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Recommended References
• Ge, Xu and Ghahramani (2018) - Turing paper

• Carpenter et al. (2017) - Stan paper

• Salvatier, Wiecki and Fonnesbeck (2016) - PyMC paper

• Bayesian Statistics with Julia and Turing - Why Julia?
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A man and his tools make a man and his trade
— Vita Sackville-West

We shape our tools and then the tools shape us
— Winston Churchill
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Tools
• Stan (BSD-3 License)

• Turing (MIT License)

• PyMC (Apache License)

• JAGS (GPL License)

• BUGS (GPL License)
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Stanii

iiCarpenter et al. (2017)

• High-performance platform for statistical modeling and statistical computation
• Financial support from NUMFocus:

‣ AWS Amazon
‣ Bloomberg
‣ Microsoft
‣ IBM
‣ RStudio
‣ Facebook
‣ NVIDIA
‣ Netflix

• Open-source language, similar to C++
• Markov Chain Monte Carlo (MCMC) parallel sampler
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Stan Code Example

      data {
        int<lower=0> N;
        vector[N] x;
        vector[N] y;
      }
      parameters {
        real alpha;
        real beta;
        real<lower=0> sigma;
      }
      model {
        alpha ~ normal(0, 20);
        beta ~ normal(0, 2);
        sigma ~ cauchy(0, 2.5);
        y ~ normal(alpha + beta * x, sigma);
      }
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Turingiii

iiiGe, Xu and Ghahramani (2018)

• Ecosystem of Julia packages for Bayesian Inference using probabilistic
programming

• Julia is a fast dynamic-typed language that just-in-time (JIT) compiles into
native code using LLVM: “runs like C but reads like Python” ; meaning that
is blazing fast, easy to prototype and read/write code

• Julia has Financial support from NUMFocus

• Composability with other Julia packages

• Several other options of Markov Chain Monte Carlo (MCMC) samplers
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Turing Ecosystem
We have several Julia packages under Turing’s GitHub organization TuringLang, but I will focus on 6 of those:

• Turing: main package that we use to interface with all the Turing ecosystem of packages and the backbone of
everything

• MCMCChains: interface to summarizing MCMC simulations and has several utility functions for diagnostics
and visualizations

• DynamicPPL: specifies a domain-specific language for Turing, entirely written in Julia, and it is modular

• AdvancedHMC: modular and efficient implementation of advanced Hamiltonian Monte Carlo (HMC)
algorithms

• DistributionsAD: defines the necessary functions to enable automatic differentiation (AD) of the log PDF
functions from Distributions

• Bijectors: implements a set of functions for transforming constrained random variables (e.g. simplexes,
intervals) to Euclidean space
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Turingiv Code Example

ivI believe in Julia’s potential and wrote a whole set of Bayesian Statistics tutorials using Julia and Turing (Storopoli, 2021)

      @model function linreg(x,  y)
          α ~ Normal(0, 20)
          β ~ Normal(0, 2)
          σ ~ truncated(Cauchy(0, 2.5); lower=0)

          y .~ Normal(α .+ β * x, σ)
      end
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PyMCv

vSalvatier, Wiecki and Fonnesbeck (2016)

• Python package for Bayesian statistics with a Markov Chain Monte
Carlo sampler

• Financial support from NUMFocus

• Backend was based on Theano

• Theano died, but PyMC developers create a fork named Aesara

• We have no idea what will be the backend in the future. PyMC
developers are still experimenting with other backends:
TensorFlow Probability, NumPyro, BlackJAX, and so on …
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PyMC Code Example
  with pm.Model() as model:
      alpha = pm.Normal("Intercept", mu=0, sigma=20)
      beta = pm.Normal("beta", mu=0, sigma=2)
      sigma = pm.HalfCauchy("sigma", beta=2.5)

      likelihood = pm.Normal("y",
                   mu=alpha + beta * x1,
                   sigma=sigma, observed=y)
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Which Tool Should You Use?

Turing Stan
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Why Turing
• Julia all the way down…
• Can interface/compose any Julia package
• Decoupling of modeling DSL, inference algorithms and data
• Not only HMC-NUTS, but a whole plethora of MCMC algorithms, e.g. Metropolis-

Hastings, Gibbs, SMC, IS etc.
• Easy to create/prototype/modify inference algorithms
• Transparent MCMC workflow, e.g. iterative sampling API allows step-wise execution

and debugging of the inference algorithm
• Very easy to do stuff in the GPU, e.g. NVIDIA’s CUDA.jl, AMD’s AMDGPU.jl, Intel’s

oneAPI.jl, and Apple’s Metal.jl
• Very easy to do distributed model inference and prediction.
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Why Not Turing
• Not as fast, but pretty close behind, as Stan.

• Not enough learning materials, example models, tutorials. Also documentation is
somewhat lacking in certain areas, e.g. Bijectors.jl.

• Not as many citations as Stan, although not very far behind in GitHub stars.

• Not well-known in the academic community.
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Why Stan
• API for R, Python and Julia.

• Faster than Turing.jl in 95% of models.

• Well-known in the academic community.

• High citation count.

• More tutorials, example models, and learning materials available.
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Why Not Stan
• If you want to try something new, you’ll have to do in C++.

• Constrained only to HMC-NUTS as MCMC algorithm.

• Cannot decouple model DSL from data (and also from inference algorithm).

• Does not compose well with other packages. For anything you want to do, it has to
“exist” in the Stan world, e.g. bayesplot.

• A not so easy and intuitive ODE interface.

• GPU interface depends on OpenCL. Also not easy to interoperate.
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Recommended References
• Andrew Gelman, John B. Carlin, Stern, et al. (2013) - Chapter 1: Probability and inference

• McElreath (2020) - Chapter 1: The Golem of Prague

• Gelman, Hill and Vehtari (2020) - Chapter 3: Some basic methods in mathematics and probability

• Khan and Rue (2021)

• Probability:
‣ A great textbook - Bertsekas and Tsitsiklis (2008)
‣ Also a great textbook (skip the frequentist part) - Dekking et al. (2010)
‣ Bayesian point-of-view and also a philosophical approach - Jaynes (2003)
‣ Bayesian point-of-view with a simple and playful approach - Kurt (2019)
‣ Philosophical approach not so focused on mathematical rigor - Diaconis and Skyrms (2019)
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Inside every nonBayesian there is a Bayesian
struggling to get out

— Denis Lindley
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What is Bayesian Statistics?

Bayesian statistics is a data analysis approach based on Bayes’ theorem where available
knowledge about the parameters of a statistical model is updated with the information
of observed data. (Andrew Gelman, John B. Carlin, Stern, et al., 2013).

Previous knowledge is expressed as a prior distribution and combined with the
observed data in the form of a likelihood function to generate a posterior distribution.

The posterior can also be used to make predictions about future events.
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What changes from Frequentist Statistics?
• Flexibility - probabilistic building blocks to construct a modelvi:

‣ Probabilistic conjectures about parameters:
– Prior
– Likelihood

• Better uncertainty treatment:
‣ Coherence
‣ Propagation
‣ We don’t use “if we sampled infinite times from a population that we do not observe…”

• No 𝑝-values:
‣ All statistical intuitions makes sense
‣ 95% certainty that 𝜃’s parameter value is between 𝑥 and 𝑦
‣ Almost impossible to perform 𝑝-hacking

vilike LEGO
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A little bit more formal
• Bayesian Statistics uses probabilistic statements:

‣ one or more parameters 𝜃

‣ unobserved data 𝑦

• These statements are conditioned on the observed values of 𝑦:

‣ 𝑃(𝜃 | 𝑦)

‣ 𝑃(𝑦 | 𝑦)

• We also, implicitly, condition on the observed data from any covariate 𝑥
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Definition of Bayesian Statistics

The use of Bayes theorem as the procedure to estimate parameters of interest 𝜃 or
unobserved data 𝑦. (Andrew Gelman, John B. Carlin, Stern, et al., 2013)
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PROBABILITY DOES NOT EXIST!vii

viiFinetti (1974)

• Yes, probability does not exist …

• Or even better, probability as a physical quantity, objective chance,
does NOT exist

• if we disregard objetive chance nothing is lost

• The math of inductive rationality remains exactly the same
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PROBABILITY DOES NOT EXIST!viii

viiiFinetti (1974)

• Consider flipping a biased coin
• The trials are considered independent and, as a

result, have an important property: the order
does not matter

• The frequency is considered a sufficient statistic
• Saying that order does not matter or saying that

the only thing that matters is frequency are two
ways of saying the same thing

• We say that the probability is invariant under
permutations

H
T

0.5 0.5

H

0.5 0.5

T

0.5 0.5

H T H T
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Probability Interpretations
• Objective - frequency in the long run for an event:

‣ 𝑃(rain) = days that rained
total days

‣ 𝑃(me being elected president) = 0 (never occurred)

• Subjective - degrees of belief in an event:

‣ 𝑃(rain) = degree of belief that will rain

‣ 𝑃(me being elected president) = 10−10 (highly unlikely)
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What is Probability?
We define 𝐴 is an event and 𝑃(𝐴) the probability of event 𝐴.

𝑃(𝐴) has to be between 0 and 1, where higher values defines higher probability of 𝐴
happening.

𝑃(𝐴) ∈ ℝ
𝑃(𝐴) ∈ [0, 1]

0 ≤ 𝑃(𝐴) ≤ 1
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Probability Axiomsix

ixKolmogorov (1933)

• Non-negativity: For every 𝐴: 𝑃(𝐴) ≥ 0

• Additivity: For every two mutually exclusive 𝐴 and 𝐵: 𝑃(𝐴) = 1 −
𝑃(𝐵) and 𝑃(𝐵) = 1 − 𝑃(𝐴)

• Normalization: The probability of all possible events 𝐴1, 𝐴2, …
must sum up to 1: ∑𝑛∈ℕ 𝐴𝑛 = 1
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Sample Space

• Discrete: Θ = {1, 2, …}

• Continuous: Θ ∈ (−∞, ∞)
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Discrete Sample Space
8 planets in our solar system:

• Mercury: ☿
• Venus: ♀
• Earth: ♁
• Mars: ♂
• Jupiter: ♃
• Saturn: ♄
• Uranus: ♅
• Neptune: ♆
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Discrete Sample Space
placeholder

The planet has a magnetic field

The planet has moon(s)

The planet has a magnetic field and moon(s)

The planet has a magnetic field or moon(s)

The planet does not have a magnetic field

𝜃 ∈ 𝐸1

☿ ♀ ♁ ♂ ♃ ♄ ♅ ♆
𝜃 ∈ 𝐸2

☿ ♀ ♁ ♂ ♃ ♄ ♅ ♆
𝜃 ∈ 𝐸1 ∩ 𝐸2

☿ ♀ ♁ ♂ ♃ ♄ ♅ ♆
𝜃 ∈ 𝐸1 ∪ 𝐸2

☿ ♀ ♁ ♂ ♃ ♄ ♅ ♆
𝜃 ∈ ¬𝐸1

☿ ♀ ♁ ♂ ♃ ♄ ♅ ♆
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Continuous Sample Space
placeholder

The distance is less than five centimeters

The distance is between three and seven centimeters

The distance is less than five centimeters
and between three and seven centimeters

The distance is less than five centimeters
or between three and seven centimeters

The distance is not less than five centimeters

𝜃 ∈ 𝐸1

𝜃 ∈ 𝐸2

𝜃 ∈ 𝐸1 ∩ 𝐸2

𝜃 ∈ 𝐸1 ∪ 𝐸2

𝜃 ∈ ¬𝐸1

Bayesian Statistics, Jose Storopoli 38



Bayesian Statistics
Bayesian Statistics

Discrete versus Continuous Parameters
Everything that has been exposed here was under the assumption that the parameters are
discrete.

This was done with the intent to provide an intuition what is probability.

Not always we work with discrete parameters.

Parameters can be continuous, such as: age, height, weight etc. But don’t despair! All probability
rules and axioms are valid also for continuous parameters.

The only thing we have to do is to change all s ∑ for integrals ∫. For example, the third axiom of
Normalization for continuous random variables becomes:

∫
𝑥∈𝑋

𝑝(𝑥) d𝑥 = 1
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Conditional Probability
Probability of an event occurring in case another has occurred or not.

The notation we use is 𝑃(𝐴 | 𝐵), that read as “the probability of observing 𝐴 given that
we already observed 𝐵”.

𝑃(𝐴 | 𝐵) =
number of elements in A and B

number of elements in B

𝑃(𝐴 | 𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)

assuming that 𝑃(𝐵) > 0}.
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Example of Conditional Probability – Poker Texas Hold’em
• Sample Space: 52 cards in a deck, 13 types of cards and 4 types of suits.

• 𝑃(𝐴): Probability of being dealt an Ace ( 4
52 = 1

13)

• 𝑃(𝐾): Probability of being dealt a King ( 4
52 = 1

13)

• 𝑃(𝐴 | 𝐾): Probability of being dealt an Ace, given that you have already a King ( 4
51 ≈

0.078)

• 𝑃(𝐾 | 𝐴): Probability of being dealt a King, given that you have already an Ace ( 4
51 ≈

0.078)
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Caution! Not always 𝑃(𝐴 | 𝐵) = 𝑃(𝐵 | 𝐴)
In the previous example we have the symmetry 𝑃(𝐴 | 𝐾) = 𝑃(𝐾 | 𝐴), but not always
this is truex

The Pope is catholic:

• 𝑃(pope): Probability of some random person being the Pope, something really small, 1 in 8 billion ( 1
8⋅109 )

• 𝑃(catholic): Probability of some random person being catholic, 1.34 billion in 8 billion (1.34
8 ≈ 0.17)

• 𝑃(catholic | pope): Probability of the Pope being catholic ( 999
1000 = 0.999)

• 𝑃(pope | catholic): Probability of a catholic person being the Pope ( 1
1.34⋅109 ⋅ 0.999 ≈ 7.46 ⋅ 10−10)

• Hence: 𝑃(catholic | pope) ≠ 𝑃(pope | catholic)

xMore specific, if the basal rates 𝑃(𝐴) and 𝑃(𝐵) aren’t equal, the symmetry is broken 𝑃(𝐴 | 𝐵) ≠ 𝑃(𝐵 | 𝐴)
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Joint Probability
Probability of two or more events occurring.

The notation we use is 𝑃(𝐴, 𝐵), that read as “the probability of observing 𝐴 and also
observing 𝐵”.

𝑃(𝐴, 𝐵) = number of elements in A or B
𝑃(𝐴, 𝐵) = 𝑃(𝐴 ∪ 𝐵)
𝑃(𝐴, 𝐵) = 𝑃(𝐵, 𝐴)
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Example of Joint Probability – Revisiting Poker Texas Hold’em
• Sample Space: 52 cards in a deck, 13 types of cards and 4 types of suits.
• 𝑃(𝐴): Probability of being dealt an Ace ( 4

52 = 1
13)

• 𝑃(𝐾): Probability of being dealt a King ( 4
52 = 1

13)
• 𝑃(𝐴 | 𝐾): Probability of being dealt an Ace, given that you have already a King ( 4

51 ≈ 0.078)
• 𝑃(𝐾 | 𝐴): Probability of being dealt a King, given that you have already an Ace ( 4

51 ≈ 0.078)
• 𝑃(𝐴, 𝐾): Probability of being dealt an Ace and being dealt a King

𝑃(𝐴, 𝐾) = 𝑃(𝐾, 𝐴)
𝑃(𝐴) ⋅ 𝑃 (𝐾 | 𝐴) = 𝑃(𝐾) ⋅ 𝑃 (𝐴 | 𝐾)

1
13

⋅
4
51

=
1
13

⋅
4
51

≈ 0.006
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Visualization of Joint Probability versus Conditional Probability

Figure 1: 𝑃(𝑋, 𝑌 ) versus 𝑃(𝑋 | 𝑌 = −0.75)
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Product Rule of Probabilityxi

xialso called the Product Rule of Probability.

We can decompose a joint probability 𝑃(𝐴, 𝐵) into the product of two probabilities:

𝑃(𝐴, 𝐵) = 𝑃(𝐵, 𝐴)
𝑃(𝐴) ⋅ 𝑃 (𝐵 | 𝐴) = 𝑃(𝐵) ⋅ 𝑃 (𝐴 | 𝐵)
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Who was Thomas Bayes?
• Thomas Bayes (1701 - 1761) was a statistician, philosopher and Presbyterian

minister who is known for formulating a specific case of the theorem that bears
his name: Bayes’ theorem.

• Bayes never published what would become his most famous accomplishment;
his notes were edited and published posthumously by his friend Richard Price.

