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Goal of This Course
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Goal of This Course

Building Large-Scale Brain Models
Why?

Understand how Brains
Work

Build Better AI Systems Program Neuromorphic
Hardware
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Our Focus: Theoretical Neuroscience
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▶ How does the mind work?

▶ Most complex and most interesting
system humanity has ever studied
▶ Why study anything else?

▶ How should we go about studying it?
▶ What techniques/tools?

▶ How do we know if we’re making
progress?

▶ How do we deal with the complexity?
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Theoretical Neuroscience vs. Theoretical Physics

Theoretical
physics

Theoretical
neuroscience

Quantify phenomena F = ma x̂ = Da
Summarize lots of data motion of objects neural representation of

information

Speculative (generate
hypotheses)

true for all velocities true for all stimuli

Similarities
▶ Methods are similar
▶ Goals are similar (quantification)

Differences
▶ “What exists?” vs. “Who are we?”
▶ Even more simulation in biology
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Neural Modelling

▶ Let’s build it
▶ Requires a mathematically detailed theory

▶ Often complex; need computer simulation

▶ Bring together levels and modelling methods
▶ Single neuron models

Spikes, spatial structure, ion channels. . .

▶ Small network models
Spiking neurons, rate neurons, mean fields. . .

▶ Large network/cognitive models
Biophysics, pure computation, anatomy. . .

“If you can’t make one, you don’t
know how it works”
— Fred Dretske, 1994
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Problems With Current Approaches: Large-scale Neural Models
▶ Bottom-up approach

1. Gather low-level data
2. Build a detailed model
3. Simulate on special computers

▶ Examples
BlueBrain/Human Brain Project/SyNAPSE

▶ Shortcomings
▶ Lack of function ⇒ can’t compare to Psychology
▶ Assumes canonical algorithm
▶ Expects intelligence to “emerge”
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Problems With Current Approaches: Large-scale Neural Models
▶ Bottom-up approach

1. Gather low-level data
2. Build a detailed model
3. Simulate on special computers

▶ Examples
BlueBrain/Human Brain Project/SyNAPSE

▶ Shortcomings
▶ Lack of function ⇒ can’t compare to Psychology
▶ Assumes canonical algorithm
▶ Expects intelligence to “emerge”

⚠ This is still important research; these shortcom-
ings are from the perspective of building a “func-
tional” brain model.
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Problems With Current Approaches: Behavioural Models
▶ Top-down approach

▶ Modeling Frameworks: ACT-R, SOAR

▶ Shortcomings

▶ Can’t compare to neural data

▶ No “bridging laws”

▶ No constraints on the equations
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Problems With Current Approaches: Behavioural Models
▶ Top-down approach

▶ Modeling Frameworks: ACT-R, SOAR

▶ Shortcomings
▶ Can’t compare to neural data

▶ No “bridging laws”

▶ No constraints on the equations

⚠ Maybe these shortcomings are okay.
Do we understand the brain enough to derive
bridging laws and constrain theories?
When understanding a word processor, do we worry
about transistors?
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The Brain

Image Sources. Left: “Labelled lateral view of the left hemisphere”, from Popular Science Monthly, Volume 35 (1889) via Wikimedia. Right: “Sagittal
cross-section”, illustration by Jean-Baptiste Marc Bourgery, Traité complet de l’anatomie de l’homme (1831 to 1854) via Wikimedia.

8 / 39

https://archive.org/details/popularsciencemo35newyuoft/page/n6
https://commons.wikimedia.org/wiki/File:PSM_V35_D759_Diagram_of_the_left_cerebral_hemisphere.jpg
https://commons.wikimedia.org/wiki/File:Human_brain.jpg


The Brain – Some Statistics

▶ Weight:
2 kg (2% of the body weight)

▶ Power consumption:
20 W (25% of the body’s total power consumption)

▶ Surface area:
1500 cm2 to 2000 cm2 (roughly four A4/letter pages of paper)

▶ Number of neurons:
100 billion (1011, 150 000 mm−2)

▶ Number of synapses:
100 trillion (1014, about 1000 per neuron)
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video/clip_the_unfixed_brain_jHxyP-nUhUY.mp4


Neurons in the Brain

Dendrites

Nucleus

Cell body (soma)

Node of Ranvier

Schwann's cell Axon terminals

Myelin sheath

Axon

Synaptic vesicle

Voltage-gated
ion channel

Receptor

Neurotransmitter

Neurotransmitter
transporter

PRESYNAPTIC

NEURON

POSTSYNAPTIC

NEURON

POSTSYNAPTIC

NEURON

▶ 100’s or 1000’s of distinct types
(distinguished by anatomy/physiology)

