗ Some neurons have e = 1, others
have e = −1

∗ Firing rates up to 300 s−1

• Step 2: Design Specification

– Range of values

∗ X = [−60,60]
– Amount of noise

∗ About 20% of the maximum fir-
ing rate, hence σ2 = 0.04

• Step 3: Implementation

– Choose parameters that determine
the tuning curves

– Compute decoders

19

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_03/media/code/1d_eye_position.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

(a) Spike rasters for different movement directions (b) Single neuron tuning curve

Figure 10: Experiment by Georgopoulos et al, 1982. Diagram shows recordings from a single cell in
motor cortex representing the direction of hand movement and/or hand position. (a) Recordings from the
same cell in motor cortex over different trials. The individual sections correspond to a monkey moving
their hand from a centre location into one of eight directions. (b) Averaged tuning curve over different
directions with a sine fit. Figures copied from [georgopoulos1982relations].

(a) Population vectors

0 100 200 300
Direction of Movement

0

10

20

30

40

50

60

Fi
rin

g
Ra

te

(b) Tuning curve model

Figure 11: (a) Visualisation of the concept of a population vector. Each neuron (black lines) has a pre-
ferred direction. The magnitude of the neural activity while the animal is moving their arm into a certain
direction corresponds to the length of the black line. Georgopoulos decodes the motion direction from
the population by computing the average of the preferred direction vectors, weighted by the neural ac-
tivity of the corresponding neurons. In NEF terminology, this corresponds to using the matrix of encoders
E as decoders D. (b) Model of the movement direction tuning curve modelled in the NEF.⌨ Code

20

https://github.com/astoeckel/syde556-w20/blob/master/lectures/lecture_03/media/code/2d_arm_movement.ipynb

SYDE 556/750 Lecture Notes Andreas Stöckel

5.2 Example: Arm Movements (2D)

Figure 10a shows data from a experiment by Georgopoulos et al., in which neural activity in
motor cortex is recorded while a monkey is moving their hand into one of eight directions. The
neural activity is found to be highly correlated with the direction of movement, with individual
neurons having a clear “preferred direction” (fig. 10b). This gave rise to the idea of a “popula-
tion vector”, i.e., that the represented vector of the population is the average of the preferred
directions, weighted by the neural activities (fig. 11a).

📌 Note: While conceptually similar (i.e., there is a linear decoding scheme), the NEF does
not use “population vectors” in order to represent vectorial quantities – in particular, the
decoding process is different. Georgopulos essentially uses the encoders (i.e., the pre-
ferred directions) as decoders (cf. fig. 11a):

x̂ ≈
n∑
=1

(x)e = EA

This gives a reasonable estimate of the direction, but a terrible estimate of the magnitude
of the represented vector. In the NEF, we essentially assume that there is some correlation
between the represented value and the activity, and the decoders is used to decipher that
encoded value from the population activities.

Again, we can model this system using the NEF Principle 1. A single tuning curve that has
been modelled in this way is depicted in fig. 11b.

• Step 1: System Description

– What is being represented?

∗ x the movement direction (or
hand position)

– What do the tuning curves look like?

∗ Bell-shaped

∗ Encoders are randomly dis-
tributed along the unit circle

∗ Firing rates up to 60 s−1

• Step 2: Design Specification

– Range of values

∗ X = {x | ‖x‖ ≤ r,x ∈ R2}
– Amount of noise

∗ About 20% of the maximum fir-
ing rate

• Step 3: Implementation

– Choose parameters that determine
the tuning curves

– Compute decoders

5.3 Example: Higher-dimensional Tuning

While we assumed in the previous example that encoders are randomly distributed, this is not
necessarily the case. For example, take the vestibular system, i.e., the part of the inner ear
responsible for sensing head acceleration (cf. fig. 12a). This system consists of three orthogo-
nal canals (the “semicircular canals”), each detecting movement along one spatial dimension.

21

SYDE 556/750 Lecture Notes Andreas Stöckel

1
2
3

4

5

6

3

7

7

7

8 9

10

(a) Inner ear anatomy (b) Axis-aligned versus uniform encoders

Figure 12: (a) Anatomy of the inner ear. (1) Nervus vestibularis, (2) Nervus cochlearis, (3) Nervus
intermediofacialis, (4) Ganglion geniculi, (5) Chorda tympani, (6) Cochlea, (7) Ductus semicirculares,
(8) Malleus, (9) Membrana tympani, (10) Tuba auditiva. Figure and caption from Wikimedia, by Patrick
J. Lynch. (b) Difference between modelling multi-dimensional ensembles with axis aligned vectors or
uniformly distributed encoders. Figure from [eliasmith2003neural], fig. 2.11.

We could correspondingly model the sensory system as a population of neurons representing
a three-dimensional quantity, namely the direction into which the head is accelerating. How-
ever, it would be biologically implausible to choose random preferred directions, i.e. encoders.
Due to the physical properties of the organ, the preferred directions of the individual neurons
are axis aligned, we have encoders of the form

e ∈ �[1,0,0], [−1,0,0], [0,1,0], [0,−1,0], [0,0,1], [0,0,−1]	 .
This is equivalent to just using three independent one-dimensional neuron populations. In
general, the choice of the encoders affects the representation accuracy: axis-aligned encoders
may result in a higher accuracy compared to encoders uniformly sampled from the unit sphere
(fig. 12b). However, the choice of encoding vectors also affects how values represented by a
population can be transformed (we will talk about this in lectures 5 and 7).

22

https://commons.wikimedia.org/wiki/File:Ear_internal_anatomy_numbered.svg

	Introduction
	Codes: Representing Information
	Lossless Codes
	Lossy Codes

	Neural Representation
	Neural Tuning Curves
	The Encoding Equation

	Decoding Represented Values
	Computing Identity Decoders
	Sources of Noise in Neural Systems
	Computing Decoders Taking Noise Into Account
	Analysing Sources of Error

	Building a model of a neural population
	Example: Horizontal Eye Position (1D)
	Example: Arm Movements (2D)
	Example: Higher-dimensional Tuning