• The theorem official name is Bayes-Price-Laplace, because Bayes was the first
to discover, Price got his notes, transcribed into mathematical notation, and
read to the Royal Society of London, and Laplace independently rediscovered
the theorem without having previous contact in the end of the XVIII century in
France while using probability for statistical inference with census data in the
Napoleonic era.
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Bayes Theorem
Tells us how to “invert” conditional probability:

𝑃(𝐴 | 𝐵) =
𝑃(𝐴) ⋅ 𝑃 (𝐵 | 𝐴)

𝑃(𝐵)
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Bayes’ Theorem Proof
Remember the following probability identity:

𝑃(𝐴, 𝐵) = 𝑃(𝐵, 𝐴)
𝑃(𝐴) ⋅ 𝑃 (𝐵 | 𝐴) = 𝑃(𝐵) ⋅ 𝑃 (𝐴 | 𝐵)

OK, now divide everything by 𝑃(𝐵):

𝑃(𝐴) ⋅ 𝑃 (𝐵 | 𝐴)
𝑃(𝐵)

=
𝑃(𝐵) ⋅ 𝑃 (𝐴 | 𝐵)

𝑃(𝐵)
𝑃(𝐴) ⋅ 𝑃 (𝐵 | 𝐴)

𝑃(𝐵)
= 𝑃(𝐴 | 𝐵)

𝑃(𝐴 | 𝐵) =
𝑃(𝐴) ⋅ 𝑃 (𝐵 | 𝐴)

𝑃(𝐵)
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A Probability Textbook Classicxii

xiiAdapted from: Yudkowski - An Intuitive Explanation of Bayes’ Theorem

How accurate is a breast cancer test?

• 1% of women have breast cancer (Prevalence)

• 80% of mammograms detect breast cancer (True Positive)

• 9.6% of mammograms detect breast cancer when there is no incidence (False Positive)

𝑃(𝐶 | +) =
𝑃(+ | 𝐶) ⋅ 𝑃 (𝐶)

𝑃(+)

𝑃(𝐶 | +) =
𝑃(+ | 𝐶) ⋅ 𝑃 (𝐶)

𝑃(+ | 𝐶) ⋅ 𝑃 (𝐶) + 𝑃(+ | ¬𝐶) ⋅ 𝑃 (¬𝐶)

𝑃(𝐶 | +) =
0.8 ⋅ 0.01

0.8 ⋅ 0.01 + 0.096 ⋅ 0.99
𝑃(𝐶 | +) ≈ 0.0776
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Why Bayes’ Theorem is Important?
We can invert the conditional probability:

𝑃(hypothesis | data) =
𝑃(data | hypothesis) ⋅ 𝑃 (hypothesis)

𝑃 (data)

But isn’t this the 𝑝-value?

NO!
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What are 𝑝-values?

𝑝-value is the probability of obtaining results at least as extreme as the observed, given
that the null hypothesis 𝐻0 is true:

𝑃(𝐷 | 𝐻0)
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What 𝑝-value is not!
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What 𝑝-value is not!
• 𝑝-value is not the probability of the null hypothesis

‣ No!
‣ Infamous confusion between 𝑃(𝐷 | 𝐻0) and 𝑃(𝐻0 | 𝐷).
‣ To get 𝑃(𝐻0 | 𝐷) you need Bayesian statistics.

• 𝑝-value is not the probability of data being generated at random
‣ No again!
‣ We haven’t stated nothing about randomness.

• 𝑝-value measures the effect size of a statistical test
‣ Also no… 𝑝-value does not say anything about effect sizes.
‣ Just about if the observed data diverge of the expected under the null hypothesis.
‣ Besides, 𝑝-values can be hacked in several ways (Head et al., 2015).
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The relationship between 𝑝-value and 𝐻0

To find out about any 𝑝-value, find out what 𝐻0 is behind it. It’s definition will never
change, since it is always 𝑃(𝐷 | 𝐻0):

• 𝑡-test: 𝑃(𝐷 | the difference between the groups is zero)

• ANOVA: 𝑃(𝐷 | there is no difference between groups)

• Regression: 𝑃(𝐷 | coefficient has a null value)

• Shapiro-Wilk: 𝑃(𝐷 | population is distributed as a Normal distribution)
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What are Confidence Intervals?

A confidence interval of X% for a parameter is an interval (𝑎, 𝑏)
generated by a repeated sampling procedure has probability X%
of containing the true value of the parameter, for all possible
values of the parameter.

— Neyman (1937) the “father” of confidence intervals
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What are Confidence Intervals?
Say you performed a statistical analysis to compare the efficacy of a public policy between two
groups and you obtain a difference between the mean of these groups. You can express this
difference as a confidence interval. Often we choose 95% confidence.

In other words, 95% is not the probability of obtaining data such that the estimate of the true
parameter is contained in the interval that we obtained, it is the probability of obtaining data
such that, if we compute another confidence interval in the same way, it contains the true
parameter.

The interval that we got in this particular instance is irrelevant and might as well be thrown away.

Doesn’t say anything about you target population, but about you sample in an insane process of
infinite sampling …
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Confidence Intervals versus Posterior Intervals
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But why I never see stats without 𝑝-values?
We cannot understand 𝑝-values if we do no not comprehend its origins and
historical trajectory. The first mention of 𝑝-values was made by the statistician
Ronald Fischer in 1925:

𝑝-value is a measure of evidence against the null hypothesis
— Fisher (1925)

• To quantify the strength of the evidence against the null hypothesis, Fisher
defended “𝑝 < 0.05 as the standard level to conclude that there is evidence
against the tested hypothesis”

• “We should not be off-track if we draw a conventional line at 0.05”
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𝑝 = 0.06
• Since 𝑝-value is a probability, it is also a continuous measure.

• There is no reason for us to differentiate 𝑝 = 0.049 against 𝑝 = 0.051.

• Robert Rosenthal, a psychologist said “surely, God loves the .06 nearly as much as the 
.05” (Rosnow and Rosenthal, 1989).
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But why I never heard about Bayesian statistics?xiii

xiiiinverse probability was how Bayes’ theorem was called in the beginning of the 20th century.

… it will be sufficient … to reaffirm my personal conviction … that
the theory of inverse probability is founded upon an error, and
must be wholly rejected.

— Fisher (1925)
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Inside every nonBayesian, there is a Bayesian struggling to get outxiv

xivquote from Dennis Lindley.

• In his final year of life, Fisher published a paper (Fisher, 1962)
examining the possibilities of Bayesian methods, but with the prior
probabilities being determined experimentally.

• Some authors speculate (Jaynes, 2003) that if Fisher were alive
today, he would probably be a Bayesian.
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Bayes’ Theorem as an Inference Engine
Now that you know what is probability and Bayes’ theorem, I will propose the following:

𝑃(𝜃 | 𝑦)⏟
Posterior

=

Likelihood
⏞𝑃(𝑦 | 𝜃) ⋅

Prior
⏞𝑃(𝜃)

𝑃(𝑦)⏟
Normalizing Constant

• 𝜃 – parameter(s) of interest

• 𝑦 – observed data

• Priori: prior probability of the parameter(s) value(s)

• Likelihood: probability of the observed data given the parameter(s) value(s)

• Posterior: posterior probability of the parameter(s) value(s) after we observed data 𝑦

• Normalizing Constantxv: 𝑃(𝑦) does not make any intuitive sense. This probability is transformed and can be interpreted as something
that only exists so that the result 𝑃(𝑦 | 𝜃)𝑃 (𝜃) be constrained between 0 and 1 – a valid probability.

xvsometimes also called evidence.
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Bayes’ Theorem as an Inference Engine
Bayesian statistics allows us to quantify directly the uncertainty related to the value of
one or more parameters of our model given the observed data.

This is the main feature of Bayesian statistics, since we are estimating directly 𝑃(𝜃 | 𝑦)
using Bayes’ theorem.

The resulting estimate is totally intuitive: simply quantifies the uncertainty that we have
about the value of one or more parameters given the data, model assumptions
(likelihood) and the prior probability of these parameter’s values.

Bayesian Statistics, Jose Storopoli 65



Bayesian Statistics
Bayesian Statistics

Bayesian vs Frequentist Stats

Bayesian Statistics Frequentist Statistics
Data Fixed – Non-random Uncertain – Random
Parameters Uncertain – Random Fixed – Non-random

Inference Uncertainty regarding the
parameter value

Uncertainty regarding the
sampling process from an infinite

population

Probability Subjective Objective (but with several model
assumptions)

Uncertainty Posterior Interval – 𝑃(𝜃 | 𝑦) Confidence Interval – 𝑃(𝑦 | 𝜃)
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Advantages of Bayesian Statistics
• Natural approach to express uncertainty

• Ability to incorporate previous information

• Higher model flexibility

• Full posterior distribution of the parameters

• Natural propagation of uncertainty

Main disadvantage: Slow model fitting procedure
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The beginning of the end of Frequentist Statistics
• Know that you are in a very special moment in history of great changes in statistics

• I believe that frequentist statistics, specially the way we qualify evidence and hypotheses with 𝑝
-values will transform in a “significant”xvi way.

• 8 years ago, the American Statistical Association (ASA) published a declaration about 𝑝-values
(Wasserstein and Lazar, 2016). It states exactly what we exposed here: The main concepts of the
null hypothesis significant testing and, in particular 𝑝-values, cannot provide what researchers
demand of them. Despite what says several textbooks, learning materials and published content,
𝑝-values below 0.05 doesn’t “prove” anything. Not, on the other way around, 𝑝-values higher
than 0.05 refute anything.

• ASA statement has more than 4.700 citations with relevant impact.

xvipun intended …
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The beginning of the end of Frequentist Statistics
• An international symposium was promoted in 2017 which originated an open-access special edition of

The American Statistician dedicated to practical ways to abandon 𝑝 < 0.05 (Wasserstein, Schirm and
Lazar, 2019).

• Soon there were more attempts and claims. In September 2017, Nature Human Behaviour published an
editorial proposing that the 𝑝-value’s significance level be decreased from 0.05 to 0.005 (Benjamin et
al., 2018). Several authors, including highly important and influential statisticians argued that this
simple step would help to tackle the replication crisis problem in science, that many believe be the
main consequence of the abusive use of 𝑝-values (Ioannidis, 2019).

• Furthermore, many went a step ahead and suggested that science banish once for all 𝑝-values (Lakens
et al., 2018; “It’s Time to Talk about Ditching Statistical Significance,” 2019). Many suggest (including
myself) that the main tool of statistical inference be Bayesian statistics (Goodman, 2016; Amrhein,
Greenland and McShane, 2019; Schoot et al., 2021).
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Recommended References
• Grimmett and Stirzaker (2020):

‣ Chapter 3: Discrete random variables
‣ Chapter 4: Continuous random variables

• Dekking et al. (2010):
‣ Chapter 4: Discrete random variables
‣ Chapter 5: Continuous random variables

• Betancourt (2019)
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Probability Distributions
Bayesian statistics uses probability distributions as the inference engine of the
parameter and uncertainty estimates.

Imagine that probability distributions are small “Lego” pieces. We can construct
anything we want with these little pieces. We can make a castle, a house, a city; literally
anything.

The same is valid for Bayesian statistical models. We can construct models from the
simplest ones to the most complex using probability distributions and their
relationships.
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Probability Distribution Function
A probability distribution function is a mathematical function that outputs the
probabilities for different results of an experiment. It is a mathematical description of a
random phenomena in terms of its sample space and the event probabilities (subsets of
the sample space).

𝑃(𝑋) : 𝑋 → ℝ ∈ [0, 1]

For discrete random variables, we define as “mass”, and for continuous random
variables, we define as “density”.
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Mathematical Notation
We use the notation

𝑋 ∼ Dist(𝜃1, 𝜃2, …)

where:

• 𝑋: random variable

• Dist: distribution name

• 𝜃1, 𝜃2, …: parameters that define how the distribution behaves

Every probability distribution can be “parameterized” by specifying parameters that
allow to control certain distribution aspects for a specific goal.
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Probability Distribution Function
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Cumulative Distribution Function
The cumulative distribution function (CDF) of a random variable 𝑋 evaluated at 𝑥 is the
probability that 𝑋 will take values less or qual than 𝑥:

CDF = 𝑃(𝑋 ≤ 𝑥)
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Cumulative Distribution Function
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Discrete Distributions
Discrete probability distributions are distributions which the results are a discrete
number: −𝑁, …, −2, 1, 0, 1, 2, …, 𝑁  and 𝑁 ∈ ℤ.

In discrete probability distributions we call the probability of a distribution taking
certain values as “mass”. The probability mass function (PMF) is the function that
specifies the probability of a random variable 𝑋 taking value 𝑥:

PMF(𝑥) = 𝑃(𝑋 = 𝑥)
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Discrete Uniform
The discrete uniform is a symmetric probability distribution in which a finite number of
values are equally likely of being observable. Each one of the 𝑛 values have probability 
1
𝑛 .

The uniform discrete distribution has two parameters and its notation is Uniform(𝑎, 𝑏):

• 𝑎 – lower bound
• 𝑏 – upper bound

Example: dice.
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Discrete Uniform

Uniform(𝑎, 𝑏) = 𝑓(𝑥, 𝑎, 𝑏) =
1

𝑏 − 𝑎 + 1
for 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑥 ∈ {𝑎, 𝑎 + 1, …, 𝑏 − 1, 𝑏}
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Discrete Uniform
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Bernoulli
Bernoulli distribution describes a binary event of the success of an experiment. We
represent 0 as failure and 1 as success, hence the result of a Bernoulli distribution is a
binary variable 𝑌 ∈ {0, 1}.

Bernoulli distribution is often used to model binary discrete results where there is only
two possible results.

Bernoulli distribution has only a single parameter and its notation is Bernoulli(𝑝):

• 𝑝 – probability of success

Example: If the patient survived or died or if the client purchased or not.
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Bernoulli

Bernoulli(𝑝) = 𝑓(𝑥, 𝑝) = 𝑝𝑥(1 − 𝑝)1−𝑥 for 𝑥 ∈ {0, 1}
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Bernoulli
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Binomial
The binomial distribution describes an event in which the number of successes in a
sequence 𝑛 independent experiments, each one making a yes–no question with
probability of success 𝑝. Notice that Bernoulli distribution is a special case of the
binomial distribution where 𝑛 = 1.

The binomial distribution has two parameters and its notation is Binomial(𝑛, 𝑝) :

• 𝑛 – number of experiments
• 𝑝 – probability of success

Example: number of heads in five coin throws.
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Binomial

Binomial(𝑛, 𝑝) = 𝑓(𝑥, 𝑛, 𝑝) = (
𝑛
𝑥

)𝑝𝑥(1 − 𝑝)𝑛−𝑥 for 𝑥 ∈ {0, 1, …, 𝑛}
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Binomial
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Poisson
Poisson distribution describes the probability of a certain number of events occurring in
a fixed time interval if these events occur with a constant mean rate which is known and
independent since the time of last occurrence. Poisson distribution can also be used for
number of events in other type of intervals, such as distance, area or volume.

Poisson distribution has one parameter and its notation is Poisson(𝜆):

• 𝜆 – rate

Example: number of e-mails that you receive daily or the number of the potholes you’ll
find in your commute.
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Poisson

Poisson(𝜆) = 𝑓(𝑥, 𝜆) =
𝜆𝑥𝑒−𝜆

𝑥!
for 𝜆 > 0
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Poisson
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Negative Binomialxvii

xviiany phenomena that can be modeles as a Poisson distribution can be modeled also as negative binomial distribution (Andrew Gelman, John B. Carlin, Stern, et al., 2013),
(Gelman, Hill and Vehtari, 2020).

The binomial distribution describes an event in which the number of successes in a sequence 𝑛 independent
experiments, each one making a yes–no question with probability of success 𝑝 until 𝑘 successes.

Notice that it becomes the Poisson distribution in the limit as 𝑘 → ∞. This makes it a robust option to replace
a Poisson distribution to model phenomena with overdispersion (presence of greater variability in data than
would be expected).

The negative binomial has two parameters and its notation is Negative Binomial(𝑘, 𝑝):

• 𝑘 – number of successes
• 𝑝 – probability of success

Example: annual occurrence of tropical cyclones.
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Negative Binomial

Negative Binomial(𝑘, 𝑝) = 𝑓(𝑥, 𝑘, 𝑝) = (
𝑥 + 𝑘 − 1

𝑘 − 1
)𝑝𝑥(1 − 𝑝)𝑘

for 𝑥 ∈ {0, 1, …, 𝑛}
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Negative Binomial
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Continuous Distributions
Continuous probability distributions are distributions which the results are values in a continuous real number
line: (−∞, +∞) ∈ ℝ.

In continuous probability distributions we call the probability of a distribution taking values as “density”.

Since we are referring to real numbers we cannot obtain the probability of a random variable 𝑋 taking exactly
the value 𝑥.

This will always be 0, since we cannot specify the exact value of 𝑥. 𝑥 lies in the real number line, hence, we
need to specify the probability of 𝑋 taking values in an interval [𝑎, 𝑏].

