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(Psychology) language . .
> Most complex and most interesting

tem Meps system humanity has ever studied
Systems Neuroscience X
‘ perception, » Why study anything else?
1mm Networks movement,
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Theoretical Neuroscience

100 ym ’ Neurons

> What techniques/tools?

Cellular

Neuroscience

» How do we know if we're making

T }Jm 777777 ’Tyl’la‘m hardware
Molecular progress?
Neuroscience . .
10nm | Molecules »> How do we deal with the complexity?

DISCIPLINE SCALE LEVEL OF INFORMATIVE
ORGANIZATION  ABOUT

3/39



e
Theoretical Neuroscience vs. Theoretical Physics

Theoretical Theoretical
physics neuroscience
Quantify phenomena F = ma x = Da
Summarize lots of data motion of objects neural representation of
information
Speculative (generate true for all velocities true for all stimuli

hypotheses)

4/39



e
Theoretical Neuroscience vs. Theoretical Physics

Theoretical Theoretical
physics neuroscience
Quantify phenomena F = ma x = Da
Summarize lots of data motion of objects neural representation of
information
Speculative (generate true for all velocities true for all stimuli

hypotheses)

Similarities
» Methods are similar

» Goals are similar (quantification)

4/39



e
Theoretical Neuroscience vs. Theoretical Physics

Theoretical Theoretical
physics neuroscience
Quantify phenomena F = ma x = Da
Summarize lots of data motion of objects neural representation of
information
Speculative (generate true for all velocities true for all stimuli
hypotheses)
Similarities Differences
» Methods are similar > “What exists?” vs. “Who are we?"
» Goals are similar (quantification) » Even more simulation in biology

4/39



N —
Neural Modelling

'MIDWEST STUDIES IN PHILOSOPHY, XIX (199¢)

If You Can’t Make One,
You Don’t Know How It Works
FRED DRETSKE

e e g s o o sy et 1ot s v
ot me T e of s sy s s cue n o |l &
el e e levin s f all h i vords, I you 't

e s of e vt v
v, for intance, hat you cn understand bow somethng works ad.
il ot be bl 10
svalaie. You cannot afford them, You e too cunsy o not 10ng enough
“The polce willno et yo.
Valco know that you may be abie 1 make one and sl ot know how
now how the parts work. | can solde a snaggle 02

noting abou lecricty, though, assembing one gave him o idea of by
television wor
i . b, sgping s i sl b il e ¢ i
o baoingBow ¢ vtk Only ey Ao 1 o o much
Vheter o cun ocnally Pt one ogebt, 1 s ncugh f Yo o how
et er B 81 i 0ot oo b o ke all e g
il A

1tis motivaed

progran. This goes fo the mind 2 wel a5 any other conspeion. If you
Want 1o know what inligence is oF what it takes 1 have & though, you
-

‘If you can’t make one, you don’t
know how it works”
— Fred Dretske, 1994

5/39



N —
Neural Modelling

'MIDWEST STUDIES IN PHILOSOPHY, XIX (199¢)

If You Can’t Make One,

i i You Don’t Ki He Tt Works
» Let’s build it o D Ko o 11 s

» Requires a mathematically detailed theory

» Often complex; need computer simulation

“If you can’t make one, you don’t
know how it works”
— Fred Dretske, 1994

5/39



Neural Modelling

'MIDWEST STUDIES IN PHILOSOPHY, XIX (199¢)

If You Can’t Make One,

’ Let'S build it You Dcn';:(g:t;v;ﬁzznw‘)rks
» Requires a mathematically detailed theory

» Often complex; need computer simulation

» Bring together levels and modelling methods

> Single neuron models
Spikes, spatial structure, ion channels. ..

> Small network models
Spiking neurons, rate neurons, mean fields. ..

> Large network/cognitive models If you can’t make one, you don’t

Biophysics, pure computation, anatomy. .. know how it works”
— Fred Dretske, 1994
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3. Simulate on special computers

» Examples
BlueBrain/Human Brain Project/SyNAPSE

» Shortcomings
» Lack of function = can’t compare to Psychology
» Assumes canonical algorithm
> Expects intelligence to “emerge”

A\ This is still important research; these shortcom-

ings are from the perspective of building a “func-
tional” brain model.
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The Brain

second Temporal Con.

