
SYDE 556/750
Simulating Neurobiological Systems

Assignment 2
Due date: October 25, 2021

Important Notes – Please Read Carefully
• This assignment is worth 20 marks (20% of the final grade). The number of marks for each

question is indicated in brackets to the left of each question.

• Please use Python 3 along with the numpy and matplotlib libraries to solve these assignments.
In particular, fill out this Jupyter Notebook template:

https://github.com/tcstewar/syde556-f21/blob/master/assignments/assignment_02/
syde556_assignment_02_template.ipynb

• Clearly label any plot you produce, including the axes. Provide a legend if there are multiple
graphs in the same plot.

• You won’t be judged on the quality of your code, but writing reusable functions will greatly
simplify this and future assignments.

• Make sure to execute the Jupyter command “Restart Kernel and Run All Cells” before submitting
your solutions. You will lose marks if your code fails to run or produces results that differ
significantly from what you’ve submitted.

• Rename the completed notebook to syde556_assignment_02_<STUDENT ID>.ipynb and submit
it via LEARN. The deadline is at 23:59 EST on October 25, 2021.

• There is a late penalty of one mark per day late. Please contact terry.stewart@gmail.com if there
are extenuating circumstances.

• Do not use or refer to any code from Nengo!

https://github.com/tcstewar/syde556-f21/blob/master/assignments/assignment_02/syde556_assignment_02_template.ipynb
https://github.com/tcstewar/syde556-f21/blob/master/assignments/assignment_02/syde556_assignment_02_template.ipynb

SYDE 556/750 Assignment 2 Fall 2021

1 Generating a random input signal

1.1 Band-limited white noise

Create a function called that generates a randomly varying x(t) signal chosen from a band limited white
noise distribution. Call it generate_signal and ensure that it returns both x(t) and X(ω), i.e., both its
time- and Fourier-domain representation.

The inputs to this function are:

• T: the length of the signal in seconds.

• dt: the time step in seconds.

• rms: the root mean square power (RMS) level of the signal. The RMS σ of a time-continous signal
x(t) of length T is defined as

σ =

√
1

T

∫ T

0

x(t)2 dt

• limit: the maximum frequency for the signal.

• seed: the random number seed to use (so we can deterministically generate the same signal again).

a) Time-domain signals. Plot x(t) for three randomly generated signals with limit at 5, 10, and 20 Hz.[1]
For each of these, T = 1 s, dt = 1 ms and rms = 0.5.

b) Average power spectrum. Plot the average |X(ω)| (the norm of the Fourier coefficients, or “power[1]
spectrum”) over 100 signals generated with T = 1 s, dt = 1 ms, rms = 0.5, and limit = 10 Hz (of
course, each of these 100 signals should have a different seed). The plot should have the x-axis labeled
“ω in radians” and the average |X| value for that ω on the y-axis.

🐍 For more information on how to do Fourier transformations in Python, see here.

🖈 The transformation takes you from t to ω (or back the other way). Importantly, ω is frequency
in radians, not in Hz. ∆ω (i.e., the difference in angular frequency between two samples) will be
2π
T .

🖈 Ensure that the generated signal has no complex components in the time domain, i.e., is purely
real. It holds X(ω) = X(−ω) exactly if the signal is real, where a+ ib = a − ib denotes the
complex conjugate.

🖈 When randomly generating X(ω) values, sample them from a Normal distribution N (µ = 0;σ =

1). Remember that the X(ω) are complex numbers, so sample twice from the distribution; once
for the real component and once for the imaginary.

🖈 To implement the limit, set all X(ω) components with frequencies above the limit to 0.

🖈 To implement the rms, generate the signal, compute its RMS (σ =
√

1
T

∫
x(t)2dt) and rescale so it

has the desired power. Make sure to rescale both the signal in the time- and Fourier-domain (you
can use the same scaling factor, since the Fourier transformation is linear). Alternatively, if you
want to rescale your initial coefficients, you could try to take advantage of Parseval’s Theorem.