The probability density function (PDF) is defined as:

PDF(𝑥) = 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫
𝑏

𝑎
𝑓(𝑥) d𝑥
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Continuous Uniform
The continuous uniform distribution is a symmetric probability distribution in which an
infinite number of value intervals are equally likely of being observable. Each one of the
infinite 𝑛 intervals have probability 1

𝑛 .

The continuous uniform distribution has two parameters and its notation is 
Uniform(𝑎, 𝑏):

• 𝑎 – lower bound
• 𝑏 – upper bound
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Continuous Uniform

Uniform(𝑎, 𝑏) = 𝑓(𝑥, 𝑎, 𝑏) =
1

𝑏 − 𝑎
for 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑥 ∈ [𝑎, 𝑏]
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Continuous Uniform
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Normal
This distribution is generally used in social and natural sciences to represent continuous
variables in which its underlying distribution are unknown.

This assumption is due to the central limit theorem (CLT) that, under precise conditions,
the mean of many samples (observations) of a random variable with finite mean and
variance is itself a random variable which the underlying distribution converges to a
normal distribution as the number of samples increases (as 𝑛 → ∞).

Hence, physical quantities that we assume that are the sum of many independent
processes (with measurement error) often have underlying distributions that are similar
to normal distributions.
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Normal
The normal distribution has two parameters and its notation is Normal(𝜇, 𝜎) or 𝑁(𝜇, 𝜎):

• 𝜇 – mean of the distribution, and also median and mode
• 𝜎 – standard deviationxviii, a dispersion measure of how observations occur in relation

from the mean

Example: height, weight etc.

xviiisometimes is also parameterized as variance 𝜎2.
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Normalxix

xixsee how the normal distribution was derived from the binomial distribution in the backup slides.

Normal(𝜇, 𝜎) = 𝑓(𝑥, 𝜇, 𝜎) =
1

𝜎
√

2𝜋
𝑒−1

2(𝑥−𝜇
𝜎 )2

for 𝜎 > 0

Bayesian Statistics, Jose Storopoli 102



Bayesian Statistics
Statistical Distributions

Normal
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Log-Normal
The log-normal distribution is a continuous probability distribution of a random variable
which its natural logarithm is distributed as a normal distribution. Thus, if the natural
logarithm a random variable 𝑋, ln(𝑋), is distributed as a normal distribution, then 𝑌 =
ln(𝑋) is normally distributed and 𝑋 is log-normally distributed.

A log-normal random variable only takes positive real values. It is a convenient and
useful model for measurements in exact and engineering sciences, as well as in
biomedical, economical and other sciences. For example, energy, concentrations, length,
financial returns and other measurements.

A log-normal process is the statistical realization of a multiplicative product of many
independent positive random variables.
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Log-Normal
The log-normal distribution has two parameters and its notation is Log-Normal(𝜇, 𝜎2):

• 𝜇 – mean of the distribution’s natural logarithm
• 𝜎 – square root of the variance of the distribution’s natural logarithm

Bayesian Statistics, Jose Storopoli 105



Bayesian Statistics
Statistical Distributions

Log-Normal

Log-Normal(𝜇, 𝜎) = 𝑓(𝑥, 𝜇, 𝜎) =
1

𝑥𝜎
√

2𝜋
𝑒

(− ln(𝑥)−𝜇)2

2𝜎2 for 𝜎 > 0
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Log-Normal
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Exponential
The exponential distribution is the probability distribution of the time between events
that occurs in a continuous manner, are independent, and have constant mean rate of
occurrence.

The exponential distribution has one parameter and its notation is Exponential(𝜆):

• 𝜆 – rate

Example: How long until the next earthquake or how long until the next bus arrives.
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Exponential

Exponential(𝜆) = 𝑓(𝑥, 𝜆) = 𝜆𝑒−𝜆𝑥 for 𝜆 > 0
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Exponential
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Gamma
The gamma distribution is a long-tailed distribution with support only for positive real
numbers.

The gamma distribution has two parameters and its notation is Gamma(𝛼, 𝜃):

• 𝛼 – shape parameter
• 𝜃 – rate parameter

Example: Any waiting time can be modelled with a gamma distribution.
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Gamma

Gamma(𝛼, 𝜃) = 𝑓(𝑥, 𝛼, 𝜃) =
𝑥𝛼−1𝑒−𝑥

𝜃

Γ(𝛼)𝜃𝛼 for 𝑥, 𝛼, 𝜃 > 0
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Gamma

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6

PD
F

𝛼 = 1, 𝜃 = 1

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6

PD
F

𝛼 = 2, 𝜃 = 1
2

Bayesian Statistics, Jose Storopoli 113



Bayesian Statistics
Statistical Distributions

Student’s 𝑡
Student’s 𝑡 distribution arises by estimating the mean of a normally-distributed population in
situations where the sample size is small and the standard deviation is knownxx.

If we take a sample of 𝑛 observations from a normal distribution, then Student’s 𝑡 distribution
with 𝜈 = 𝑛 − 1 degrees of freedom can be defined as the distribution of the location of the sample
mean in relation to the true mean, divided by the sample’s standard deviation, after multiplying
by the scaling term 

√
𝑛.

Student’s 𝑡 distribution is symmetric and in a bell-shape, like the normal distribution, but with
long tails, which means that has more chance to produce values far away from its mean.

xxthis is where the ubiquitous Student’s 𝑡 test.

Bayesian Statistics, Jose Storopoli 114



Bayesian Statistics
Statistical Distributions

Student’s 𝑡
Student’s 𝑡 distribution has one parameter and its notation is Student(𝜈):

• 𝜈 – degrees of freedom, controls how much it resembles a normal distribution

Example: a dataset full of outliers.
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Student’s 𝑡

Student(𝜈) = 𝑓(𝑥, 𝜈) =
Γ(𝜈+1

2 )
√

𝜈𝜋Γ(𝜈
2)

(1 +
𝑥2

𝜈
)

−𝜈+1
2

for 𝜈 ≥ 1
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Student’s 𝑡
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Cauchy
The Cauchy distribution is bell-shaped distribution and a special case for Student’s 𝑡
with 𝜈 = 1.

But, differently than Student’s 𝑡, the Cauchy distribution has two parameters and its
notation is Cauchy(𝜇, 𝜎):

• 𝜇 – location parameter
• 𝜎 – scale parameter

Example: a dataset full of outliers.
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Cauchy

Cauchy(𝜇, 𝜎) =
1

𝜋𝜎(1 + (𝑥−𝜇
𝜎 )2)

for 𝜎 ≥ 0
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Cauchy
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Beta
The beta distribution is a natural choice to model anything that is restricted to values
between 0 e 1. Hence, it is a good candidate to model probabilities and proportions.

The beta distribution has two parameters and its notations is Beta (𝛼, 𝛽):

• 𝛼 (or sometimes 𝑎) – shape parameter, controls how much the shape is shifted towards
1

• 𝛽 (or sometimes 𝑏) – shape parameter, controls how much the shape is shifted towards
0

Example: A basketball player that has already scored 5 free throws and missed 3 in a
total of 8 attempts – Beta(3, 5)
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Beta

Beta(𝛼, 𝛽) = 𝑓(𝑥, 𝛼, 𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1

Γ(𝛼)Γ(𝛽)
Γ(𝛼+𝛽)

for 𝛼, 𝛽 > 0 and 𝑥 ∈ [0, 1]
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Recommended References
• Andrew Gelman, John B. Carlin, Stern, et al. (2013):

‣ Chapter 2: Single-parameter models
‣ Chapter 3: Introduction to multiparameter models

• McElreath (2020) - Chapter 4: Geocentric Models

• Gelman, Hill and Vehtari (2020):
‣ Chapter 9, Section 9.3: Prior information and Bayesian synthesis
‣ Chapter 9, Section 9.5: Uniform, weakly informative, and informative priors in

regression

• Schoot et al. (2021)
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Prior Probability
Bayesian statistics is characterized by the use of prior information as the prior
probability 𝑃(𝜃), often just prior:

𝑃(𝜃 | 𝑦)⏟
Posterior

=

Likelihood
⏞𝑃(𝑦 | 𝜃) ⋅

Prior
⏞𝑃(𝜃)

𝑃(𝑦)⏟
Normalizing Constant
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The Subjectivity of the Prior
• Many critics to Bayesian statistics are due the subjectivity in eliciting priors probability

on certain hypothesis or model parameter’s values.
• Subjectivity is something unwanted in the ideal picture of the scientist and the

scientific method.
• Anything that involves human action will never be free from subjectivity. We have

subjectivity in everything and science is no exception.
• The creative and deductive process of theory and hypotheses formulations is not

objective.
• Frequentist statistics, which bans the use of prior probabilities is also subjective, since

there is A LOT of subjectivity in choosing which model and likelihood function (Jaynes,
2003; Schoot et al., 2021).
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How to Incorporate Subjectivity
• Bayesian statistics embraces subjectivity while frequentist statistics bans it.

• For Bayesian statistics, subjectivity guides our inferences and leads to more robust
and reliable models that can assist in decision making.

• Whereas, for frequentist statistics, subjectivity is a taboo and all inferences should be
objective, even if it resorts to hiding and omitting model assumptions.

• Bayesian statistics also has assumptions and subjectivity, but these are declared and
formalized
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Types of Priors
In general, we can have 3 types of priors in a Bayesian approach (Andrew Gelman, John
B. Carlin, Stern, et al., 2013; McElreath, 2020; Schoot et al., 2021):

• uniform (flat): not recommended.

• weakly informative: small amounts of real-world information along with common
sense and low specific domain knowledge added.

• informative: introduction of medium to high domain knowledge.
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Uniform Prior (Flat)
Starts from the premise that “everything is possible”. There is no limits in the degree of
beliefs that the distribution of certain values must be or any sort of restrictions.

Flat and super-vague priors are not usually recommended and some thought should
included to have at least weakly informative priors.

Formally, an uniform prior is an uniform distribution over all the possible support of the
possible values:

• model parameters: {𝜃 ∈ ℝ : −∞ < 𝜃 < ∞}

• model error or residuals: {𝜎 ∈ ℝ+ : 0 < 𝜃 < ∞}
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Weakly Uninformative Prior
Here we start to have “educated” guess about our parameter values. Hence, we don’t
start from the premise that “anything is possible”.

I recommend always to transform the priors of the problem at hand into something
centered in 0 with standard deviation of 1xxi:

• 𝜃 ∼ Normal(0, 1) (Andrew Gelman’s preferred choicexxii )

• 𝜃 ∼ Student(𝜈 = 3, 0, 1) (Aki Vehtari’s preferred choicexxii)

xxithis is called standardization, transforming all variables into 𝜇 = 0 and 𝜎 = 1.
xxiisee more about prior choices in the Stan’s GitHub wiki.
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An Example of a Robust Prior
A nice example comes from a Ben Goodrich’s lecturexxiii (Columbia professor and member of Stan’s
research group).

He discuss about one of the biggest effect sizes observed in social sciences. In the exit pools for
the 2008 USA presidential election (Obama vs McCain), there was, in general, around 40% of
support for Obama. If you changed the respondent race from non-black to black, this was
associated with an increase of 60% in the probability of the respondent to vote on Obama

In logodds scales, 2.5x increase (from 40% to almost 100%) would be equivalent, on a Bernoulli/
logistic/binomial model, to a coefficient value of ≈ 0.92xxiv. This effect size would be easily derived
from a Normal(0, 1) prior.

xxiiihttps://youtu.be/p6cyRBWahRA, in case you want to see the full video, the section about priors related to the argument begins at minute 40
xxivlog(odds ratio) = log(2.5) = 0.9163.
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Informative Prior
In some contexts, it is interesting to use an informative prior. Good candidates are when
data is scarce or expensive and prior knowledge about the phenomena is available.

Some examples:

• Normal(5, 20)

• Log-Normal(0, 5)

• Beta(100, 9803)xxv

xxvthis is used in COVID-19 models from the CoDatMo Stan research group.
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Recommended References
• Andrew Gelman, John B. Carlin, Stern, et al. (2013) - Chapter 6: Model checking

• McElreath (2020) - Chapter 4: Geocentric Models

• Gelman, Hill and Vehtari (2020):
‣ Chapter 6: Background on regression modeling
‣ Chapter 11: Assumptions, diagnostics, and model evaluation

• Gelman et al. (2020) - “Workflow Paper”
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All Models Are Wrong

All models are wrong but some are useful
— George Box (Box, 1976)
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Bayesian Workflowxxvi

xxvibased on Gelman et al. (2020)

Prior
Elicitation

Prior
Predictive

Check
Model

Specification

Posterior
Predictive

Check
Posterior
Inference
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Bayesian Workflowxxvii

xxviiadapted from Elizaveta Semenova.

• Understand the domain and problem.
• Formulate the model mathematically.
• Implement model, test, and debug.
• Perform prior predictive checks.
• Fit the model.
• Assess convergence diagnostics.
• Perform posterior predictive checks.
• Improve the model iteratively: from baseline to complex and computationally efficient

models.
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Actual Bayesian Workflow

Figure 2: Bayesian workflow by Gelman et al. (2020).
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Not a “new idea”

Figure 3: Box’s Loop from Box (1976) but taken from Blei (2014).
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Prior Predictive Check
Before we feed data into our model, we need to check all of our priors.

In a very simple way, it consists in simulate parameter values based on prior distribution
without conditioning on any data or employing any likelihood function.

Independent of the level of information specified in the priors, it is always important to
perform a prior sensitivity analysis in order to have a deep understanding of the prior
influence onto the posterior.
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Posterior Predictive Check
We need to make sure that the posterior distribution of 𝒚, namely 𝒚, can capture all the nuances
of the real distribution density/mass of 𝒚.

This procedure is called posterior predictive check, and it is generally carried on by a visual
inspectionxxviii of the real density/mass of 𝒚 against generated samples of 𝒚 by the Bayesian
model.

The purpose is to compare the histogram of the dependent variable 𝒚 against the histograms of
simulated dependent variables 𝒚rep by the model after parameter inference.

The idea is that the real and simulated histograms blend together and we do not observer any
divergences.

xxviiiwe also perform mathematical/exact inspections, see the section on Model Comparison.
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Examples of Posterior Predictive Checks

Figure 4: Real versus Simulated Densities Figure 5: Real versus Simulated Empirical CDFs
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Recommended References
• Andrew Gelman, John B. Carlin, Stern, et al. (2013):

‣ Chapter 14: Introduction to regression models
‣ Chapter 16: Generalized linear models

• McElreath (2020) - Chapter 4: Geocentric Models

• Gelman, Hill and Vehtari (2020):
‣ Chapter 7: Linear regression with a single predictor
‣ Chapter 8: Fitting regression models
‣ Chapter 10: Linear regression with multiple predictors
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What is Linear Regression?

1 2 3 4

1

2

3

4
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What is Linear Regression?
The ideia here is to model a dependent variable as a linear combination of independent
variables.

𝒚 = 𝛼 + 𝑿𝜷 + 𝜀

where:

• 𝒚 – dependent variable
• 𝛼 – intercept (also called as constant)
• 𝜷 – coefficient vector
• 𝑿 – data matrix
• 𝜀 – model error
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Linear Regression Assumptions

• model error 𝜀 is independent of 𝑿 and 𝒚.

• Dependent variable 𝒚 is continuous, unbounded, and, more importantly, “metric”-
scaled, i.e. equidistant.

‣ e.g. the increase from 1 to 2 is the same from 3 to 4. Generally violated when 𝒚 is
interval-scaled.

• Observations are I.I.Dxxix.

xxixindependent and identically distributed.
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Linear Regression Specification
To estimate the intercept 𝛼 and coefficients 𝜷 we use a Gaussian/normal likelihood
function. Mathematically speaking, Bayesian linear regression is:

𝒚 ∼ Normal(𝛼 + 𝑿𝜷, 𝜎)
𝛼 ∼ Normal(𝜇𝛼, 𝜎𝛼)

𝜷 ∼ Normal(𝜇𝜷, 𝜎𝜷)

𝜎 ∼ Exponential(𝜆𝜎)
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Linear Regression Specification
What we are missing is the prior probabilities for the model’s parameters:

• Prior Distribution for 𝛼 – Knowledge that we have about the model’s intercept.

• Prior Distribution for 𝜷 – Knowledge that we have about the model’s independent
variable coefficients.

• Prior Distribution for 𝜎 – Knowledge that we have about the model’s error.
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Good Candidates for Prior Distributions
First, center (𝜇 = 0) and standardize (𝜎 = 1) the independent variables.

• 𝛼 – either a normal or student-𝑡 (𝜈 = 3), with mean as 𝜇𝒚 and standard deviation as 
2.5 ⋅ 𝜎𝒚 (also you can use the median and median absolute deviation).