Image Sources. Left: “Labelled lateral view of the left hemisphere”, from Popular Science Monthly, Volume 35 (1889) via Wikimedia. Right
cross-section”, illustration by Jean-Baptiste Marc Bourgery, Traité complet de I’anatomie de I'homme (1831 to 1854) via Wikimedia.

: “Sagittal
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The Brain — Some Statistics

> Weight:
2kg (2% of the body weight)

> Power consumption:
20W (25% of the body's total power consumption)

» Surface area:
1500 cm? to 2000 cm? (roughly four A4 /letter pages of paper)

> Number of neurons:
100 billion (10*!, 150 000 mm~2)

» Number of synapses:
100 trillion (104, about 1000 per neuron)
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THE UNFIXED BRAIN
>

Suzanne Stensaas, PhD

Department of Neurobiology and Anatomy &
Spencer S. Eccles Health Sciences Library
University of Utah, Salt Lake City, Utah, USA


video/clip_the_unfixed_brain_jHxyP-nUhUY.mp4

Neurons in the Brain

PRESYNAPTIC

Synaptic vesicle
NEURON

Neurotransmitter

Cell body (soma) Neurotransmitter

transporter, \

/ Voltage-gate
Axon terminals ion channel

Nucleus

Receptor POSTSYNAPTIC

Dendrites NEURON\

» 100's or 1000's of distinct types > Vastly different input/output counts
(distinguished by anatomy/physiology) (convergence and divergence)
» Axon length: from 100 pm to 5m > 100’s of different neurotransmitters
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What It Really Looks

Image Sources. Alain Chédotal and Linda J Richards. Wiring the Brain: The Biology of Neuronal Guidance. Cold Spring Harbor perspectives in biology (2010)
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video/clip_connectomics_jeff_lichtman_tedx_F37kuXObIBU.mp4

Kinds of Data From the Brain — Non-Invasive — fMRI

Functional Magnetic Resonance Tomography
Measures changes in blood oxygenation (BOLD)

& Whole-brain, 3D reconstruction
(individual activity voxels, volume elements)

Medium spatial resolution (millimeters)
@ Low temporal resolution (seconds)

@ Signal is hard to interpret
(differences, indirect, i.e. not spiking activity)

@ Has to be averaged over multiple trials

A catalogue of fMRI can be found at
https://neurosynth.org/.

3a. Faces > Objects

S
!

3b. Intact Faces >
Scrambled Faces

S
Y

Image Sources. fMRI study of the “Fusiform Face Area” in the “Fusiform Gyrus”, from: Nancy Kanwisher, Josh McDermott, and Marvin M. Chun, The Fusiform
Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception, Journal of Neuroscience (1997)
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Kinds of Data From the Brain — Non-Invasive — EEG
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Image Sources. Left: Electroencephalogram (image from Wikimedia). Right: EEG cap (image from Wikimedia)
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Kinds of Data From the Brain — Invasive — Lesion Studies

What are the effects of damaging parts of the brain?

Occipital cortex leads ~~ vision

Inferior frontal gyrus ~~ producing speech (Broca's area),

>
>
» Posterior superior temporal gyrus ~~ understanding speech (Wernicke's area),
» Fusiform gyrus ~~ recognition of faces/visually complex objects,

>

Medial prefontal cortex ~» moral judgment (controversial; see: Phineas Gage).

& Informative about the functional relevance of an area

@ Often permanently damaging
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Kinds of Data From the Brain — Invasive — Single Cell Recording

Electrode

Place electrode near or in single cell

e.g., record the neural activity given some stimulus
@ High temporal resolution (microseconds)
@ High specificity (single or few neurons)
@ Limited to a few cells

@ Damaging over time

Image Sources. “Depiction of Hubel and Wiesels experiment.” Kandel et al., 2012, Principles of Neural Science, 5th ed., Figure 27-11
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video/visual_cortex_KE952yueVLA.webm

Kinds of Data From the Brain — Invasive — Multi-electrode recordings

icroelectrode Array (MEA; “Utah Array”) into the brain
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From: US Patent #5,215,088

“Depiction of a Utah Array

Image Sources.
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video/hippocampal_place_cells_lfNVv0A8QvI.webm

N —
Kinds of Data From the Brain — Invasive — Calcium Imaging

Use fluorescent calcium indicator to indicate the presence of Ca’* ions.

Indicator can be chemical or produced by genetic modification.