1

http://docs.scipy.org/doc/numpy/reference/routines.fft.html
https://en.wikipedia.org/wiki/Parseval%27s_theorem#Notation_used_in_physics

SYDE 556/750 Assignment 2 Fall 2021

1.2 Gaussian power spectrum noise

Create a modified version of your function from question 1.1 that produces noise with a different power
spectrum. Instead of having the X(ω) values be 0 outside of some limit and sampled from N (µ = 0;σ = 1)

inside that limit, we want a smooth drop-off of power as the frequency increases. In particular, instead of
the limit, we sample from N

(
µ = 0;σ = e−ω2/(2b2)

)
where b (in radians) is the new bandwidth parameter

that replaces the limit parameter.

a) Time-domain signals. Plot x(t) for three randomly generated signals with bandwidth at 5, 10, and[1]
20 Hz. For each of these, T = 1 s, dt = 1 ms and rms = 0.5.

b) Average power spectrum. Plot the average |X(ω)| (the norm of the Fourier coefficients, or “power[1]
spectrum”) over 100 signals generated with T = 1 s, dt = 1 ms, rms = 0.5, and bandwidth = 10 (of
course, each of these 100 signals should have a different seed). The plot should have the x-axis labeled
“ω in radians” and the average |X| value for that ω on the y-axis.

2 Simulating a spiking neuron

Write a program to simulate a single Leaky-Integrate and Fire neuron. The core differential equation is

dv
dt =

1

τRC
(J − v) ,

where τRC is the membrane time constant, J is the input current and v is the current membrane potential.
To simplify life, this is normalized so that the resting voltage is 0 and the thereshold voltage is vth = 1.
This equation can be simulated numerically by taking small time steps (Euler’s method). When the voltage
reaches the threshold vth, the neuron will “spike”. It’s voltage is reset to 0 and stays there for the refractory
period τref (to plot individual spike, place a dot or line at that time). Also, if the voltage goes below zero at
any time, reset it back to zero. For this question, τRC = 20 ms and τref = 2 ms.

Since we want to have inputs in terms of represented values x, we need to compute J = α⟨e, x⟩+ Jbias. For
this neuron, set e to 1 and find α and Jbias such that the firing rate when x = 0 is 40 Hz and when x = 1

it is 150 Hz. To find these α and Jbias values, use the LIF rate approximation (see Assignment 1, Question
1.3):

G[J] =
1

τref − τRC ln
(
1− 1

J

)
a) Spike plots for constant inputs. Plot the spike output for a constant input of x = 0 over 1 second.[1]

Report the number of spikes. Do the same thing for x = 1. Use a time step of ∆t = 1 ms for the
simulation.

b) Discussion. Does the observed number of spikes in the previous part match the expected number of[1]
spikes for x = 0 and x = 1? Why or why not? What aspects of the simulation would affect this
accuracy?

c) Spike plots for white noise inputs. Plot the spike output for x(t) generated using your function from[1]
part 1.1. Use T = 1 s, dt = 1 ms, rms = 0.5, and limit = 30 Hz. Overlay on this plot x(t).

2

SYDE 556/750 Assignment 2 Fall 2021

d) Voltage over time. Using the same x(t) signal as in part c), plot the neuron’s voltage over time for the[1]
first 0.2 seconds, along with the spikes over the same time.

e) 🌟 Bonus question. How could you improve this simulation (in terms of how closely the model matches[+1]
actual equation) without significantly increasing the computation time? 0.5 marks for having a good
idea. Up to 1 mark for actually implementing it and showing that it works.

3 Simulating two spiking neurons

Write a program that simulates two neurons. The two neurons have exactly the same parameters, except
one of them uses a positive encoder (i.e., e = 1) and the other one uses a negative encoder (i.e., e = −1).
Other than that, use exactly the same settings as in question 2.

a) Spike plots for constant inputs. Plot x(t) and the spiking output for x(t) = 0 (both neurons should[1]
spike at about 40 spikes per second), as well as (in a separate plot) x(t) = 1 (one neuron should spike
at ≈ 150 spikes per second, and the other should not spike at all).

b) Spike plots for a sinusodial input. Plot x(t) and the spiking output for x(t) = 1
2 sin(10πt).[1]

c) Spike plot for a white noise signal. Plot x(t) and the spiking output for a random signal generated[1]
with your function for question 1.1 with T = 2 s, dt = 1 ms, rms = 0.5, and limit = 5 Hz.