• 𝜷 – either a normal or student-𝑡 (𝜈 = 3), with mean 0 and standard deviation 2.5.

• 𝜎 – anything that is long-tailed (mass towards lower values) and restrained to positive
values only. Exponential is a good candidate.
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Posterior Computation
Our aim to is to find the posterior distribution of the model’s parameters of interest (𝛼
and 𝜷) by computing the full posterior distribution of:

𝑃(𝜽 | 𝒚) = 𝑃(𝛼, 𝜷, 𝜎 | 𝒚)
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Recommended References
• Andrew Gelman, John B. Carlin, Stern, et al. (2013) - Chapter 16: Generalized linear

models

• McElreath (2020)
‣ Chapter 10: Big Entropy and the Generalized Linear Model
‣ Chapter 11, Section 11.1: Binomial regression

• Gelman, Hill and Vehtari (2020):
‣ Chapter 13: Logistic regression
‣ Chapter 14: Working with logistic regression
‣ Chapter 15, Section 15.3: Logistic-binomial model
‣ Chapter 15, Section 15.4: Probit regression
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Welcome to the Magical World of the Linear Generalized Models
Leaving the realm of the linear models, we start to adventure to the generalized linear
models – GLM.

The first one is logistic regression (also called Bernoulli regression or binomial
regression).
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Binary Dataxxx

xxxalso known as dichotomous, dummy, indicator variable, etc.

We use logistic regression when our dependent variable is binary. It only takes two
distinct values, usually coded as 0 and 1.
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What is Logistic Regression
Logistic regression behaves exactly as a linear model: it makes a prediction by simply
computing a weighted sum of the independent variables 𝑿 using the estimated
coefficients 𝜷, along with a constant term 𝛼.

However, instead of outputting a continuous value 𝒚, it returns the logistic function of
this value:

logistic(𝑥) =
1

1 + 𝑒−𝑥
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Logistic Function
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Probit Function
We can also opt to choose to use the probit function (usually represented by the Greek
letter Φ) which is the CDF of a normal distribution:

Φ(𝑥) =
1

√
2𝜋

∫
𝑥

−∞
𝑒−𝑡2

2 d𝑡
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Probit Function
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Logistic Function versus Probit Function
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Comparison with Linear Regression
Linear regression follows the following mathematical expression:

linear = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + … + 𝛽𝑘𝑥𝑘

• 𝛼 – intercept.
• 𝜷 = 𝛽1, 𝛽2, …, 𝛽𝑘 – independent variables’ 𝑥1, 𝑥2, …, 𝑥𝑘 coefficients.
• 𝑘 – number of independent variables.

If you implement a small mathematical transformation, you’ll have logistic regression:

• 𝑝 = logistic(linear) = 1
1+𝑒− linear  – probability of an observation taking value 1.

• 𝑦 = {0 if �̂�<0.5
1 if �̂�≥0.5

 – 𝒚’s predicted binary value.
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Logistic Regression Specification
We can model logistic regression using two approaches:

• Bernoulli likelihood – binary dependent variable 𝒚 which results from a Bernoulli trial
with some probability 𝑝.

• binomial likelihood – discrete and positive dependent variable 𝒚 which results from 𝑘
successes in 𝑛 independent Bernoulli trials.
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Bernoulli Likelihood
𝒚 ∼ Bernoulli(𝑝)
𝑝 = logistic/probit(𝛼 + 𝑿𝜷)
𝛼 ∼ Normal(𝜇𝛼, 𝜎𝛼)

𝜷 ∼ Normal(𝜇𝜷, 𝜎𝜷)

where:

• 𝒚 - dependent binary variable.
• 𝑝 - probability of 𝒚 taking value of 1 – success in an independent Bernoulli trial.
• logistic/probit – logistic or probit function.
• 𝛼 – intercept (also called constant).
• 𝜷 – coefficient vector.
• 𝑿 – data matrix.
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Binomial Likelihood
𝒚 ∼ Binomial(𝑛, 𝑝)
𝑝 = logistic/probit(𝛼 + 𝑿𝜷)
𝛼 ∼ Normal(𝜇𝛼, 𝜎𝛼)

𝜷 ∼ Normal(𝜇𝜷, 𝜎𝜷)

where:

• 𝒚 - dependent binary variable.
• 𝑛 - number of independent Bernoulli trials.
• 𝑝 - probability of 𝒚 taking value of 1 – success in an independent Bernoulli trial.
• logistic/probit – logistic or probit function.
• 𝛼 – intercept (also called constant).
• 𝜷 – coefficient vector.
• 𝑿 – data matrix.
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Posterior Computation
Our aim to is to find the posterior distribution of the model’s parameters of interest (𝛼
and 𝜷) by computing the full posterior distribution of:

𝑃(𝜽 | 𝒚) = 𝑃(𝛼, 𝜷 | 𝒚)
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How to Interpret Coefficients
If we revisit logistic transformation mathematical expression, we see that, in order to
interpret coefficients 𝜷, we need to perform a transformation.

Specifically, we need to undo the logistic transformation. We are looking for its inverse
function.
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Probability versus Odds
But before that, we need to discern between probability and oddsxxxi.

• Probability: a real number between 0 and 1 that represents the certainty that an event will occur,
either by long-term frequencies (frequentist approach) or degrees of belief (Bayesian approach).

• Odds: a positive real number (ℝ+) that also measures the certainty of an event happening. However
this measure is not expressed as a probability (between 0 and 1), but as the ratio between the number
of results that generate our desired event and the number of results that do not generate our desired
event:

odds =
𝑝

1 − 𝑝

where 𝑝 is the probability.

xxximathematically speaking.
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Probability versus Odds

odds =
𝑝

1 − 𝑝

where 𝑝 is the probability.

• Odds with a value of 1 is a neutral odds, similar to a fair coin: 𝑝 = 1
2

• Odds below 1 decrease the probability of seeing a certain event.
• Odds over 1 increase the probability of seeing a certain event.
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Logodds
If you revisit the logistic function, you’ll se that the intercept 𝛼 and coefficients 𝜷 are
literally the log of the odds (logodds):

𝑝 = logistic(𝛼 + 𝑿𝜷)
𝑝 = logistic(𝛼) + logistic(𝑿𝜷)

𝑝 =
1

1 + 𝑒−𝜷

𝜷 = log(odds)
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Logodds
Hence, the coefficients of a logistic regression are expressed in logodds, in which 0 is the
neutral element, and any number above or below it increases or decreases, respectively,
the changes of obtaining a “success” in 𝒚. To have a more intuitive interpretation
(similar to the betting houses), we need to convert the logodds into chances by undoing
the log function. We need to perform an exponentiation of 𝛼 and 𝜷 values:

odds(𝛼) = 𝑒𝛼

odds(𝜷) = 𝑒𝜷
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Recommended References
• Andrew Gelman, John B. Carlin, Stern, et al. (2013) - Chapter 16: Generalized linear

models, Section 16.2: Models for multivariate and multinomial responses

• McElreath (2020) - Chapter 12, Section 12.3: Ordered categorical outcomes

• Gelman, Hill and Vehtari (2020) - Chapter 15, Section 15.5: Ordered and unordered
categorical regression

• Bürkner and Vuorre (2019)

• Semenova (2019)
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What is Ordinal Regression?

Ordinal regression is a regression model for discrete data and, more specific, when the
values of the dependent variables have a “natural ordering”.

For example, opinion polls with its plausible ordered values from agree-disagree, or a
patient perception of pain score.
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Why not just use Linear Regression?
The main reason to not simply use linear regression with ordinal discrete outcomes is
that the categories of the dependent variable could not be equidistant.

This is an assumption in linear regression (and in almost all models that use “metric”
dependent variables): the distance between, for example, 2 and 3 is not the same
distance between 1 and 2.

This assumption can be violated in an ordinal regression.
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How to deal with an Ordinal Dependent Variable?

Surprise! Plot twist!

Another non-linear transformation.
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Cumulative Distribution Function – CDF
In the case of ordinal regression, first we need to transform the dependent variable into
a cumulative scale

For this, we use the cumulative distribution function (CDF):

𝑃(𝑌 ≤ 𝑦) = ∑
𝑦

𝑖=𝑦min

𝑃(𝑌 = 𝑖)

CDF is a monotonically increasing function that represents the probability of a random
variable 𝑌  taking values less than a certain value 𝑦
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Log-cumulative-odds
Still, this is not enough. We need to apply the logit function onto the CDF:

logit(𝑥) = logistic−1(𝑥) = ln(
𝑥

1 − 𝑥
)

where ln is the natural log function.

The logit function is the inverse of the logistic function: it takes as input any value between 0 and 
1 (e.g. a probability) and outputs an unconstrained real number which we call logoddsxxxii.

As the transformation is performed onto the CDF, we call the result as the CDF logodds or log-
cumulative-odds.

xxxiiwe already seen it in logistic regression.
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𝐾 − 1 Intercepts
What do we do with this log-cumulative-odds?

It allows us to construct different intercepts for all possible values of the ordinal
dependent variable. We create an unique intercept for 𝑘 ∈ 𝐾.

Actually is 𝑘 ∈ 𝐾 − 1. Notice that the maximum value of the CDF of 𝑌  will always be 1.
Which translates to a log-cumulative-odds of ∞, since 𝑝 = 1:

ln(
𝑝

1 − 𝑝
) = ln(

1
1 − 1

) = ln(0) = ∞

Hence, we need only 𝐾 − 1 intercepts for all 𝐾 possible values that 𝑌  can take.
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Violation of the Equidistant Assumption

Since each intercept implies a different CDF value for each 𝑘 ∈ 𝐾, we can safely violate
the equidistant assumption which is not valid in almost all ordinal variables.
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Cut Points
Each intercept implies in a log-cumulative-odds for each 𝑘 ∈ 𝐾; We need also to undo
the cumulative nature of the 𝐾 − 1 intercepts. Firstly, we convert the log-cumulative-
odds back to a valid probability with the logistic function:

logit−1(𝑥) = logistic(𝑥) = (
1

1 + 𝑒−𝑥 )

Then, finally, we remove the cumulative nature of the CDF by subtracting every one of
the 𝑘 cut points by the 𝑘 − 1 cut point:

𝑃(𝑌 = 𝑘) = 𝑃(𝑌 ≤ 𝑘) − 𝑃(𝑌 ≤ 𝑘 − 1)
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Example - Probability Mass Function of an Ordinal Variable
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Example - CDF versus log-cumulative-odds

values
1 2 3 4 5 6

CD
F

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

values
1 2 3 4 5 6

lo
g-

cu
m

ul
at

iv
e-

od
ds

-2

-1

0

1

2

Bayesian Statistics, Jose Storopoli 189



Bayesian Statistics
Ordinal Regression

Adding Coefficients 𝜷

With the equidistant assumption solved with 𝐾 − 1 intercepts, we can add coefficients to
represent the independent variable’s effects into our ordinal regression model.
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More Log-cumulative-odds
We’ve transformed all intercepts into log-cumulative-odds so that we can add effects as
weighted sums of the independent variables to our basal rates (intercepts).

For every 𝑘 ∈ 𝐾 − 1, we calculate:

𝜑 = 𝛼𝑘 + 𝛽𝑖𝑥𝑖

where 𝛼𝑘 is the log-cumulative-odds for the 𝑘 ∈ 𝐾 − 1 intercepts, 𝛽𝑖 is the coefficient for
the 𝑖th independent variable 𝑥𝑖.

Lastly, 𝜑𝑘 represents the linear predictor for the 𝑘th intercept.
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Matrix Notation
This can become more elegant and computationally efficient if we use matrix/vector
notation:

𝝋 = 𝜶 + 𝑿𝑐 ⋅ 𝜷

where 𝝋, 𝜶 e 𝜷xxxiii are vectors and 𝑿 is the data matrix, in which every line is an
observation and every column an independent variable.

xxxiiinote that both the coefficients and intercepts will have to be interpret as odds, like we did in logistic regression.
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Ordinal Regression Specification
𝒚 ∼ Categorical(𝒑)
𝒑 = logistic(𝝋)
𝝋 = 𝜶 + 𝒄 + 𝑿𝑐 ⋅ 𝜷
𝑐1 = logit(CDF(𝑦1))
𝑐𝑘 = logit(CDF(𝑦𝑘) − CDF(𝑦𝑘−1)) for 2 ≤ 𝑘 ≤ 𝐾 − 1
𝑐𝐾 = logit(1 − CDF(𝑦𝐾−1))
𝜶 ∼ Normal(𝜇𝛼, 𝜎𝛼)

𝜷 ∼ Normal(𝜇𝜷, 𝜎{𝜷})

• 𝒚 – ordinal discrete dependent variable.
• 𝒑 – probability vector of size 𝐾.
• 𝐾: number of possible values that 𝒚 can take, i.e. number of ordered discrete values.
• 𝝋: log-cumulative-odds, i.e. the cut points considering the intercepts and the weighted sum of the independent variables.
• 𝑐𝑘: cutpoint in log-cumulative-odds for every 𝑘 ∈ 𝐾 − 1.
• 𝛼𝑘: intercept in log-cumulative-odds for every 𝑘 ∈ 𝐾 − 1.
• 𝑿: data matrix of the independent variables.
• 𝜷: coefficient vector with size the same as the number of columns of 𝑿.
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Recommended References
• Andrew Gelman, John B. Carlin, Stern, et al. (2013) - Chapter 16: Generalized linear

models

• McElreath (2020):
‣ Chapter 10: Big Entropy and the Generalized Linear Model
‣ Chapter 11, Section 11.2: Poisson regression

• Gelman, Hill and Vehtari (2020) - Chapter 15, Section 15.2: Poisson and negative
binomial regression
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Count Data

Poisson regression is used when our dependent variable can only take positive values,
usually in the context of count data.
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What is Poisson Regression?
Poisson regression behaves exactly like a linear model: it makes a prediction by simply
computing a weighted sum of the independent variables 𝑿 with the estimated
coefficients 𝜷: 𝒚.

But, different from linear regression, it outputs the natural log of 𝒚:

log(𝒚) = 𝛼 ⋅ 𝛽1𝑥1 ⋅ 𝛽2𝑥2 ⋅ … ⋅ 𝛽𝑘𝑥𝑘

which is the same as:

𝒚 = 𝑒(𝛼+𝛽1𝑥1+𝛽2𝑥2+…+𝛽𝑘𝑥𝑘)
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Exponential Function
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Comparison with Linear Regression
Linear regression has the following mathematical expression:

linear = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + … + 𝛽𝑘𝑥𝑘

where:

• 𝛼 – intercept.
• 𝜷 = 𝛽1, 𝛽2, …, 𝛽𝑘 – independent variables’ 𝑥1, 𝑥2, …, 𝑥𝑘 coefficients.
• 𝑘 – number of independent variables.

If you implement a small mathematical transformation, you’ll have Poisson regression:

• log(𝑦) = 𝑒Linear = 𝑒𝛼+𝛽1𝑥1+𝛽2𝑥2+…+𝛽𝑘𝑥𝑘
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Poisson Regression Specification
We can use Poisson regression if the dependent variable 𝒚 has count data, i.e., 𝒚 only
takes positive values.

Poisson likelihood function uses an intercept 𝛼 and coefficients 𝜷, however these are
“exponentiated” (𝑒𝑥):

𝒚 ∼ Poisson(𝑒(𝛼+𝑿𝜷))

𝛼 ∼ Normal(𝜇𝛼, 𝜎𝛼)

𝜷 ∼ Normal(𝜇𝜷, 𝜎𝜷)
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Interpreting the Coefficients
When we see the Poisson regression specification, we realize that the coefficient
interpretation requires a transformation. What we need to do is undo the logarithm
transformation:

log−1(𝑥) = 𝑒𝑥

So, we need to “exponentiate” the values of 𝛼 and 𝜷:

𝒚 = 𝑒(𝛼+𝑿𝜷)

= 𝑒𝛼 ⋅ 𝑒(𝑋(1)⋅𝛽(1)) ⋅ 𝑒(𝑋(2)⋅𝛽(2)) ⋅ … ⋅ 𝑒(𝑋(𝑘)⋅𝛽(𝑘))
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Interpreting the Coefficients
Finally, notice that, when transformed, our dependent variables is no more a “weighted
sum of an intercept and independent variables”:

𝒚 = 𝑒(𝛼+𝑿𝜷)

= 𝑒𝛼 ⋅ 𝑒(𝑋(1)⋅𝛽(1)) ⋅ 𝑒(𝑋(2)⋅𝛽(2)) ⋅ … ⋅ 𝑒(𝑋(𝑘)⋅𝛽(𝑘))

It becomes a “weighted product”.
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Recommended References
• Andrew Gelman, John B. Carlin, Stern, et al. (2013) - Chapter 17: Models for robust

inference

• McElreath (2020) - Chapter 12: Monsters and Mixtures

• Gelman, Hill and Vehtari (2020):
‣ Chapter 15, Section 15.6: Robust regression using the t model
‣ Chapter 15, Section 15.8: Going beyond generalized linear models
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Robust Models
Almost always data from real world are really strange.