▶ Axon length: from 100 µm to 5 m

▶ Vastly different input/output counts
(convergence and divergence)

▶ 100’s of different neurotransmitters
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What It Really Looks Like

Image Sources. Alain Chédotal and Linda J Richards. Wiring the Brain: The Biology of Neuronal Guidance. Cold Spring Harbor perspectives in biology (2010)
11 / 39



video/clip_connectomics_jeff_lichtman_tedx_F37kuXObIBU.mp4


Kinds of Data From the Brain – Non-Invasive – fMRI
Functional Magnetic Resonance Tomography
Measures changes in blood oxygenation (BOLD)
⬤+ Whole-brain, 3D reconstruction

(individual activity voxels, volume elements)

⬤ Medium spatial resolution (millimeters)

⬤– Low temporal resolution (seconds)

⬤– Signal is hard to interpret
(differences, indirect, i.e. not spiking activity)

⬤– Has to be averaged over multiple trials

A catalogue of fMRI can be found at
https://neurosynth.org/.

Image Sources. fMRI study of the “Fusiform Face Area” in the “Fusiform Gyrus”, from: Nancy Kanwisher, Josh McDermott, and Marvin M. Chun, The Fusiform
Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception, Journal of Neuroscience (1997) 12 / 39

https://neurosynth.org/


Kinds of Data From the Brain – Non-Invasive – EEG

Electroencephalography
Electric activity on top of
the scalp

⬤+ High time resolution

⬤ Relatively cheap

⬤ Artefacts
(eye movement,
swallowing)

⬤– Low spatial resolution

Image Sources. Left: Electroencephalogram (image from Wikimedia). Right: EEG cap (image from Wikimedia).
13 / 39

https://commons.wikimedia.org/wiki/File:Spike-waves.png
https://commons.wikimedia.org/wiki/File:Three_quarter_view_of_EEG_subject.jpg


Kinds of Data From the Brain – Invasive – Lesion Studies

What are the effects of damaging parts of the brain?

▶ Occipital cortex leads ⇝ vision

▶ Inferior frontal gyrus ⇝ producing speech (Broca’s area),

▶ Posterior superior temporal gyrus ⇝ understanding speech (Wernicke’s area),

▶ Fusiform gyrus ⇝ recognition of faces/visually complex objects,

▶ Medial prefontal cortex ⇝ moral judgment (controversial; see: Phineas Gage).

⬤+ Informative about the functional relevance of an area

⬤– Often permanently damaging

14 / 39



Kinds of Data From the Brain – Invasive – Single Cell Recording

Place electrode near or in single cell
e.g., record the neural activity given some stimulus

⬤+ High temporal resolution (microseconds)

⬤+ High specificity (single or few neurons)

⬤– Limited to a few cells

⬤– Damaging over time

Image Sources. “Depiction of Hubel and Wiesels experiment.” Kandel et al., 2012, Principles of Neural Science, 5th ed., Figure 27-11.
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video/visual_cortex_KE952yueVLA.webm


Kinds of Data From the Brain – Invasive – Multi-electrode recordings

Insert tetrode or a Microelectrode Array (MEA; “Utah Array”) into the brain

⬤+ High temporal resolution
(microseconds)

⬤ Up to ≈ 100 cells with one array

⬤ Requires post-processing
(e.g., extraction of individual neurons
from local field potentials, LFPs)

⬤– Damaging over time

Image Sources. “Depiction of a Utah Array”. From: US Patent #5,215,088
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video/hippocampal_place_cells_lfNVv0A8QvI.webm


Kinds of Data From the Brain – Invasive – Calcium Imaging

Use fluorescent calcium indicator to indicate the presence of Ca2+ ions.
Indicator can be chemical or produced by genetic modification.

⬤+ High temporal resolution

⬤+ High spatial resolution

⬤– Local

⬤– Invasive

17 / 39



video/mouse_calcium_imaging_Y6DhBBWJrJU.mp4


Kinds of Data From the Brain – Invasive – Optogenetics

Make certain neuron types sensitive to light by genetic modification

Can either excite or inhibit neurons via light

⬤+ High temporal resolution

⬤+ Targets individual cell types

⬤+ Can examine function of brain circuits

⬤– Invasive

18 / 39



video/mouse_optogenetics_v7uRFVR9BPU.mp4


What do we know so far?

▶ Lots of details

▶ Data:
“The proportion of type A neurons in area X is Y .”

▶ Conclusion:
“The proportion of type A neurons in area X is Y .”

