SYDE 556/750 Simulating Neurobiological Systems Lecture 0: Administrative Remarks

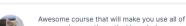
Terry Stewart

September 8, 2021

► Slide design: Andreas Stöckel

Content: Terry Stewart, Andreas Stöckel, Chris Eliasmith

Warning


Tough ass course. Do not take this as an easy elective. Assignments will kill you, and lectures will go over your head. That said, super interesting. One of a kind (which makes searching online for answers impossible) and I'm still trying to fully understand how everything works but it blows my mind. 100% worth taking but be prepared for difficult assignments (on the plus side, late days deductions are pretty low!)

●○○○○ Fasv

△ □ Liked

— Software Engineering student 4 years ago, taught by <u>Chris Eliasmith</u>

your previous mathematical knowledge (vectors, calculus, Fourier Transforms) and will kick your but with assignments. If you want a quick overview of the neural approach to intelligent systems, this is the course for you.

— Electrical Engineering student 6 years ago, taught by <u>Chris Eliasmith</u>

Easy
Useful

- ► The UWFlow reviews are accurate.
- This is a tough course.
- Be prepared to spend a lot of time on the assignments.
- We'll be making use of pretty much everything in the SyDe undergrad program, and applying it to cognitive science and neuroscience.
- Unique course on an approach developed here at Waterloo by a SyDe graduate.

About Me

- ► Terry Stewart
- Research Officer at the National Research Council Canada (NRC)
 - Investigate algorithms underlying biological cognition
 - Build computational models of them
 - Determine if they may be useful to industry
- ▶ Undergrad: Systems Design Engineering at Waterloo
- Masters: M.Phil in Comp.Sci and AI at Sussex University (UK)
- ► PhD: Cognitive Science at Carleton University (Ottawa)
- ▶ Post-doc: at Waterloo, working with Chris Eliasmith on the research discussed in this course.
- co-founder of Applied Brain Research

Organization (I)

Instructor

Terry Stewart

```
Email terry.stewart@gmail.com Website https://terrystewart.ca
```

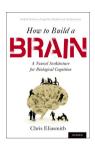
Course website

- ► LEARN
- https://github.com/tcstewar/syde556-f21
- ▶ syde556-f21.slack.com

Organization (II)

Course times and logistics

- ► Saturday:


 Pre-recorded lectures posted
- ► Monday: 8:30-9:50 online lecture and discussion (LEARN)
- ► Tuesday: 9:00-9:50 online discussion (LEARN) (SYDE 750, optional for 556)
- ► Wednesday: 8:30-9:50 online lecture and discussion (LEARN)
- ► Any time: Email terry.stewart@gmail.com Slack syde556-f21.slack.com

Textbooks and Readings

Main text:

Chris Eliasmith and Charles H. Anderson Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems, MIT Press, 2003.

Optional:

Chris Eliasmith

How to Build a Brain,
Oxford University Press,
2013.

Coursework (SYDE 556 & SYDE 750)

Five Assignments

- ► 20%, 20%, 15%, 15%, 30%, respectively
- Roughly two weeks for each assignment
- Everyone must write their own code, generate their own graphs, and write their own answers.

Final Project (SYDE 750 only)

- Build a model of some neural system.
- Replicable science: report everything needed to recreate your model and analysis
- ▶ 20% of grade (assignments are rescaled to 80%)
- ► Have your project proposal approved via email by Oct 27

Coursework (SYDE 750 only)

Class Participation in the Seminar (SYDE 750 only; optional for SYDE 556)

- ► General discussion about Neuroscience, cognitive science, AI, etc.
- Special interest: replicable science and computational modelling
- ► SYDE 750 students must attend the seminar (Tuesday, 9:00-9:50).
- No marks for this part of the course.

Schedule (I)

Date	Reading	Topic	Assignments
Sept 8	Chapter 1	Introduction	
WEEK 2			
Sept 13	Chapter 2	Neurons	
Sept 15	Chapter 2	Population Representation (I)	#1 posted
WEEK 3			
Sept 20	Chapter 2	Population Representation (II)	
Sept 22	Chapter 4	Temporal Representation	
WEEK 4			
Sept 27		Guest Lecture	
Sept 29		Guest Lecture	
WEEK 5			
Oct 4	Chapters 5, 6	Feedforward Transformations (I)	#1 due*, #2 posted
Oct 6	Chapters 5, 6	Feedforward Transformations (IÍ)	
WEEK 6		— Reading week, no lectures -	_

Schedule (II)

Date	Reading	Торіс	Assignments
WEEK 7	Cl . 0	D : (1)	
Oct 18	Chapter 8	Dynamics (I)	
Oct 20	Chapter 8	Dynamics (II)	
WEEK 8			
Oct 25	Chapter 7	Analysis of Representation	#2 due*, #3 posted
Oct 27	provided	Temporal Basis Functions	
	,	, , , , , , , , , , , , , , , , , , , ,	SYDE 750 Project proposal due
WEEK 9			
Nov 1	provided	Symbols (I)	
Nov 3	provided	Symbols (II)	
WEEK 10			
Nov 8	Chapter 8	Memory	#3 due*, $#4$ posted
Nov 10	provided	Action Selection	

Schedule (III)

Date	Reading	Topic	Assignments
WEEK 11			
Nov 15	Chaper 9	Learning (I)	
Nov 17	Chaper 9	Learning (II)	
WEEK 12			
Nov 22	provided	Spatial Semantic Pointers	#4 due*, $#5$ posted
Nov 24	provided	Biological Details	
WEEK 13			
Nov 29	provided	Other modelling frameworks	
Dec 1		Conclusion	
WEEK 14			
Dec 6		Discussion	
WEEK 16			
Dec 23			#5 due; SYDE 750 projects due*

^{*} The project and all assignments are due at midnight (\approx 11:59p Eastern) of that day.