For the sake of convenience, we use simple models. But always ask yourself. How many
ways might the posterior inference depends on the following:

• extreme observations (outliers)?
• unrealistic model assumptions?
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Outliers

Models based on the normal distribution are notoriously “non-robust” against outliers,
in the sense that a single observation can greatly affect the inference of all model’s
parameters, even those that has a shallow relationship with it.
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Overdispersion
Superdispersion and underdispersionxxxiv refer to data that have more or fewer variation
than expected under a probability model (Gelman, Hill and Vehtari, 2020).

For each one of the models we covered, there is a natural extension in which a single
parameter is added to allow for overdispersion (Andrew Gelman, John B. Carlin, Stern, et
al., 2013).

xxxivrarer to find in the real world.
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Overdispersion Example
Suppose you are analyzing data from car accidents. The model we generally use in this
type of phenomena is Poisson regression.

Poisson distribution has the same parameter for both the mean and variance: the rate
parameter 𝜆.

Hence, if you find a higher variability than expected under the Poisson likelihood
function allows, then probably you won’t be able to model properly the desired
phenomena.
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Student’s 𝑡 instead of Normal
Student’s 𝑡 distribution has widerxxxv tails than the Normal distribution.

This makes it a good candidate to fit outliers without instabilities in the parameters’
inference.

From the Bayesian viewpoint, there is nothing special or magical in the Gaussian/
Normal likelihood.

It is just another distribution specified in a statistical model. We can make our model
robust by using the Student’s 𝑡 distribution as a likelihood function.

xxxvor “fatter”.
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Student’s 𝑡 instead of Normal
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Student’s 𝑡 instead of Normal
By using a Student’s 𝑡 distribution instead of the Normal distribution as likelihood functions, the model’s error
𝜎 does not follow a Normal distribution, but a Student’s 𝑡 distribution:

𝒚 ∼ Student(𝜈, 𝛼 + 𝑿𝜷, 𝜎)
𝛼 ∼ Normal(𝜇𝛼, 𝜎𝛼)

𝜷 ∼ Normal(𝜇𝜷, 𝜎𝜷)

𝜈 ∼ Log-Normal(2, 1)
𝜎 ∼ Exponential(𝜆𝜎)

Note that we are including an extra parameter 𝜈, which represents the Student’s 𝑡 distribution degrees of
freedom, to be estimated by the model (Andrew Gelman, John B. Carlin, Stern, et al., 2013).

This controls how wide or narrow the “tails” of the distribution will be. A heavy-tailed, positive-only prior is
advised.
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Beta-Binomial instead of the Binomial
The binomial distribution has a practical limitation that we only have one free
parameter to estimatexxxvi (𝑝). This implies in the variance to determined by the mean.
Hence, the binomial distribution cannot tolerate overdispersion.

A robust alternative is the beta-binomial distribution, which, as the name suggests, is a
beta mixture of binomials distributions. Most important, it allows that the variance to
be independent of the mean, making it robust against overdispersion.

xxxvisince 𝑛 already comes from data.
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Beta-Binomial instead of Binomial
The beta-binomial distribution is a binomial distribution, where the probability of
success 𝑝 is parameterized as a Beta(𝛼, 𝛽).

Generally, we use 𝛼 as the binomial’s probability of the success 𝑝, and 𝛽xxxvii is the
additional parameter to control and allow for overdispersion.

Values of 𝛽 ≥ 1 make the beta-binomial behave the same as a binomial.

xxxviisometimes specified as 𝜑
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Beta-Binomial instead of Binomial
𝒚 ∼ Beta-Binomial(𝑛, 𝑝, 𝜑)
𝑝 ∼ Logistic/Probit(𝛼 + 𝑿𝜷)
𝛼 ∼ Normal(𝜇𝛼, 𝜎𝛼)

𝜷 ∼ Normal(𝜇𝜷, 𝜎𝜷)

𝜑 ∼ Exponential(1)

It is also proper to include the overdispersion 𝛽 parameter as an additional parameter to be
estimated by the model (Andrew Gelman, John B. Carlin, Stern, et al., 2013; McElreath, 2020). A
heavy-tailed, positive-only prior is advised.
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Student’s 𝑡 instead Binomial
Also known as Robitxxxviii (Andrew Gelman, John B. Carlin, Stern, et al., 2013; Gelman, Hill and Vehtari, 2020). The idea is
to make the logistic regression robust by using a latent variable 𝑧 as the linear predictor. 𝑧’s errors, 𝜀, are distributed
as a Student’s 𝑡 distribution:

𝑦𝑖 = {
0 if 𝑧𝑖 < 0
1 if 𝑧𝑖 > 0

𝑧𝑖 = 𝑋𝑖𝜷 + 𝜀𝑖

𝜀𝑖 ∼ Student(𝜈, 0, √
𝜈 − 2

𝜈
)

𝜈 ∼ Gamma(2, 0.1) ∈ [2, ∞)

Here we are using the gamma distribution as a truncated Student’s 𝑡 distribution for the degrees of freedom
parameter 𝜈 ≥ 2. Another option would be to fix 𝜈 = 4.
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xxxviiithere is a great discussion between Gelman, Vehtari and Kurz at Stan’s Discourse .
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Negative Binomial instead of Poisson
This is the overdispersion example. The Poisson distribution uses a single parameter for
both its mean and variance.

Hence, if you find overdispersion, probably you’ll need a robust alternative to Poisson.
This is where the negative binomial, with an extra parameter 𝜑, that makes it robust to
overdispersion.

𝜑 controls the probability of success 𝑝, and we generally use a gamma distribution as its
prior. 𝜑 is also known as a “reciprocal dispersion” parameter.
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Negative Binomial instead of Poisson

𝒚 ∼ Negative Binomial(𝑒(𝛼+𝑿𝜷), 𝜑)

𝜑 ∼ Gamma(0.01, 0.01)
𝛼 ∼ Normal(𝜇𝛼, 𝜎𝛼)

𝜷 ∼ Normal(𝜇𝜷, 𝜎𝜷)

Here we also give a heavy-tailed, positive-only prior to 𝜑. Something like the 
Gamma(0.01, 0.01) works.
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Negative Binomial Mixture instead of Poisson
Even using a negative binomial likelihood, if you encounter acute overdispersion,
specially when there is a lot of zeros in your data (zero-inflated), your model can still
perform a bad fit to the data.

Another suggestion is to use a mixture of negative binomial (McElreath, 2020).
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Negative Binomial Mixture instead of Poisson
Here, 𝑆𝑖 is a dummy variable, taking value 1 if the 𝑖th observation has a value ≠ 0. 𝑆𝑖 can
be modeled using logistic regression:

𝒚{
= 0 if 𝑆𝑖 = 0
∼ Negative Binomial(𝑒(𝛼+𝑿𝜷), 𝜑) if 𝑆𝑖 = 1

𝑃(𝑆𝑖 = 1) = Logistic/Probit(𝑿𝜸)
𝛾 ∼ Beta(1, 1)

𝛾 is a new coefficients which we give uniform prior of Beta(1, 1).
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Why Use Non-Robust Models?
The central limit theorem tells us that the normal distribution is an appropriate model
for data that arises as a sum of independent components.

Even when they are naturally not implicit in a phenomena structure, simpler non-robust
models are computational efficient.

Finally, there’s occam’s razor, also known as the principle of parsimony, which states the
preference for simplicity in the scientific method.

Of course, you must always guide the model choice in a principled manner, taking into
account the underlying phenomena data generating process. And make sure to make
posterior predictive checks.
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Recommended References
• Gelman, Hill and Vehtari (2020) - Chapter 12, Section 12.8: Models for regression

coefficients

• Horseshoe Prior: Carvalho, Polson and Scott (2009)

• Horseshoe+ Prior: Bhadra et al. (2015)

• Regularized Horseshoe Prior: Piironen and Vehtari (2017)

• R2-D2 Prior: Zhang et al. (2022)

• Betancourt’s Case study on Sparsity: Betancourt (2021)
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What is Sparsity?

Sparsity is a concept frequently encountered in statistics, signal processing, and
machine learning, which refers to situations where the vast majority of elements in a
dataset or a vector are zero or close to zero.
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How to Handle Sparsity?
Almost all techniques deal with some sort of variable selection, instead of altering data.

This makes sense from a Bayesian perspective, as data is information, and we don’t
want to throw information away.
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Frequentist Approach
The frequentist approach deals with sparse regression by staying in the “optimization”
context but adding Lagrangian constraintsxxxix:

min
𝛽

{∑
𝑁

𝑖=1
(𝑦𝑖 − 𝛼 − 𝑥𝑇

𝑖 𝜷)2}

suject to ‖ 𝜷 ‖𝑝 ≤ 𝑡.

Here ‖ ⋅ ‖𝑝 is the 𝑝-norm.

xxxixthis is called LASSO (least absolute shrinkage and selection operator) from Tibshirani (1996); Zou and Hastie (2005).
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Variable Selection Techniques

• discrete mixtures: spike-and-slab prior

• shrinkage priors: Laplace prior and horseshoe prior (Carvalho, Polson and Scott, 2009)
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Discrete Mixtures – Spike-and-Slab Prior
Mixture of two distributions—one that is concentrated at zero (the “spike”) and one with a much wider spread
(the “slab”). This prior indicates that we believe most coefficients in our model are likely to be zero (or close to
zero), but we allow the possibility that some are not.

Here is the Gaussian case:

𝛽𝑖 | 𝜆𝑖, 𝑐 ∼ Normal(0, √𝜆2
𝑖 𝑐2)

𝜆𝑖 ∼ Bernoulli(𝑝)

where:

• 𝑐: slab width
• 𝑝: prior inclusion probability; encodes the prior information about the sparsity of the coefficient vector 𝜷
• 𝜆𝑖 ∈ {0, 1}: whether the coefficient 𝛽𝑖 is close to zero (comes from the “spike”, 𝜆𝑖 = 0) or nonzero (comes

from the “slab”, 𝜆𝑖 = 1)
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Discrete Mixtures – Spike-and-Slab Prior
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Shinkrage Priors – Laplace Prior
The Laplace distribution is a continuous probability distribution named after Pierre-
Simon Laplace. It is also known as the double exponential distribution.

It has parameters:

• 𝜇: location parameter
• 𝑏: scale parameter

The PDF is:

Laplace(𝜇, 𝑏) =
1
2𝑏

𝑒−( | 𝑥−𝜇 |
𝑏 )

It is a symmetrical exponential decay around 𝜇 with scale governed by 𝑏.
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Shinkrage Priors – Laplace Prior
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Shinkrage Priors – Horseshoe Prior
The horseshoe prior (Carvalho, Polson and Scott, 2009) assumes that each coefficient 𝛽𝑖 is conditionally
independent with density 𝑃HS(𝛽𝑖 | 𝜏), where 𝑃HS can be represented as a scale mixture of Gaussians:

𝛽𝑖 | 𝜆𝑖, 𝜏 ∼ Normal(0, √𝜆2
𝑖 𝜏2)

𝜆𝑖 ∼ Cauchy+(0, 1)

where:
• 𝜏 : global shrinkage parameter
• 𝜆𝑖: local shrinkage parameter
• Cauchy+ is the half-Cauchy distribution for the standard deviation 𝜆𝑖

Note that it is similar to the spike-and-slab, but the discrete mixture becomes a “continuous” mixture
with the Cauchy+.
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Discrete Mixtures – Spike-and-Slab Prior
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Discrete Mixtures versus Shinkrage Priors
Discrete mixtures offer the correct representation of sparse problems (Carvalho, Polson
and Scott, 2009) by placing positive prior probability on 𝛽𝑖 = 0 (regression coefficient),
but pose several difficulties: mostly computational due to the non-continuous nature.

Shrinkage priors, despite not having the best representation of sparsity, can be very
attractive computationally: again due to the continuous property.
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Horseshoe versus Laplace
The advantages of the Horseshoe prior over the Laplace prior are primarily:

• shrinkage: The Horseshoe prior has infinitely heavy tails and an infinite spike at zero. Parameters
estimated under the Horseshoe prior can be shrunken towards zero more aggressively than under the
Laplace prior, promoting sparsity without sacrificing the ability to detect true non-zero signals.

• signal detection: Due to its heavy tails, the Horseshoe prior does not overly penalize large values,
which allows significant effects to stand out even in the presence of many small or zero effects.

• uncertainty quantification: With its heavy-tailed nature, the Horseshoe prior better captures
uncertainty in parameter estimates, especially when the truth is close to zero.

• regularization: In high-dimensional settings where the number of predictors can exceed the number
of observations, the Horseshoe prior acts as a strong regularizer, automatically adapting to the
underlying sparsity level without the need for external tuning parameters.
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Effective Shinkrage Comparison
Makes more sense to compare the shinkrage effects of the proposed approaches so far.
Assume for now that 𝜎2 = 𝜏2 = 1, and define 𝜅𝑖 = 1

1+𝜆2
𝑖
.

Then 𝜅𝑖 is a random shrinkage coefficient, and can be interpreted as the amount of
weight that the posterior mean for 𝛽𝑖 places on 0 once the data 𝒚 have been observed:

𝐸(𝛽𝑖 | 𝑦𝑖, 𝜆2
𝑖 ) =

𝜆2
𝑖

1 + 𝜆2
𝑖
𝑦𝑖 +

1
1 + 𝜆2

𝑖
0 = (1 − 𝜅𝑖)𝑦𝑖
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Effective Shinkrage Comparisonxl

xlspike-and-slab with 𝑝 = 1
2  would be very similar to Horseshoe but with discontinuities.
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Shinkrage Priors – Horseshoe+
Natural extension from the Horseshoe that has improved performance with highly sparse data (Bhadra
et al., 2015).

Just introduce a new half-Cauchy mixing variable 𝜂𝑖 in the Horseshoe:

𝛽𝑖 | 𝜆𝑖, 𝜂𝑖, 𝜏 ∼ Normal(0, 𝜆𝑖)
𝜆𝑖 | 𝜂𝑖, 𝜏 ∼ Cauchy+(0, 𝜏𝜂𝑖)

𝜂𝑖 ∼ Cauchy+(0, 1)

where:

• 𝜏 : global shrinkage parameter
• 𝜆𝑖: local shrinkage parameter
• 𝜂𝑖: additional local shrinkage parameter
• Cauchy+ is the half-Cauchy distribution for the standard deviation 𝜆𝑖 and 𝜂𝑖
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Shinkrage Priors – Regularized Horseshoe
The Horseshoe and Horseshoe+ guarantees that the strong signals will not be
overshrunk. However, this property can also be harmful, especially when the parameters
are weakly identified.

The solution, Regularized Horseshoe (Piironen and Vehtari, 2017) (also known as the
“Finnish Horseshoe”), is able to control the amount of shrinkage for the largest
coefficient.
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Shinkrage Priors – Regularized Horseshoe

𝛽𝑖 | 𝜆𝑖, 𝜏 , 𝑐 ∼ Normal (0, √𝜏2𝜆𝑖
2)

𝜆𝑖
2 =

𝑐2𝜆2
𝑖

𝑐2 + 𝜏2𝜆2
𝑖

𝜆𝑖 ∼ Cauchy+(0, 1)

where:

• 𝜏 : global shrinkage parameter
• 𝜆𝑖: local shrinkage parameter
• 𝑐 > 0: regularization constant
• Cauchy+ is the half-Cauchy distribution for the standard deviation 𝜆𝑖

Note that when 𝜏2𝜆2
𝑖 ≪ 𝑐2 (coefficient 𝛽𝑖 ≈ 0), then 𝜆𝑖

2 → 𝜆2
𝑖 ; and when 𝜏2𝜆2

𝑖 ≫ 𝑐2 (coefficient 𝛽𝑖 far from 0),
then 𝜆𝑖

2 → 𝑐2

𝜏2  and 𝛽𝑖 prior approaches Normal(0, 𝑐).
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Shinkrage Priors – R2-D2
Still, we can do better. The R2-D2xli prior (Zhang et al., 2022) has heavier tails and higher
concentration around zero than the previous approaches.