▶ Hard to get a big picture
▶ No good methods for generalizing from data

▶ Need some way to connect these details

⇒ Need unifying theory
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Recall: Neural Modelling

▶ Let’s build it
▶ Requires a mathematically detailed theory

▶ Let’s try to do to neuroscience what Newton
did to Physics

▶ Not analytically tractable, requires computer
simulation

▶ Can we use this to connect levels? “If you can’t make one, you don’t
know how it works”
— Fred Dretske, 1994
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Single neuron simulation
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Simulating millions of neurons. . .
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video/clip_hbp_UFOSHZ22q4.mkv


Simulating billions of neurons. . .
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video/thalamocortical_simulation_WmChhExovzY.mkv


The Controversy

▶ What level of detail for the neurons?
How should they be connected?

▶ IBM SyNAPSE project (Modha)
▶ Billions of neurons, very simple models
▶ Randomly connected
▶ 2009: “Cat”-scale brain
▶ 2012: “Human”-scale brain

▶ Blue Brain/HBP (Markram)
▶ Much more detailed neuron models
▶ Statistically connected

▶ How much detail is enough?

▶ How could we know?

Dear Bernie,

You toldmeyouwould string this guy up
by the toes the last time Mohda made
his stupid statement about simulating
the mouse’s brain. [...]

1. These are point neurons (missing
99.999% of the brain; no branches; no de-
tailed ion channels; the simplest possi-
ble equation you can imagine to simulate
a neuron, totally trivial synapses; and us-
ing the STDP learning rule I discovered
in this way is also is a joke). [...]
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What actually matters. . .

Connecting brain models to behaviour

How can we build models that actually do something?

How should we connect “realistic” neurons so they work together?
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The Neural Engineering Framework

▶ Our attempt
▶ Probably wrong, but got to start somewhere

▶ Three principles
▶ Representation

▶ Transformation

▶ Dynamics

▶ Building behaviour out of
detailed low-level components
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Representation
▶ How do neurons represent information? (What is the neural code?)

▶ What is the mapping between a value and the activity of a group of neurons?
▶ Every group of neurons can be thought of as representing a vector

Image Sources. Left: Grid cells, from Hafting et al., Microstructure of a Spatial Map in the Entorhinal Cortex Nature (2005), fig. 3. Right: Example of visual
orientation tuning in primary visual cortex, from “Neural Engineering”, fig. 3.1.
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Transformation

x yf(x)

▶ Connections compute functions on those vectors

▶ One group of neurons may represent x ∈ Rm, another group a vector y ∈ Rn

▶ Connection determines f : Rm → Rn with f (x) = y
▶ We can systematically find connection weights W that approximate a certain f

▶ Can analyse which f can be computed
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Dynamics

u x

= f(u, x)dx
dt

▶ Recurrent connections (feedback) implement dynamical systems

d
dt x(t) = f (x(t),u(t))

▶ Great for implementing control theoretical concepts

▶ Memory as an integrator
d
dt x(t) = u(t)
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Examples

▶ This approach gives us a neural compiler

▶ Solve for the connections weights that approximate a behaviour

▶ Works for a wide variety of neuron models

▶ Number of neurons affects accuracy

▶ Neuron properties influence timing and computation

▶ Framework for high-level cognition: Semantic Pointer Architecture (SPA)

▶ World’s largest functional brain model: SPAUN
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Examples: Recognizing Handwritten Digits

31 / 39

video/nengo_mnist_2j9rRHChtXk.mp4


Examples: Recognizing Natural Images

32 / 39

video/nengo_imagenet_VWUhCzUDZ70.mkv


Examples: Playing Towers of Hanoi

33 / 39

video/nengo_hanoi_sUvHCs5y0o8.mp4


Examples: SPAUN Copy Drawing
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video/spaun_copy_drawing_WNnMhF7rnYo.mp4


Examples: SPAUN Recognizing Digits
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video/spaun_digits_f6Ul5TYK5-o.mp4


Examples: SPAUN Silent Addition

36 / 39

video/spaun_addition_mP7DX6x9PX8.mkv


Examples: SPAUN Pattern Completion

37 / 39

video/spaun_pattern_completion_Q_LRvnwnYp8.mp4


Benefits

▶ No one else can do this

▶ New ways to test theories

▶ Suggests different types of algorithms

▶ Potential medical applications

▶ New ways of understanding the mind
and who we are
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Homework

▶ Get the textbook , read the first chapter
(“Neural Engineering”, Chris Eliasmith and Charles Anderson, 2003)

▶ Be able to run jupyter lab or (jupyter notebook) with Python 3
Install numpy, scipy, and matplotlib. You may want to use Anaconda, which
ships with these packets preinstalled.
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https://www.anaconda.com/distribution/