& High temporal resolution @ Local

& High spatial resolution @ Invasive
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video/mouse_calcium_imaging_Y6DhBBWJrJU.mp4

e
Kinds of Data From the Brain — Invasive — Optogenetics

Make certain neuron types sensitive to light by genetic modification

Can either excite or inhibit neurons via light

@ High temporal resolution @ Invasive
@ Targets individual cell types

& Can examine function of brain circuits
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video/mouse_optogenetics_v7uRFVR9BPU.mp4
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S SSSSS—
What do we know so far?

> Lots of details THE
» Data: COMPUTATIONAL

“The proportion of type A neurons in area X is Y."
» Conclusion:
“The proportion of type A neurons in area X is Y."

> Hard to get a big picture
» No good methods for generalizing from data

> Need some way to connect these details

= Need unifying theory

“Neuroscience is data-rich and theory poor”
— Churchland & Sejnowski, 1994
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Recall: Neural Modelling

'MIDWEST STUDIES IN PHILOSOPHY, XIX (199¢)

If You Can’t Make One,
You Don’t Know How It Works
FRED DRETSKE

> Let’s build it

» Requires a mathematically detailed theory

P Let's try to do to neuroscience what Newton
did to Physics

» Not analytically tractable, requires computer
simulation

» Can we use this to connect levels? . , )
If you can’t make one, you don’t

know how it works”
— Fred Dretske, 1994
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Single neuron simulation

Vo p inside
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A. Characterized Neuron

B. Cable Model

C. Compartmental Model
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Simulating millions of neurons. . .



video/clip_hbp_UFOSHZ22q4.mkv

Simulating billions of neurons. . .



video/thalamocortical_simulation_WmChhExovzY.mkv

e
The Controversy

» What level of detail for the neurons?
How should they be connected?
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The Controversy

» What level of detail for the neurons?

How should they be connected?

» IBM SyNAPSE project (Modha)

» Billions of neurons, very simple models
» Randomly connected

» 2009: “Cat"-scale brain

» 2012: "Human"-scale brain

» Blue Brain/HBP (Markram)

» Much more detailed neuron models
> Statistically connected

Dear Bernie,

You told me you would string this guy up
by the toes the last time Mohda made
his stupid statement about simulating
the mouse’s brain. [...]

1. These are point neurons (missing
99.999% of the brain; no branches; no de-
tailed ion channels; the simplest possi-
ble equation you can imagine to simulate
a neuron, totally trivial synapses; and us-
ing the STDP learning rule I discovered
in this way is also is a joke). [...]

Source: |[EEE Spectrum, “Cat Fight Brews Over Cat Brain” (2009)
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https://spectrum.ieee.org/tech-talk/semiconductors/devices/blue-brain-project-leader-angry-about-cat-brain

The Controversy

» What level of detail for the neurons? e
How should they be connected? You told me you would string this guy up
> IBM SyNAPSE project (Modha) by the toes the last time Mohda made

. . his stupid statement about simulating
» Billions of neurons, very simple models , .
> Randomly connected the mouse’s brain. [...]

> 2009: “Cat"-scale brain 1.

These are point neurons (missing
> 2012: “Human"-scale brain

99.999% of the brain; no branches; no de-

» Blue Brain/HBP (Markram) tailed ion channels; the simplest possi-
» Much more detailed neuron models ble equation you can imagine to simulate
> Statistically connected a neuron, totally trivial synapses; and us-

ing the STDP learning rule I discovered

> - -
How much detail is enought in this way is also is a joke). [...]

Source: |[EEE Spectrum, “Cat Fight Brews Over Cat Brain” (2009)

24/39


https://spectrum.ieee.org/tech-talk/semiconductors/devices/blue-brain-project-leader-angry-about-cat-brain

The Controversy

» What level of detail for the neurons?
How should they be connected?

» IBM SyNAPSE project (Modha)
» Billions of neurons, very simple models
» Randomly connected
> 2009: “Cat"-scale brain
» 2012: “Human"-scale brain
» Blue Brain/HBP (Markram)
» Much more detailed neuron models
> Statistically connected
» How much detail is enough?

» How could we know?

Dear Bernie,

You told me you would string this guy up
by the toes the last time Mohda made
his stupid statement about simulating
the mouse’s brain. [...]

1. These are point neurons (missing
99.999% of the brain; no branches; no de-
tailed ion channels; the simplest possi-
ble equation you can imagine to simulate
a neuron, totally trivial synapses; and us-
ing the STDP learning rule I discovered
in this way is also is a joke). [...]