4 Computing an optimal filter

Compute the optimal filter for decoding pairs of spikes. Instead of implementing this yourself, use and
complete the Python implementation that is included in the Jupyter notebook.

a) Document the code. Fill in comments where there are #-signs in the Python code. Make sure that your[1]
comments (where this makes sense) describe the semantics of the code and do not just repeat what is
obvious from the code itself. Run the function with what you wrote for part 3 above, so that it uses
the spike signal generated in 3c).

b) Optimal filter. Plot the time and frequency plots of the optimal filter for the signal you generated in[1]
question 3c). Make sure to use appropriate limits for the x-axis.

📖 This should look similar to Figure 4.8 in the book.

c) Decoded signal. Plot the x(t) signal, the spikes, and the decoded x̂(t) value for the signal from 3c).[1]

📖 This should look similar to Figure 4.9 in the book.

d) Power spectra. Plot the signal |X(ω)|, spike response |R(ω)|, and filtered signal |X̂(ω)| power spectra[0.5]
for the signal from 3c).

📖 This should look similar to Figure 4.10 in the book.

e) Discussion. How do these spectra relate to the optimal filter?[0.5]

3

SYDE 556/750 Assignment 2 Fall 2021

f) Filter for different signal bandwidths. Plot the optmial filter h(t) in the time domain when filtering[0.5]
spike trains for white noise signals with different limit values of 2 Hz, 10 Hz, and 30 Hz.

g) Discussion. Describe the effects on the time plot of the optimal filter as limit increases. Why does[0.5]
this happen?

5 Using post-synaptic currents as a filter

Instead of using the optimal filter from the previous question, now we will use the post-synaptic current
instead. This is of the form

h(t) =

c−1tne−
t
τ if t ≥ 0 ,

0 otherwise .

where n is a non-negative integer, and c normalizes the filter to area one to preserve energy, i.e.,

c =

∫ ∞

0

tne−
t
τ dt .

a) Plotting the filter for different n. Plot the normalized h(t) for n = 0, 1, and 2, with τ = 7 ms.[0.5]

b) Discussion. What two things do you expect increasing n will do to x̂(t)?[0.5]

c) Plotting the filter for different τ . Plot the normalized h(t) for τ = 2 ms, τ = 5 ms, τ = 10 ms, τ = 20 ms[0.5]
with n = 0.

d) Discussion. What two things do you expect increasing τ will do to x̂(t)?[0.5]

e) Decoding a spike-train using the post-synaptic current filter. Decode x̂(t) from the spikes generated[1]
in question 3c) using an h(t) with n = 0 and τ = 7 ms. Do this by generating the spikes, filtering
them with h(t), and using that as your activity matrix A to compute your decoders. Plot the time
and frequency plots for this h(t). Plot the x(t) signal, the spikes, and the decoded x̂(t) value.

🖈 Do not use in-built convolution functions for any question in part 5. Instead, implement convo-
lution this in the time domain by placing the filter when spikes occur, and then summing. This
simulates a post-synaptic current occuring on the arrival of a spike from the pre-synaptic neuron.

f) Deocding a spike-train representing a low-frequency signal. Use the same decoder and h(t) as in part[0.5]
e), but generate a new x(t) with limit = 2 Hz. Plot the x(t) signal, the spikes, and the decoded x̂(t)

value.

g) Discussion. How do the decodings from e) and f) compare? Explain.[0.5]

4

	Generating a random input signal
	Band-limited white noise
	Gaussian power spectrum noise

	Simulating a spiking neuron
	Simulating two spiking neurons
	Computing an optimal filter
	Using post-synaptic currents as a filter