The idea is to, instead of specifying a prior on 𝜷, we construct a prior on the coefficient
of determination 𝑅2footnote{ square of the correlation coefficient between the
dependent variable and its modeled expectation.}. Then using that prior to “distribute”
throughout the 𝜷.

xli𝑅2-induced Dirichlet Decomposition
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Shinkrage Priors – R2-D2
𝑅2 ∼ Beta(𝜇𝑅2𝜎𝑅2 , (1 − 𝜇𝑅2)𝜎𝑅2)
𝝋 ∼ Dirichlet(𝐽, 1)

𝜏2 =
𝑅2

1 − 𝑅2

𝜷 = 𝑍 ⋅ √𝝋𝜏2

where:

• 𝜏 : global shrinkage parameter
• 𝝋: proportion of total variance allocated to each covariate, can be interpreted as the local shrinkage

parameter
• 𝜇𝑅2  is the mean of the 𝑅2 parameter, generally 1

2
• 𝜎𝑅2  is the precision of the 𝑅2 parameter, generally 2
• 𝑍 is the standard Gaussian, i.e. Normal(0, 1)
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Recommended References
• Gelman, Hill and Vehtari (2020):

‣ Chapter 5: Hierarchical models
‣ Chapter 15: Hierarchical linear models

• (McElreath, 2020):
‣ Chapter 13: Models With Memory
‣ Chapter 14: Adventures in Covariance

• Gelman and Hill (2007)

• Michael Betancourt’s case study on Hierarchical modeling

• Kruschke and Vanpaemel (2015)
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I have many names…
Hierarchical models are also known for several namesxlii

• Hierarchical Models

• Random Effects Models

• Mixed Effects Models

• Cross-Sectional Models

• Nested Data Models

xliifor the whole full list check here.
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What are hierarchical models?
Statistical model specified in multiple levels that estimates parameters from the
posterior distribution using a Bayesian approach.

The sub-models inside the model combines to form a hierarchical model, and Bayes’
theorem is used to integrate it to observed data and account for all uncertain.

Hierarchical models are mathematical descriptions that involves several parameters,
where some parameters’ estimates depend on another parameters’ values.
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What are hierarchical models?
Hyperparameter 𝜑 that parameterizes 𝜃1, 𝜃2, …, 𝜃𝐾 , that are used to infer the posterior density of some random
variable 𝒚 = 𝑦1, 𝑦2, …, 𝑦𝐾

𝜑

𝜃1 … 𝜃𝑘 … 𝜃𝐾

𝑦1 … 𝑦𝑘 … 𝑦𝐾
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What are hierarchical models?
Even that the observations directly inform only a single set of parameters, a hierarchical model couples individual parameters,
and provides a “backdoor” for information flow.

𝜑

𝜃1 … 𝜃𝑘 … 𝜃𝐾

𝑦1 … 𝑦𝑘 … 𝑦𝐾

𝜑

𝜃1 … 𝜃𝑘 … 𝜃𝐾

𝑦1 … 𝑦𝑘 … 𝑦𝐾

For example, the observations from the 𝑘th group, 𝑦𝑘, informs directly the parameters that quantify the 𝑘th group’s behavior, 
𝜃𝑘. These parameters, however, inform directly the population-level parameters, 𝜑, that, in turn, informs others group-level
parameters. In the same manner, observations that informs directly other group’s parameters also provide indirectly
information to population-level parameters, which then informs other group-level parameters, and so on…
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When to Use Hierarchical Models?

Hierarchical models are used when information is available in several levels of units of
observation. The hierarchical structure of analysis and organization assists in the
understanding of multiparameter problems, while also performing a crucial role in the
development of computational strategies.
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When to Use Hierarchical Models?
Hierarchical models are particularly appropriate for research projects where participant data can be organized
in more than one levelxliii.

The units of analysis are generally individuals that are nested inside contextual/aggregate units (groups).

An example is when we measure individual performance and we have additional information about distinct
group membership such as:

• sex
• age group
• income level
• education level
• state/province of residence

xliiialso known as nested data.
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When to Use Hierarchical Models?
Another good use case is big data (Andrew Gelman, John B. Carlin, Stern, et al., 2013).

• simple nonhierarchical models are usually inappropriate for hierarchical data: with few
parameters, they generally cannot fit large datasets accurately.

• whereas with many parameters, they tend to overfit.

• hierarchical models can have enough parameters to fit the data well, while using a
population distribution to structure some dependence into the parameters, thereby
avoiding problems of overfitting.
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When to Use Hierarchical Models?

Most important is not to violate the exchangeability assumption (Finetti, 1974).

This assumption stems from the principle that groups are exchangeable.
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Hyperprior
In hierarchical models, we have a hyperprior, which is a prior’s prior:

𝒚 ∼ Normal(10, 𝜽)
𝜽 ∼ Normal(0, 𝜑)
𝜑 ∼ Exponential(1)

Here 𝒚 is a variable of interest that belongs to distinct groups. 𝜽, a prior for 𝒚, is a vector
of group-level parameters with their own prior (which becomes a hyperprior) 𝜑.
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Frequentist versus Bayesian Approaches
There are also hierarchical models in frequentist statistics. They are mainly available in the lme4
package (Bates et al., 2015), and also in MixedModels.jl (Bates et al., 2022).

• optimization of the likelihood function versus posterior approximation via MCMC. Almost always
lead to convergence failure for models that are not extremely simple.

• frequentist hierarchical models do not compute 𝑝-values for the group-level effectsxliv. This is
due to the underlying assumptions of the approximations that frequentist statistics has to to do
in order to calculate the group-level effects 𝑝-values. The main one being that the groups must
be balanced. In other words, the groups must be homogeneous in size. Hence, any unbalance in
group compositions results in pathological 𝑝-values that should not be trusted.

xlivsee https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html [Douglas Bates, creator of the lme4 package explanation].
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Frequentist versus Bayesian Approaches

To sum up, frequentist approach for hierarchical models is not robust in both the
inference process (convergence flaws during the maximum likelihood estimation), and
also in the results from the inference process (do not provide 𝑝-values due to strong
assumptions that are almost always violated).
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Approaches to Hierarchical Modeling

• Varying-intercept model: One group-level intercept besides the population-level
coefficients.

• Varying-slope model: One or more group-level coefficient(s) besides the population-
level intercept.

• Varying-intercept-slope model: One group-level intercept and one or more group-
level coefficient(s).
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Mathematical Specification of Hierarchical Models

We have 𝑁  observations organized in 𝐽  groups with 𝐾 independent variables.
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Mathematical Specification – Varying-Intercept Model
This example is for linear regression:

𝒚 ∼ Normal(𝛼𝑗 + 𝑿 ⋅ 𝜷, 𝜎)

𝛼𝑗 ∼ Normal(𝛼, 𝜏)

𝛼 ∼ Normal(𝜇𝛼, 𝜎𝛼)

𝜷 ∼ Normal(𝜇{𝜷}, 𝜎𝜷)

𝜏 ∼ Cauchy+(0, 𝜓𝛼)
𝜎 ∼ Exponential(𝜆𝜎)
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Mathematical Specification – Varying-Intercept Model
If you need to extend to more than one group, such as 𝐽1, 𝐽2, …:

𝒚 ∼ Normal(𝛼𝑗1
+ 𝛼𝑗2

+ 𝑿𝜷, 𝜎)

𝛼𝑗1
∼ Normal(𝛼1, 𝜏𝛼𝑗1

)

𝛼𝑗2
∼ Normal(𝛼2, 𝜏𝛼𝑗2

)

𝛼1 ∼ Normal(𝜇𝛼1
, 𝜎𝛼1

)

𝛼2 ∼ Normal(𝜇𝛼2
, 𝜎𝛼2

)

𝜷 ∼ Normal(𝜇𝜷, 𝜎𝜷)

𝜏𝛼𝑗1
∼ Cauchy+(0, 𝜓𝛼𝑗1

)

𝜏𝛼𝑗2
∼ Cauchy+(0, 𝜓𝛼𝑗2

)

𝜎 ∼ Exponential(𝜆𝜎)
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Mathematical Specification – Varying-(Intercept-)Slope Model
If we want a varying intercept, we just insert a column filled with 1s in the data matrix 𝑿.

Mathematically, this makes the column behave like an “identity” variable (because the
number 1 in the multiplication operation 1 ⋅ 𝛽 is the identity element. It maps 𝑥 → 𝑥
keeping the value of 𝑥 intact) and, consequently, we can interpret the column’s
coefficient as the model’s intercept.
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Mathematical Specification – Varying-(Intercept-)Slope Model
Hence, we have as a data matrix:

𝑿 =

⎣
⎢
⎢
⎢
⎡1

1
⋮
1

𝑥11
𝑥21
⋮

𝑥𝑁1

𝑥12
𝑥22
⋮

𝑥𝑁2

…
…
⋱
…

𝑥1𝐾
𝑥2𝐾

⋮
𝑥𝑁𝐾⎦

⎥
⎥
⎥
⎤
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Mathematical Specification – Varying-(Intercept-)Slope Model
This example is for linear regression:

𝒚 ∼ Normal(𝑿𝜷{𝑗}, 𝜎)

𝜷𝑗 ∼ Multivariate Normal(𝝁𝑗, 𝚺) for 𝑗 ∈ {1, …, 𝐽}

𝚺 ∼ LKJ(𝜂)
𝜎 ∼ Exponential(𝜆𝜎)

Each coefficient vector 𝜷𝑗 represents the model columns 𝑿 coefficients for every group 
𝑗 ∈ 𝐽 . Also the first column of 𝑿 could be a column filled with 1s (intercept).
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Mathematical Specification – Varying-(Intercept-)Slope Model
If you need to extend to more than one group, such as 𝐽1, 𝐽2, …:

𝒚 ∼ Normal(𝛼 + 𝑿𝜷𝑗1
+ 𝑿𝜷𝑗2

, 𝜎)

𝜷𝑗1
∼ Multivariate Normal(𝝁𝑗1

, 𝚺1) for 𝑗1 ∈ {1, …, 𝐽1}

𝜷𝑗2
∼ Multivariate Normal(𝝁𝑗2

, 𝚺2) for 𝑗2 ∈ {1, …, 𝐽2}

𝚺1 ∼ LKJ(𝜂1)
𝚺2 ∼ LKJ(𝜂2)

𝜎 ∼ Exponential(𝜆𝜎)
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Priors for Covariance Matrices
We can specify a prior for a covariance matrix 𝚺.

For computational efficiency, we can make the covariance matrix 𝚺 into a correlation
matrix. Every covariance matrix can be decomposed into:

𝚺 = diagmatrix(𝝉) ⋅ 𝛀 ⋅ diagmatrix(𝝉)

where 𝛀 is a correlation matrix with 1s in the diagonal and the off-diagonal elements
between −1 e 1 𝜌 ∈ (−1, 1).

𝝉  is a vector composed of the variables’ standard deviation from 𝚺 (is is the 𝚺’s
diagonal).
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Priors for Covariance Matrices
Additionally, the correlation matrix 𝛀 can be decomposed once more for greater computational efficiency.

Since all correlations matrices are symmetric and positive definite (all of its eigenvalues are real numbers ℝ
and positive > 0), we can use the Cholesky Decomposition to decompose it into a triangular matrix (which is
much more computational efficient to handle):

𝛀 = 𝑳Ω𝑳𝑇
Ω

where 𝑳Ω is a lower-triangular matrix.

What we are missing is to define a prior for the correlation matrix 𝛀. Not a long time ago, we’ve used a Wishart
distribution as a prior (Andrew Gelman, John B. Carlin, Stern, et al., 2013).

But this has been abandoned after the proposal of the LKJ distribution by Lewandowski, Kurowicka and Joe
(2009)xlv as a prior for correlation matrices.

xlvLKJ are the authors’ last name initials – Lewandowski, Kurowicka and Joe.
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Recommended References
• Andrew Gelman, John B. Carlin, Stern, et al. (2013):

‣ Chapter 10: Introduction to Bayesian computation
‣ Chapter 11: Basics of Markov chain simulation
‣ Chapter 12: Computationally efficient Markov chain simulation

• McElreath (2020) - Chapter 9: Markov Chain Monte Carlo

• Neal (2011)

• Betancourt (2017)

• Gelman, Hill and Vehtari (2020) - Chapter 22, Section 22.8: Computational efficiency

• Chib and Greenberg (1995)

• Casella and George (1992)
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Monte Carlo Methods
• Stan is named after the mathematician Stanislaw Ulam, who was

involved in the Manhattan project, and while trying to calculate the
neutron diffusion process for the hydrogen bomb ended up
creating a whole class of methods called Monte Carlo (Eckhardt,
1987).

• Monte Carlo methods employ randomness to solve problems in
principle are deterministic in nature. They are frequently used in
physics and mathematical problems, and very useful when it is
difficult or impossible to use other approaches.
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History Behind the Monte Carlo Methodsxlvi

xlvithose who are interested, should read Eckhardt (1987).

• The idea came when Ulam was playing Solitaire while recovering from surgery.
Ulam was trying to calculate the deterministic, i.e. analytical solution, of the
probability of being dealt an already-won game. The calculations where almost
impossible. So, he thought that he could play hundreds of games to
statistically estimate, i.e. numerical solution, the probability of this result.

• Ulam described the idea to John von Neumann in 1946.

• Due to the secrecy, von Neumann and Ulam’s work demanded a code name.
Nicholas Metropolis suggested using “Monte Carlo”, a homage to the “Casino
Monte Carlo” in Monaco, where Ulam’s uncle would ask relatives for money to
play.
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Why Do We Need MCMC?
The main computation barrier for Bayesian statistics is the denominator in Bayes’ theorem, 
𝑃(data):

𝑃(𝜃 | data) =
𝑃(𝜃) ⋅ 𝑃 (data | 𝜃)

𝑃 (data)

In discrete cases, we can turn the denominator into a sum over all parameters using the chain rule
of probability:

𝑃(𝐴, 𝐵 | 𝐶) = 𝑃(𝐴 | 𝐵, 𝐶) ⋅ 𝑃 (𝐵 | 𝐶)

This is also known as marginalization:

𝑃(data) = ∑
𝜃

𝑃(data | 𝜃) ⋅ 𝑃 (𝜃)
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Why Do We Need MCMC?
However, in the case of continuous values, the denominator 𝑃(data) turns into a very big
and nasty integral:

𝑃(data) = ∫
𝜃

𝑃(data | 𝜃) ⋅ 𝑃 (𝜃) d𝜃

In many cases the integral is intractable (not possible of being deterministic evaluated)
and, thus, we must find other ways to compute the posterior 𝑃(𝜃 | data) without using
the denominator 𝑃(data).

This is where Monte Carlo methods comes into play!
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Why Do We Need the Denominator 𝑃(data)?
To normalize the posterior with the intent of making it a valid probability. This means
that the probability for all possible parameters’ values must be 1:

• in the discrete case:

∑
𝜃

𝑃(𝜃 | data) = 1

• in the continuous case:

∫
𝜃

𝑃(𝜃 | data) d𝜃 = 1
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What If We Remove the Denominator 𝑃(data)?
By removing the denominator (data), we conclude that the posterior 𝑃(𝜃 | data) is
proportional to the product of the prior and the likelihood 𝑃(𝜃) ⋅ 𝑃 (data | 𝜃):

𝑃(𝜃 | data) ∝ 𝑃(𝜃) ⋅ 𝑃 (data | 𝜃)
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Markov Chain Monte Carlo (MCMC)
Here is where Markov Chain Monte Carlo comes in:

MCMC is an ample class of computational tools to approximate integrals and generate
samples from a posterior probability (Brooks et al., 2011).

MCMC is used when it is not possible to sample 𝜽 directly from the posterior probability 
𝑃(𝜽 | data).

Instead, we collect samples in an iterative manner, where every step of the process we
expect that the distribution which we are sampling from 𝑃 ∗(𝜽(∗) | data) becomes more
similar in every iteration to the posterior 𝑃(𝜽 | data).

All of this is to eliminate the evaluation (often impossible) of the denominator 𝑃(data).
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Markov Chains

• We proceed by defining an ergodic Markov chainxlvii in which the set
of possible states is the sample size and the stationary distribution
is the distribution to be approximated (or sampled).

• Let 𝑋0, 𝑋1, …, 𝑋𝑛 be a simulation of the chain. The Markov chain
converges to the stationary distribution from any initial state 𝑋0
after a sufficient large number of iterations 𝑟. The distribution of
the state 𝑋𝑟 will be similar to the stationary distribution, hence we
can use it as a sample.

xlviimeaning that there is an unique stationary distribution.
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Markov Chains
• Markov chains have a property that the probability distribution of

the next state depends only on the current state and not in the
sequence of events that preceded:

𝑃(𝑋𝑛+1 = 𝑥 | 𝑋0, 𝑋1, 𝑋2, …, 𝑋𝑛) = 𝑃(𝑋𝑛+1 = 𝑥 | 𝑋𝑛)

This property is called Markovian

• Similarly, using this argument with 𝑋𝑟 as the initial state, we can
use 𝑋2𝑟 as a sample, and so on. We can use the sequence of states 
𝑋𝑟, 𝑋2𝑟, 𝑋3𝑟, … as almost (independent samples) of Markov chain
stationary distribution.
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Example of a Markov Chain

Sun

0.6

0.4 Rain

0.7

0.3
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Markov Chains
The efficacy of this approach depends on:

• how big 𝑟 must be to guarantee an adequate sample.

