SYDE 556/750 --- Assighment 5

Due Date: Dec 23, 2021
Student ID: 00000000

Note: Please include your numerical student ID only, do not include your name.

Note: Unlike assignments 1-4, for this assignment the full instructions (including some hints) are in
this file. The cells you need to fill out are marked with a "writing hand" symbol. Of course, you can
add new cells in between the instructions, but please leave the instructions intact to facilitate
marking.

® This assignment is worth 30 marks (30% of the final grade). The number of marks for each
question is indicated in brackets to the left of each question.

* C(learly label any plot you produce, including the axes. Provide a legend if there are multiple
lines in the same plot.

* You won't be judged on the quality of your code.

e All questions use the nengo default of Leaky Integrate-and-Fire neurons with the default
parameter settings ( tau_rc=0.02 and tau_ref=0.002 ).

* Make sure to execute the Jupyter command “Restart Kernel and Run All Cells” before
submitting your solutions. You will lose marks if your code fails to run or produces results that

differ significantly from what you've submitted.

® Rename the completed notebook to syde556_assignment_©5_ <STUDENT ID>.ipynb and
submit it via LEARN. The deadline is at 23:59 EST on Dec 23, 2021.

* Due to the fact that we have to submit the final grades for the course a few days after the
deadline, extensions will only be granted if there are significant extenuating circumstances.

Please contact terry.stewart@gmail.com if this is needed.

# Import numpy and matplotlib
import numpy as np
import matplotlib.pyplot as plt

import nengo

# Fix the numpy random seed for reproducible results
np.random.seed(18945)

# Some formating options
%config InlineBackend.figure_formats = ['svg']



1. Building an Accumulate-to-Threshold
Decision Making Model

One standard account for how brains make simple decision-making tasks is that they gradually
accumulate evidence for or against something, and when that evidence hits some threshold, a
decision is made. This sort of model is used to account for the fact that people take longer to make
decisions when the evidence is weak.

If you want more background on this, https://www.jneurosci.org/content/34/42/13870 gives a
decent overview, but this diagram shows a high-level overview:
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We're going to make a model of this process. It will make its choice based on a single input value,
which gives some evidence as to which choice should be made. It will indicate a choice by
outputting either a 1 or a -1. If that input evidence is positive, it will be more likely to make the first
choice (outputting a 1), and if the input evidence is negative it will be more likely to make the
second choice (outputting a -1).

TIP: The Nengo GUI built-in tutorials 10 through 18 may be useful to give you an overview of different

recurrent systems and different ways of modifying Ensembles .

a) Accumulation. [2 marks] Start by building a recurrent system that can add up evidence over

time (the accumulator or integrator). This is a neural Ensemble that holds a single dimension, and

uses a small number of neurons (50). Provide it with one input Node that has a constant value of
[0.1] and connect that input into the Ensemble with a Connection . Now make a

Connection fromthe Ensemble back to itself that computes the identity function. Since this



Connection is accumulating evidence over time, we want it to be fairly stable, so set
synapse=0.1 on this Connection (leave the other Connection at its default value). This
means that the neurotransmitter being used will spread out over 100ms, rather than the default

5ms.

If you run the above system with the constant positive input of 0.1 as noted above, the value stored
in the accumulator should gradually increase until it hits 1 (this should take about 1 second of
simulated time). If you change the input to be -0.1, it should gradually decrease until it hits -1.

Make a single plot that shows the behaviour of the model for four different inputs: 0.2, 0.1, -0.1, and
-0.2. For each input, run the model for 2 seconds ( sim.run(2) ) and plot the value stored in the

accumulator Ensemble . Use a Probe synapse of 0.01 to get the stored value.

# 45 <YOUR SOLUTION HERE>

b) Accumulator Discussion. [1 mark] What is the mathematical computation being performed
here (i.e. what is the relationship between the input and the output)? Why does the value stop

increasing (or decreasing) when it hits +1 (or -1)?
&5 \<YOUR SOLUTION HERE>

c) Adding random noise to the neurons. [1 mark] Next, we can add randomness to the neurons.
In standard (non-neural) accumulator models, there is a "random-walk" component that randomly

varies the value being accumulated. We can model this by adding random noise into the
Ensemble , which means adding random current to each of the neurons. The command for this is:

acc.noise = nengo.processes.WhiteSignal(period=10, high=100, rms=1)

(where acc is whatever name you gave your accumulator Ensemble .)

The strength of this noise is set by the rms=1 parameter. Generate the same plot as in part (a) but
with the noise rms=1 . Also generate the same plot for rms=3, rms=5,and rms=10 . What
happens to the resulting output?

# é§ <YOUR SOLUTION HERE>
25 \<YOUR SOLUTION HERE>

e) Adding decision-making. [2 marks] To complete the basic model, we want to determine when
this accumulator passes some threshold. If the value becomes large enough, we should make one
choice (+1), and if it becomes small enough we should make the other choice (-1). To achieve this,
make a new output Ensemble that is also one-dimensional and has 50 neurons. Form a
Connection from the accumulator to this new Ensemble that computes the following function:

def choice(x):
if x[0] > 0.9:
return 1
elif x[0] < -0.9:
return -1
else:
return ©



This new output should now stay at zero until the accumulator value gets large enough, and then
quickly move to +1 or -1.