Source: |EEE Spectrum, “Cat Fight Brews Over Cat Brain” (2009)
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N —
What actually matters. ..

Connecting brain models to behaviour
How can we build models that actually do something?

How should we connect “realistic” neurons so they work together?
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N —
The Neural Engineering Framework

> O ur atte m pt COMPUTATION, REPRESENTATION, AND DYNAMICS

IN NEUROBIOLOGICAL SYSTEMS

» Probably wrong, but got to start somewhere
» Three principles

» Representation

» Transformation

» Dynamics

» Building behaviour out of
detailed low-level components
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Representation
» How do neurons represent information? (What is the neural code?)

Image Sources. Left: Grid cells, from Hafting et al., Microstructure of a Spatial Map in the Entorhinal Cortex Nature (2005), fig. 3. Right: Example of visual

orientation tuning in primary visual cortex, from “Neural Engineering”, fig. 3.1
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Representation

» How do neurons represent information? (What is the neural code?)
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> What is the mapping between a value and the activity of a group of neurons?

Image Sources.

orientation tuning in primary visual cortex, from “Neural Engineering”, fig. 3.1.

Left: Grid cells, from Hafting et al., Microstructure of a Spatial Map in the Entorhinal Cortex Nature (2005), fig. 3. Right: Example of visual
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Representation
» How do neurons represent information? (What is the neural code?)
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> What is the mapping between a value and the activity of a group of neurons?

» Every group of neurons can be thought of as representing a vector

Image Sources. Left: Grid cells, from Hafting et al., Microstructure of a Spatial Map in the Entorhinal Cortex Nature (2005), fig. 3. Right: Example of visual
orientation tuning in primary visual cortex, from “Neural Engineering”, fig. 3.1
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Transformation

(0 J&) )3

» Connections compute functions on those vectors
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Transformation

(0 J&) )3

Connections compute functions on those vectors

One group of neurons may represent x € R™, another group a vector y € R”
P y

| 2

>

» Connection determines f : R™ — R"” with f(x) =y

> We can systematically find connection weights W that approximate a certain f
>

Can analyse which f can be computed
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Dynamics

» Recurrent connections (feedback) implement dynamical systems

d
ax(t) = f(x(t),u(t))
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Dynamics

]
=4

» Recurrent connections (feedback) implement dynamical systems

d
ax(t) = f(x(t),u(t))

» Great for implementing control theoretical concepts

> Memory as an integrator
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Solve for the connections weights that approximate a behaviour
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Works for a wide variety of neuron models

v

Number of neurons affects 'accuracy
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e
Examples

» This approach gives us a neural compiler

v

Solve for the connections weights that approximate a behaviour

v

Works for a wide variety of neuron models

v

Number of neurons affects 'accuracy
» Neuron properties influence timing and computation
» Framework for high-level cognition: Semantic Pointer Architecture (SPA)

» World's largest functional brain model: SPAUN
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Examples: Recognizing Handwritten Digits

input ———»—— Jayer] ——>—layer2 —>—layer3 ———»—— Jayer4

0.802ER0
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video/nengo_mnist_2j9rRHChtXk.mp4

Examples: Recognizing Natural Images
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video/nengo_imagenet_VWUhCzUDZ70.mkv

Examples: Playing Towers of Hanoi
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video/nengo_hanoi_sUvHCs5y0o8.mp4

Examples: SPAUN Copy Drawing
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video/spaun_copy_drawing_WNnMhF7rnYo.mp4

Examples: SPAUN Recognizing Digits
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video/spaun_digits_f6Ul5TYK5-o.mp4

Examples: SPAUN Silent Addition
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video/spaun_addition_mP7DX6x9PX8.mkv

Examples: SPAUN Pattern Completion
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video/spaun_pattern_completion_Q_LRvnwnYp8.mp4

Benefits
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» No one else can do this » Potential medical applications

> New ways to test theories » New ways of understanding the mind

d wh
» Suggests different types of algorithms and who we are
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Homework

> Get the textbook, read the first chapter
(“Neural Engineering”, Chris Eliasmith and Charles Anderson, 2003)

> Be able to run jupyter lab or (jupyter notebook) with Python 3
Install numpy, scipy, and matplotlib. You may want to use Anaconda, which
ships with these packets preinstalled.
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https://www.anaconda.com/distribution/