• computational power required for every Markov chain iteration.

Besides, it is custom to discard the first iterations of the algorithm because they are usually non-
representative of the underlying stationary distribution to be approximate. In the initial iterations
of MCMC algorithms, often the Markov chain is in a “warm-up”xlviii process, and its state is very far
away from an ideal one to begin a trustworthy sampling.

Generally, it is recommended to discard the first half iterations (Andrew Gelman, John B. Carlin,
Stern, et al., 2013).

xlviiisome references call this “burnin”.
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MCMC Algorithms
We have TONS of MCMC algorithmsxlix. Here we are going to cover two classes of MCMC
algorithms:

• Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970).

• Hamiltonian Monte Carlol (Neal, 2011; Betancourt, 2017).

xlixsee the Wikipedia page for a full list.
lsometimes called Hybrid Monte Carlo, specially in the physics literature.
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MCMC Algorithms – Metropolis-Hastings
These are the first MCMC algorithms. They use an acceptance/rejection rule for the
proposals. They are characterized by proposals originated from a random walk in the
parameter space. The Gibbs algorithm can be seen as a special case of MH because all
proposals are automatically accepted (Gelman, 1992)

Asymptotically, they have an acceptance rate of 23.4%, and the computational cost of
every iteration is 𝒪(𝑑), where 𝑑 is the number of dimension in the parameter space
(Beskos et al., 2013).
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MCMC Algorithms – Hamiltonian Monte Carlo
The current most efficient MCMC algorithms. They try to avoid the random walk behavior
by introducing an auxiliary vector of momenta using Hamiltonian dynamics. The
proposals are “guided” to higher density regions of the sample space. This makes HMC
more efficient in orders of magnitude when compared to MH and Gibbs.

Asymptotically, they have an acceptance rate of 65.1%, and the computational cost of
every iteration is 𝒪(𝑑1

4 ), where 𝑑 is the number of dimension in the parameter space
(Beskos et al., 2013).

Bayesian Statistics, Jose Storopoli 285



Bayesian Statistics
Markov Chain Monte Carlo (MCMC) and Model Metrics

Metropolis Algorithm
The first broadly used MCMC algorithm to generate samples from a Markov
chain was originated in the physics literature in the 1950s and is called
Metropolis (Metropolis et al., 1953), in honor of the first author Nicholas
Metropolis.

In sum, the Metropolis algorithm is an adaptation of a random walk coupled
with an acceptance/rejection rule to converge to the target distribution.

Metropolis algorithm uses a “proposal distribution” 𝐽𝑡(𝜽∗) to define the next
values of the distribution 𝑃 ∗(𝜽∗ | data). This distribution must be symmetric:

𝐽𝑡(𝜽∗ | 𝜽𝑡−1) = 𝐽𝑡(𝜽𝑡−1 | 𝜽∗)
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Metropolis Algorithm
Metropolis is a random walk through the parameter sample space, where the probability of the
Markov chain changing its state is defined as:

𝑃change = min(
𝑃(𝜽proposed)
𝑃(𝜽current)

, 1).

This means that the Markov chain will only change to a new state based in one of two conditions:

• when the probability of the random walk proposed parameters 𝑃(𝜽proposed) is higher than the
probability of the current state parameters 𝑃(𝜽current), we change with 100% probability.

• when the probability of the random walk proposed parameters 𝑃(𝜽proposed) is lower than the
probability of the current state parameters 𝑃(𝜽current), we change with probability equal to the
proportion of this probability difference.
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Metropolis Algorithm

Define an initial set 𝜽0 ∈ ℝ𝑝 that 𝑃(𝜽0 | 𝒚) > 0
for 𝑡 = 1, 2, …

Sample a proposal of 𝜽∗ from a proposal distribution in time 𝑡, 𝐽𝑡(𝜽∗ | 𝜽𝑡−1)
As an acceptance/rejection rule, compute the proportion of the probabilities:

𝑟 =
𝑃(𝜽∗ | 𝒚)

𝑃 (𝜽𝑡−1 | 𝒚)

Assign:

𝜽𝑡 = {𝜽∗ with probability min(𝑟, 1)
𝜽𝑡−1 otherwise
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Visual Intuition – Metropolis

0.1

0.2

0.3

0.4

0.5

−4 −3 −2 −1 0 1 2 3 4

PD
F

🚶

🚶

🚶

𝑃 = 1 𝑃 ≈ 1
4

Bayesian Statistics, Jose Storopoli 289



Bayesian Statistics
Markov Chain Monte Carlo (MCMC) and Model Metrics

Metropolis-Hastings Algorithm
In the 1970s emerged a generalization of the Metropolis algorithm,
which does not need that the proposal distributions be symmetric:

𝐽𝑡(𝜽∗ | 𝜽𝑡−1) ≠ 𝐽𝑡(𝜽𝑡−1 | 𝜽∗)

The generalization was proposed by Wilfred Keith Hastings (Hastings,
1970) and is called Metropolis-Hastings algorithm.
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Metropolis-Hastings Algorithm

Define an initial set 𝜽0 ∈ ℝ𝑝 that 𝑃(𝜽0 | 𝒚) > 0
for 𝑡 = 1, 2, …

Sample a proposal of 𝜽∗ from a proposal distribution in time 𝑡, 𝐽𝑡(𝜽∗ | 𝜽𝑡−1)
As an acceptance/rejection rule, compute the proportion of the probabilities:

𝑟 =
𝑃(𝜽∗ | 𝒚)

𝐽𝑡(𝜽∗ | 𝜽𝑡−1)
𝑃(𝜽𝑡−1 | 𝒚)
𝐽𝑡(𝜽𝑡−1 | 𝜽∗)

Assign:

𝜽𝑡 = {𝜽∗ with probability min(𝑟, 1)
𝜽𝑡−1 otherwise
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Metropolis-Hastings Animation

See Metropolis-Hastings in action at chi-feng/mcmc-demo .
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Limitations of the Metropolis Algorithms
The limitations of the Metropolis-Hastings algorithms are mainly computational:

• with the proposals randomly generated, it can take a large number of iterations for the
Markov chain to enter higher posterior densities spaces.

• even highly-efficient MH algorithms sometimes accept less than 25% of the proposals
(Roberts, Gelman and Gilks, 1997; Beskos et al., 2013).

• in lower-dimensional contexts, higher computational power can compensate the low
efficiency up to a point. But in higher-dimensional (and higher-complexity) modeling
situations, higher computational power alone are rarely sufficient to overcome the low
efficiency.
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Gibbs Algorithm
To circumvent Metropolis’ low acceptance rate, the Gibbs algorithm
was conceived. Gibbs do not have an acceptance/rejection rule for
the Markov chain state change: all proposals are accepted!

Gibbs algorithm was originally conceived by the physicist Josiah
Willard Gibbs while referencing an analogy between a sampling
algorithm and statistical physics (a physics field that originates from
statistical mechanics).

The algorithm was described by the Geman brothers in 1984 (Geman
and Geman, 1984), about 8 decades after Gibbs death.
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Gibbs Algorithm
The Gibbs algorithm is very useful in multidimensional sample spaces. It is also known
as alternating conditional sampling, because we always sample a parameter
conditioned on the probability of the other model’s parameters.

The Gibbs algorithm can be seen as a special case of the Metropolis-Hastings algorithm,
because all proposals are accepted (Gelman, 1992).

The essence of the Gibbs algorithm is the sampling of parameters conditioned in other
parameters:

𝑃(𝜃1 | 𝜃2, …, 𝜃𝑝)
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Gibbs Algorithm

Define an initial set 𝜽0 ∈ ℝ𝑝 that 𝑃(𝜽0 | 𝒚) > 0
for 𝑡 = 1, 2, …

Assign:

𝜽𝑡 =

⎩{
{{
⎨
{{
{⎧𝜽𝑡

1 ∼ 𝑃(𝜃1 | 𝜃0
2, …, 𝜃0

𝑝)

𝜽𝑡
2 ∼ 𝑃(𝜃2 | 𝜃𝑡−1

1 , …, 𝜃𝑡−1
𝑝 )

⋮
𝜽𝑡

𝑝 ∼ 𝑃(𝜃𝑝 | 𝜃𝑡−1
1 , …, 𝜃𝑡−1

𝑝−1)
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Gibbs Animation

See Gibbs in action at chi-feng/mcmc-demo .
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Limitations of the Gibbs Algorithm
The main limitation of Gibbs algorithm is with relation to alternating conditional
sampling:

• In Metropolis, the parameters’ random proposals are sampled unconditionally, jointly,
and simultaneous. The Markov chain state changes are executed in a multidimensional
manner. This makes multidimensional diagonal movements.

• In the case of the Gibbs algorithm, this movement only happens one parameter at a
time, because we sample parameters in a conditional and sequential manner with
respect to other parameters. This makes unidimensional horizontal/vertical
movements, and never multidimensional diagonal movements.
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Hamiltonian Monte Carlo (HMC)
Metropolis’ low acceptance rate and Gibbs’ low performance in
multidimensional problems (where the posterior geometry is highly
complex) made a new class of MCMC algorithms to emerge.

These are called Hamiltonian Monte Carlo (HMC), because they
incorporate Hamiltonian dynamics (in honor of Irish physicist
William Rowan Hamilton).
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HMC Algorithm
HMC algorithm is an adaptation of the MH algorithm, and employs a guidance scheme to the
generation of new proposals. It boosts the acceptance rate, and, consequently, has a better
efficiency.

More specifically, HMC uses the gradient of the posterior’s log density to guide the Markov chain to
higher density regions of the sample space, where most of the samples are sampled:

d log 𝑃(𝜽 | 𝒚)
d𝜃

As a result, a Markov chain that uses a well-adjusted HMC algorithm will accept proposals with a
much higher rate than if using the MH algorithm (Roberts, Gelman and Gilks, 1997; Beskos et al.,
2013).
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History of HMC Algorithm
HMC was originally described in the physics literatureli (Duane et al., 1987).

Soon after, HMC was applied to statistical problems by Neal (1994) who named it as
Hamiltonian Monte Carlo (HMC).

For a much more detailed and in-depth discussion (not our focus here) of HMC, I
recommend Neal (2011) and Betancourt (2017).

liwhere is called “Hybrid” Monte Carlo (HMC)
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What Changes With HMC?
HMC uses Hamiltonian dynamics applied to particles efficiently exploring a posterior
probability geometry, while also being robust to complex posterior’s geometries.

Besides that, HMC is much more efficiently than Metropolis and does not suffer Gibbs’
parameters correlation issues
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Intuition Behind the HMC Algorithm
For every parameter 𝜃𝑗, HMC adds a momentum variable 𝜑𝑗. The posterior density 𝑃(𝜽 | 𝑦) is
incremented by an independent momenta distribution 𝑃(𝝋), hence defining the following joint
probability:

𝑃(𝜽, 𝝋 | 𝑦) = 𝑃(𝝋) ⋅ 𝑃 (𝜽 | 𝑦)

HMC uses a proposal distribution that changes depending on the Markov chain current state. HMC
finds the direction where the posterior density increases, the gradient, and alters the proposal
distribution towards the gradient direction.

The probability of the Markov chain to change its state in HMC is defined as:

𝑃change = min(
𝑃(𝜽proposed) ⋅ 𝑃(𝝋proposed)
𝑃(𝜽current) ⋅ 𝑃 (𝝋current)

, 1, )
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Momenta Distribution – 𝑃(𝝋)
Generally we give 𝝋 a multivariate normal distribution with mean 0 and covariance 𝑴 , a
“mass matrix”.

To keep things computationally simple, we used a diagonal mass matrix 𝑴 . This makes
that the diagonal elements (components) 𝝋 are independent, each one having a normal
distribution:

𝜑𝑗 ∼ Normal(0, 𝑀𝑗𝑗)
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HMC Algorithm

Define an initial set 𝜽0 ∈ ℝ𝑝 that 𝑃(𝜽0 | 𝒚) > 0
Sample 𝝋 from a Multivariate Normal(𝟎, 𝑴)
Simultaneously sample 𝜽∗ and 𝝋 with 𝐿 steps and step-size 𝜀
Define the current value of 𝜽 as the proposed value 𝜽∗: 𝜽∗ ← 𝜽
for 1, 2, …, 𝐿

Use the log of the posterior’s gradient 𝜽∗ to produce a half-step of 𝝋: 𝝋 ← 𝝋 + 1
2𝜀d log 𝑃(𝜽∗ | 𝒚)

d𝜃
Use 𝝋 to update 𝜽∗: 𝜽∗ ← 𝜽∗ + 𝜀𝑴−1𝝋
Use again 𝜽∗ log gradient to produce a half-step of 𝝋: 𝝋 ← 𝝋 + 1

2𝜀d log 𝑃(𝜽∗ | 𝒚)
d𝜃

As an acceptance/rejection rule, compute:

𝑟 =
𝑃(𝜽∗ | 𝒚)𝑃 (𝝋∗)

𝑃 (𝜽𝑡−1 | 𝒚)𝑃 (𝝋𝑡−1)

Assign:

𝜽𝑡 = {𝜽∗ with probability min(𝑟, 1)
𝜽𝑡−1 otherwise
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HMC Animation

See HMC in action at chi-feng/mcmc-demo .
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An Interlude into Numerical Integration
In the field of ordinary differential equations (ODE), we have the idea of “discretizing” a
system of ODEs by applying a small step-size 𝜀lii. Such approaches are called “numerical
integrators” and are composed by an ample class of tools.

The most famous and simple of these numerical integrators is the Euler method, where
we use a step-size 𝜀 to compute a numerical solution of system in a future time 𝑡 from
specific initial conditions.

liisometimes also called ℎ
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An Interlude into Numerical Integration
The problem is that Euler method, when applied to
Hamiltonian dynamics, does not preserve volume.

One of the fundamental properties of Hamiltonian
dynamics if volume preservation.

This makes the Euler method a bad choice as a
HMC’s numerical integrator. Figure 6: HMC numerically

integrated using Euler with 𝜀 = 0.3
and 𝐿 = 20
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An Interlude into Numerical Integrationliii

liiiAn excellent textbook for numerical and symplectic integrator is Iserles (2008).

To preserve volume, we need a numerical
symplectic integrator.

Symplectic integrators are at most second-order
and demands a constant step-size 𝜀.

One of the main numerical symplectic integrator
used in Hamiltonian dynamics is the Störmer–
Verlet integrator, also known as leapfrog
integrator.

Figure 7: HMC numerically
integrated using leapfrog with 𝜀 =

0.3 and 𝐿 = 20
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Limitations of the HMC Algorithm
As you can see, HMC algorithm is highly sensible to
the choice of leapfrog steps 𝐿 and step-size 𝜀,

More specific, the leapfrog integrator allows only a
constant 𝜀.

There is a delicate balance between 𝐿 and 𝜀, that
are hyperparameters and need to be carefully
adjusted.

Figure 8: HMC numerically
integrated using leapfrog with 𝜀 =

1.2 and 𝐿 = 20
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No-U-Turn-Sampler (NUTS)
In HMC, we can adjust 𝜀 during the algorithm runtime. But, for 𝐿, we need to to “dry run”
the HMC sampler to find a good candidate value for 𝐿.

Here is where the idea for No-U-Turn-Sampler (NUTS) (Hoffman and Gelman, 2011)
enters: you don’t need to adjust anything, just “press the button”.

It will automatically find 𝜀 and 𝐿.
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No-U-Turn-Sampler (NUTS)
More specifically, we need a criterion that informs that we performed enough
Hamiltonian dynamics simulation.

In other words, to simulate past beyond would not increase the distance between the
proposal 𝜽∗ and the current value 𝜽.

NUTS uses a criterion based on the dot product between the current momenta vector 𝝋
and the difference between the proposal vector 𝜽∗ and the current vector 𝜽, which turns
into the derivative with respect to time 𝑡 of half of the distance squared between 𝜽 e 𝜽∗:

(𝜽∗ − 𝜽) ⋅ 𝝋 = (𝜽∗ − 𝜽) ⋅
d
d𝑡

(𝜽∗ − 𝜽) =
d
d𝑡

(𝜽∗ − 𝜽) ⋅ (𝜽∗ − 𝜽)
2
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No-U-Turn-Sampler (NUTS)

This suggests an algorithms that does not allow proposals be guided infinitely until the
distance between the proposal 𝜽∗ and the current 𝜽 is less than zero.

This means that such algorithm will not allow u-turns.
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No-U-Turn-Sampler (NUTS)
NUTS uses the leapfrog integrator to create a binary tree where each leaf node is a proposal of the
momenta vector 𝝋 tracing both a forward (𝑡 + 1) as well as a backward (𝑡 − 1) path in a determined
fictitious time 𝑡.