Build this model and plot the output of both the accumulator Ensemble and the decision-making
Ensemble . Use a noise rms=3 and for both Probe s use a synapse of 0.01. Do this for all four
input values (0.2, 0.1, -0.1, and -0.2).

How well does the system perform? Does it make decisions faster when there is stronger evidence?
What differences are there (if any) between the computation we are asking the system to perform

and the actual result?
TIP: try running the model a few times to see the variability in the output

# 45 <YOUR SOLUTION HERE>

25 \<YOUR SOLUTION HERE>

f) Combining Ensembles. [2 marks] An alternative implementation would be to combine the two
separate 1-dimensional Ensembles into one 2-dimensional Ensemble . The Connections are
made similarly as in the original model, but they need to target the particular dimensions involved
using the ens[@] and ens[1] syntax. Try building the model this way and plot the results. Do
this for a single Ensemble with 100 neurons (the same number as the total number of neurons in
the original model) and with 500 neurons. Also, be sure to increase the radius as would be
appropriate in order to produce values like what we had in the original model, where the
accumulator might be storing a 1 and the output might be a 1.

How does combining Ensembles in this way change the performance of the system?

When the Ensembles are combined together in this way, what are we changing about the biological
claims about the model? In particular, how might we determine whether the real biologicial system
has these as separate Ensembles or combined together?

# Z% <YOUR SOLUTION HERE>

25 \<YOUR SOLUTION HERE>

g) Improving Representation [2 marks]. Returning to the original implementation from section (e)
(with 2 separate Ensembles), we can improve the performance by adjusting the tuning curves of the
second Ensemble . Do this by setting intercepts = nengo.dists.Uniform(0.4, ©.9) . This
randomly chooses the x-intercepts of the neurons uniformly between 0.4 and 0.9, rather than the

default of -1 to 1. Generate the same plot as in part (e).

How does this affect the performance of the model? (Try running the model a few times to see the
variability in performance).

Why does the output stay at exactly zero up until the decision is made (rather than being randomly
jittering around zero, as in the previous models)?

Why couldn't we use this approach in the case from part (f) where the Ensembles are combined?



# £5 <YOUR SOLUTION HERE>

25 \<YOUR SOLUTION HERE>

2. Temporal Representation

In class, we discussed the Legendre Memory Unit (LMU), a method for storing input information
over time. This allows us to make connections where the function being computed is a function of

the input over some window in time, rather having to be a function of the current input.

In this question, we will use this to build a model that can distinguish a 1Hz sine wave from a 2Hz
sine wave. Notice that it is impossible to perform this task without having information over time; if |
just give you a single number at any given point in time, you can't tell whether it's from a 1Hz sine
wave or a 2Hz sine wave. So we need some method to store the previous input information, and
that's what the LMU does.

a) Representing Information over Time. [2 marks] The core of the LMU is to compute the
dx

i Az 4+ Bu where A and B are carefully chosen using the following math:

differential equation

A = np.zeros((q, q))
B = np.zeros((q, 1))
for i in range(q):
B[i] = (-1.)**i * (2*i+1)
for j in range(q):
A[i,j] = (2*i+1)*(-1 if i<j else (-1.)**(i-j+1))
A / theta
B / theta

A
B

Implement this in Nengo. Use theta=0.5 and qg=6 . The model should consist of a single
Ensemble thatis g -dimensional. Use 1000 neurons in this Ensemble . Use synapse=0.1 on

both the recurrent Connection and on the input Connection .

For the input, give a 1Hz sine wave for the first 2 seconds, and a 2Hz sine wave for the second 2
seconds. This can be done with:

stim = nengo.Node(lambda t: np.sin(2*np.pi*t) if t<2 else np.sin(2*np.pi*t*2))
Run the simulation for 4 seconds. Plot x over the 4 seconds using a Probe with synapse=0.01 .

x should be 6-dimensional, and there should be a noticable change between its value before t=2
and after t=2.

b) Computing the function. [2 marks] We now want to compute our desired function, which is
"output a 1 if we have a THz sine wave and a 0 if we have a 2Hz sine wave". To do this, we need to
make a Connection from the LMU Ensemble outtoanew Ensemble that will be our category.

Have it be 1-dimensional with 50 neurons.

Normally in Nengo, when we define a Connection we specify a Python function that we want to
approximate. Nengo will then choose a bunch of random x values, call the function to determine
what the output should be for each one, and use that to solve for the decoders. However, in this
case, we already have that set of x values! That's exactly the data you plotted in part (a). For the



x values from t=0 to t=2.0 we want an output of 1. For the x values from t=2.0 to t=4.0, we want
an output of -1. So, to specify these target values, we make a matrix of size (4000,1) (4000 for
the 4000 time steps that you have x values for, and 1 for the output being 1-dimensional). Set the
first 2000 values to 1 and the second 2000 values to -1.

Now that you have your x values and the corresponding target values, you can tell Nengo to
use them when you make the Connection like this:
nengo.Connection(a, b, eval_points=x_values, function=target)

That will tell Nengo just to use the values you're giving it, rather than randomly sampling x and
calling a function to get the target values.

Build this model and plot the resulting category (with a Probe with synapse=0.01 ). The output
should be near 1 for the first 2 seconds, and near -1 for the second 2 seconds. (Important note: it
will not be perfect at this task!)

# Z% <YOUR SOLUTION HERE>

c) Adjusting the input. [2 marks] Repeat part b) but with an input that is a 2Hz sine wave for the
first 2 seconds, and a 1Hz sine wave for the second 2 seconds (i.e. the opposite order as in part (b)).
How well does this perform? Describe the similarities and differences. One particular difference you
should notice is that the model may make the wrong classification for the first 0.25 seconds. Why is
this happening? What could you change to fix this?

# Z5% <YOUR SOLUTION HERE>
25 \<YOUR SOLUTION HERE>

d) Adjusting the number of neurons. [2 marks] Repeat part b) but adjust the number of neurons
in the Ensemble computing the differential equation. Try 50, 100, 200, 500, 1000, 2000, and 5000.
How does the model behaviour change? Why does this happen? In addition to looking at the actual

results for each run, also plot the RMSE in the classification as you adjust the number of neurons.

# 4Z5 <YOUR SOLUTION HERE>

25 \<YOUR SOLUTION HERE>

e) Adjusting the q value. [2 marks] Repeat part b) (returning to 1000 neurons) but adjust the value
of q.Try1,2,4,8, 16,32, and 64. How does the model behaviour change? Why does this happen?
In addition to looking at the actual results for each run, also plot the RMSE in the classification as

you adjust the number of neurons.

# 45 <YOUR SOLUTION HERE>

25 \<YOUR SOLUTION HERE>

3. Online Learning



Normally when build models with the Neural Engineering Framework, we compute the connection
weights at the beginning and then leave them fixed while running the model. But, we can also apply
online learning rules to adjust the connection weights over time. This has the effect of changing the
function being computed. One general learning rule is the PES rule, where you provide an extra
input that indicates whether the output value should be increased or decreased. This is generally
called an error signal.

a) Basic online learning. [2 marks] Build a network that will learn the identity function. You will
need three Ensembles , one for the input, one for the output, and one for the error. Each one is 1-
dimensional and uses 200 neurons. For the input, use Nengo to randomly generate a 2Hz band-

limited white noise signal as follows:

stim = nengo.Node(nengo.processes.WhiteSignal(period=100, high=2, rms=0.3))

When making the learning connection, initialize it to compute the zero function and to use the PES

learning rule as follows:

def initialization(x):

return ©
¢ = nengo.Connection(pre, post, function=initialization,
learning_rule_type=nengo.PES(learning_rate=1le-4))
The error Ensemble should compute the difference between the output value and the desired
output value. For this initial question, we want the output value to be the same as the input value
(i.e. we are learning the identity function). Then connect the error Ensemble to the learning rule as

follows:

nengo.Connection(error, c.learning_rule)

(Note: for this question, leave the synapse values on the Connections at their default values)

Run the model for 10 seconds and plot the input value and the resulting output value (using a
Probe with synapse=0.01 ). The output should match the input fairly well after the first few
seconds.

# 4Z5 <YOUR SOLUTION HERE>

b) Error calculation. [1 mark] What would happen if you reversed the sign of the error calculation
(i.e.if you did target - output ratherthan output - target ? Why does that happen?

25 \<YOUR SOLUTION HERE>

c) Computing metrics. [1 mark] Break your data up into 2-second chunks and compute the Root-
Mean-Squared-Error between the target value (the stimulus itself) and the output from the model
for each chunk. Since the simulation is 10 seconds long, you should have 5 RMSE measures (one for
the first 2 seconds, one for the second 2 seconds, one for the third 2 seconds, and so on). Repeat
the simulation 10 times and plot the average for each of these values. The result should show that

the model gets better over time, but does not reach 0 error.

# Z5% <YOUR SOLUTION HERE>

d) Increasing learning time. [2 marks] Repeat part (c), but run the model for 100 seconds instead



of 10 seconds. How do the results change?

# Z5% <YOUR SOLUTION HERE>

25 \<YOUR SOLUTION HERE>

e) Learning rates. [2 marks] Repeat part (d), but decrease the learning rate to 1e-5 . How do the

results change? How do they compare to part (c)?

# Z% <YOUR SOLUTION HERE>

25 \<YOUR SOLUTION HERE>

f) Improving performance. [1 mark] If you wanted to make the learned result even more accurate,
how would you do this? What would you change about the model and learning process?

25 \<YOUR SOLUTION HERE>

g) Learning other functions. [1 mark] Repeat part (a), but have the system learn a function where

2, —z]. This will involve changing the

the input is a scalar z, but the output is the vector [z
dimensionality of some of the Ensembles and addinga function= to be computed on the

Connection fromthe stim to the error .

# 45 <YOUR SOLUTION HERE>