The growing of the leaf nodes are interrupted when an u-turn is detected, both forward or
backward.

Figure 9: NUTS growing leaf nodes forward

Bayesian Statistics, Jose Storopoli 314



Bayesian Statistics
Markov Chain Monte Carlo (MCMC) and Model Metrics

No-U-Turn-Sampler (NUTS)

NUTS also uses a procedure called Dual Averaging (Nesterov, 2009) to simultaneously
adjust 𝜀 and 𝐿 by considering the product 𝜀 ⋅ 𝐿.

Such adjustment is done during the warmup phase and the defined values of 𝜀 and 𝐿
are kept fixed during the sampling phase.
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NUTS Algorithm
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Define an initial set 𝜽0 ∈ ℝ𝑝 that 𝑃(𝜽0 | 𝒚) > 0

Instantiate an empty binary tree with 2𝐿 leaf nodes

Sample 𝝋 from a Multivariate Normal(𝟎, 𝑴)

Simultaneously sample 𝜽∗ and 𝝋 with 𝐿 steps and step-size 𝜀

Define the current value of 𝜽 as the proposed value 𝜽∗: 𝜽∗ ← 𝜽

for 1, 2, …, 𝐿

Choose a direction 𝑣 ∼ Uniform({−1, 1})

Use the log of the posterior’s gradient 𝜽∗ to produce a half-step of 𝝋: 𝝋 ← 𝝋 + 1
2𝜀d log 𝑃(𝜽∗ | 𝒚)

d𝜃

Use 𝝋 to update 𝜽∗: 𝜽∗ ← 𝜽∗ + 𝜀𝑴−1𝝋

Use again 𝜽∗ log gradient to produce a half-step of 𝝋: 𝝋 ← 𝝋 + 1
2𝜀d log 𝑃(𝜽∗ | 𝒚)

d𝜃

Define the node 𝐿𝑣
𝑡  as the proposal 𝜽

if the difference between proposal vector 𝜽∗ and current vector 𝜽 in the direction 𝑣 is lower than zero: 𝑣 d
d𝑡

(𝜽∗−𝜽∗)⋅(𝜽∗−𝜽∗)
2 < 0 or 𝐿 steps have been reached

Stop sampling 𝜽∗ in the direction 𝑣 and continue sampling only in the direction −𝑣

The difference between proposal vector 𝜽∗ and current vector 𝜽 in the direction −𝑣 is lower than zero: −𝑣 d
d𝑡

(𝜽∗−𝜽∗)⋅(𝜽∗−𝜽∗)
2 < 0 or 𝐿 steps have been reached

Stop sampling 𝜽∗

Choose a random node from the binary tree as the proposal

As an acceptance/rejection rule, compute:

𝑟 =
𝑃(𝜽∗ | 𝒚)𝑃 (𝝋∗)

𝑃 (𝜽𝑡−1 | 𝒚)𝑃 (𝝋𝑡−1)

Assign:

𝜽𝑡 = {𝜽∗ with probability min(𝑟, 1)
𝜽𝑡−1 otherwise
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NUTS Animation

See NUTS in action at chi-feng/mcmc-demo .
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Limitations of HMC and NUTS Algorithms – Neal (2003)’s Funnel
The famous “Devil’s Funnel”liv.

Here we see that HMC and NUTS, during the exploration of the posterior, have to change
often 𝐿 and 𝜀 valueslv.

livvery common em hierarchical models.
lvremember that 𝐿 and 𝜀 are defined in the warmup phase and kept fixed during sampling.
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Neal (2003)’s Funnel and Non-Centered Parameterization (NCP)
The funnel occurs when we have a variable that its variance depends on another variable variance
in an exponential scale. A canonical example of a centered parameterization (CP) is:

𝑃(𝑦, 𝑥) = Normal(𝑦 | 0, 3) ⋅ Normal(𝑥 | 0, 𝑒
𝑦
2 )

This occurs often in hierarchical models, in the relationship between group-level priors and
population-level hyperpriors. Hence, we reparameterize in a non-centered way, changing the
posterior geometry to make life easier for our MCMC sampler:

𝑃(𝑦, �̃�) = Normal(𝑦 | 0, 1) ⋅ Normal(�̃� | 0, 1)
𝑦 = 𝑦 ⋅ 3 + 0

𝑥 = �̃� ⋅ 𝑒
𝑦
2 + 0
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Non-Centered Parameterization – Varying-Intercept Model
This example is for linear regression:

𝒚 ∼ Normal(𝛼𝑗 + 𝑿 ⋅ 𝜷, 𝜎)
𝛼𝑗 = 𝑧𝑗 ⋅ 𝜏 + 𝛼

𝑧𝑗 ∼ Normal(0, 1)

𝛼 ∼ Normal(𝜇𝛼, 𝜎𝛼)

𝜷 ∼ Normal(𝜇𝜷, 𝜎𝜷)

𝜏 ∼ Cauchy+(0, 𝜓𝛼)
𝜎 ∼ Exponential(𝜆𝜎)
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Non-Centered Parameterization – Varying-(Intercept-)Slope Model
This example is for linear regression:

𝒚 ∼ Normal(𝑿𝜷𝑗, 𝜎)

𝜷𝑗 = 𝜸𝑗 ⋅ 𝚺 ⋅ 𝜸𝑗

𝜸𝑗 ∼ Multivariate Normal(𝟎, 𝑰) for 𝑗 ∈ {1, …, 𝐽}

𝚺 ∼ LKJ(𝜂)
𝜎 ∼ Exponential(𝜆𝜎)

Each coefficient vector 𝜷𝑗 represents the model columns 𝑿 coefficients for every group 
𝑗 ∈ 𝐽 . Also the first column of 𝑿 could be a column filled with 1s (intercept).
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Stan and NUTS
Stan was the first MCMC sampler to implement NUTS.

Besides that, it has an automatic optimized adjustment routine for values of 𝐿 and 𝜀
during warmup.

It has the following default NUTS hyperparameters’ valueslvi:

• target acceptance rate of Metropolis proposals: 0.8

• max tree depth (in powers of 2): 10 (which means 210 = 1024)

lvifor more information about how to change those values, see Section 15.2 of the Stan Reference Manual .
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Turing and NUTS
Turing also implements NUTS which lives, along with other MCMC samplers, inside the
package AdvancedHMC.jl.

It also has an automatic optimized adjustment routine for values of 𝐿 and 𝜀 during
warmup.

It has the same default NUTS hyperparameters’ valueslvii:

• target acceptance rate of Metropolis proposals: 0.65

• max tree depth (in powers of 2): 10 (which means 210 = 1024)

lviifor more information about how to change those values, see Turing Documentation .
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Markov Chain Convergence
MCMC has an interesting property that it will asymptotically converge to the target
distributionlviii.

That means, if we have all the time in the world, it is guaranteed, irrelevant of the target
distribution posterior geometry, MCMC will give you the right answer.

However, we don’t have all the time in the world Different MCMC algorithms, like HMC
and NUTS, can reduce the sampling (and warmup) time necessary for convergence to the
target distribution.

lviiithis property is not present on neural networks.
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Convergence Metrics

We have some options on how to measure if the Markov chains converged to the target
distribution, i.e. if they are “reliable”:

• Effective Sample Size (ESS): an approximation of the “number of independent
samples” generated by a Markov chain.

• �̂� (Rhat): potential scale reduction factor, a metric to measure if the Markov chain
have mixed, and, potentially, converged.
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Convergence Metrics – Effective Sample Size (Andrew Gelman, John B.
Carlin, Stern, et al., 2013)

�̂�eff =
𝑚𝑛

1 + ∑𝑇
𝑡=1 𝜌𝑡

where:

• 𝑚: number of Markov chains.

• 𝑛: total samples per Markov chain (discarding warmup).

• 𝜌𝑡: an autocorrelation estimate.
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Convergence Metrics – Rhat (Andrew Gelman, John B. Carlin, Stern, et al.,
2013)

�̂� = √v̂ar+(𝜓 | 𝑦)
𝑊

where v̂ar+(𝜓 | 𝑦) is the Markov chains’ sample variance for a certain parameter 𝜓.

We calculate it by using a weighted sum of the within-chain 𝑊  and between-chain 𝐵 variances:

v̂ar+(𝜓 | 𝑦) =
𝑛 − 1

𝑛
𝑊 +

1
𝑛

𝐵

Intuitively, the value is 1.0 if all chains are totally convergent.

As a heuristic, if �̂� > 1.1, you need to worry because probably the chains have not converged
adequate.
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Traceplot – Convergent Markov Chains

Figure 10: A convergent Markov chains traceplot
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Traceplot – Divergent Markov Chains

Figure 11: A divergent Markov chains traceplot
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Stan’s Warning Messageslix

lixalso see Stan’s warnings guide.

Warning messages:
1: There were 275 divergent transitions after warmup. See
http://mc-stan.org/misc/warnings.html#divergent-transitions-after-
warmup
to find out why this is a problem and how to eliminate them.
2: Examine the pairs() plot to diagnose sampling problems

3: The largest R-hat is 1.12, indicating chains have not mixed.
Running the chains for more iterations may help. See
http://mc-stan.org/misc/warnings.html#r-hat
4: Bulk Effective Samples Size (ESS) is too low, indicating
posterior
means and medians may be unreliable.
Running the chains for more iterations may help. See
http://mc-stan.org/misc/warnings.html#bulk-ess
5: Tail Effective Samples Size (ESS) is too low, indicating
posterior
variances and tail quantiles may be unreliable.
Running the chains for more iterations may help. See
http://mc-stan.org/misc/warnings.html#tail-ess
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Turing’s Warning Messages

Turing does not give warning messages! But you can check divergent transitions with
summarize(chn;
sections=[:internals]):

Summary Statistics
      parameters     mean      std  naive_se     mcse      ess
rhat  ess_per_sec
          Symbol  Float64  Float64   Float64  Float64  Float64
Float64  Float64

              lp  -3.9649   1.7887   0.0200   0.1062  179.1235
1.0224   6.4133
         n_steps   9.1275  11.1065   0.1242   0.7899   38.3507
1.3012   1.3731
 acceptance_rate   0.5944   0.4219   0.0047   0.0322   40.5016
1.2173   1.4501
      tree_depth   2.2444   1.3428   0.0150   0.1049   32.8514
1.3544   1.1762
 numerical_error   0.1975   0.3981   0.0045   0.0273   59.8853
1.1117   2.1441
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What To Do If the Markov Chains Do Not Converge?
First: before making any fine adjustments in the number of Markov chains or the number
of iterations per chain, etc.

Acknowledge that both Stan’s and Turing’s NUTS sampler is very efficient and effective
in exploring the most crazy and diverse target posterior densities.

And the standard settings, 2,000 iterations and 4 chains, works perfectly for 99% of the
time.
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What To Do If the Markov Chains Do Not Converge?

When you have computational problems, often there’s a problem with your model.
— Gelman (2008)
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What To Do If the Markov Chains Do Not Converge?
If you experiencing convergence issues, and you’ve discarded that something is wrong
with you model, here is a few steps to trylx.

Here listed in increasing complexity:

1. Increase the number of iterations and chains: try first increasing the number of
iterations, then try increasing the number of chains. (remember the default is 2,000
iterations and 4 chains).

lxbesides that, maybe should be worth to do a QR decomposition in the data matrix 𝑿, thus having an orthogonal basis (non-correlated) for the sampler to explore. This
makes the target distribution’s geometry much more friendlier, in the topological/geometrical sense, for the MCMC sampler explore. Check the backup slides.
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What To Do If the Markov Chains Do Not Converge?
2. Change the HMC’s warmup adaptation routine: make the HMC sampler to be more

conservative in the proposals. This can be changed by increasing the hyperparameter
target acceptance rate of Metropolis proposalslxi. The maximum value is 1.0 (not
recommended). Then, any value between 0.8 and 1.0 is more conservative.

3. Model reparameterization: there are two approaches. Centered parameterization (CP)
and non-centered parameterization (NCP).

lxiStan’s default is 0.8 and Turing’s default is 0.65.
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What To Do If the Markov Chains Do Not Converge?
4. Collect more data: sometimes the model is too complex and we need a higher sample

size for stable estimates.

5. Rethink the model: convergence issues with an adequate sample size might be due to
incompatibility between priors and likelihood function(s). In this case you need to
rethink the whole data generating process underlying the model, in which the model
assumptions stems from.
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Recommended References
• Andrew Gelman, John B. Carlin, Stern, et al. (2013) - Chapter 7: Evaluating, comparing,

and expanding models
• Gelman, Hill and Vehtari (2020) - Chapter 11, Section 11.8: Cross validation
• McElreath (2020) - Chapter 7, Section 7.5: Model comparison
• Vehtari, Gelman and Gabry (2015)
• Spiegelhalter et al. (2002)
• Van Der Linde (2005)
• Watanabe and Opper (2010)
• Gelfand (1996)
• Watanabe and Opper (2010)
• Geisser and Eddy (1979)
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Why Compare Models?

After model parameters estimation, many times we want to measure its predictive
accuracy by itself, or for model comparison, model selection, or computing a model
performance metric (Geisser and Eddy, 1979).
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But What About Visual Posterior Predictive Checks?
To analyze and compare models using visual posterior predictive checks is a subjective
and arbitrary approach.

There is an objective approach to compare Bayesian models which uses a robust metric
that helps us select the best model in a set of candidate models.

Having an objective way of comparing and choosing the best model is very important. In
the Bayesian workflow, we generally have several iterations between priors and
likelihood functions resulting in several different models (Gelman et al., 2020).
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Model Comparison Techniques
We have several model comparison techniques that use predictive accuracy, but the
main ones are:

• Leave-one-out cross-validation (LOO) (Vehtari, Gelman and Gabry, 2015).

• Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002), but it is known to have
some issues, due to not being full-Bayesian, because it is only based on point
estimates (Van Der Linde, 2005),

• Widely Applicable Information Criteria (WAIC) (Watanabe and Opper, 2010), full-
Bayesian, in the sense that uses the full posterior distribution density, and it is
asymptotically equal to LOO (Vehtari, Gelman and Gabry, 2015).
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Historical Interlude
In the past, we did not have computational power and data abundance. Model comparison was done based on
a theoretical divergence metric originated from information theory’s entropy:

𝐻(𝑝) = − 𝐸 log(𝑝𝑖) = − ∑
𝑁

𝑖=1
𝑝𝑖 log(𝑝𝑖)

We compute the divergence by multiplying entropy by −2lxii, so lower values are preferable:

𝐷(𝑦, 𝜽) = −2 ⋅ ∑
𝑁

𝑖=1
log

1
𝑆

∑
𝑆

𝑠=1
𝑃(𝑦𝑖 | 𝜽𝑠)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
log pointwise predictive density - lppd

where 𝑛 is the sample size and 𝑆 is the number of posterior draws.

lxiihistorical reasons.
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Historical Interlude – AIC (Akaike, 1973)
AIC = 𝐷(𝑦, 𝜽) + 2𝑘 = −2lppdmle + 2𝑘

where 𝑘 is the number of the model’s free parameters and lppdmle is the maximum
likelihood estimate of the log pointwise predictive density.

AIC is an approximation and can only be reliable when:

• The priors are uniform (flat priors) or totally dominated by the likelihood function.

• The posterior is approximate a multivariate normal distribution.

• The sample size 𝑁  is much larger than the number of the model’s free parameters 𝑘: 
𝑁 ≫ 𝑘
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Historical Interlude – DIC (Spiegelhalter et al., 2002)
A generalization of the AIC, where we replace the maximum likelihood estimate for the
posterior mean and 𝑘 by a data-based bias correction:

DIC = 𝐷(𝑦, 𝜽) + 𝑘DIC = −2lppdBayes + 2(lppdBayes −
1
𝑆

∑
𝑆

𝑠=1
log 𝑃 (𝑦 | 𝜽𝑠))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
bias-corrected 𝑘

DIC removes the restriction on uniform AIC priors, but still keeps the assumptions of the
posterior being a multivariate Gaussian/normal distribution and that 𝑁 ≫ 𝑘.
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Predictive Accuracy
With current computational power, we do not need approximationslxiii.

We can discuss predictive accuracy objective metrics

But, first, let’s define what is predictive accuracy.

lxiiiAIC, DIC etc.
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Predictive Accuracy
Bayesian approaches measure predictive accuracy using posterior draws 𝑦 from the
model. For that we have the predictive posterior distribution:

𝑝(𝑦 | 𝑦) = ∫ 𝑝(𝑦𝑖 | 𝜃)𝑝(𝜃 | 𝑦) d𝜃

Where 𝑝(𝜃 | 𝑦) is the model’s posterior distribution. The above equation means that we
evaluate the integral with respect to the whole joint probability of the model’s
predictive posterior distribution and posterior distribution.

The higher the predictive posterior distribution 𝑝(𝑦 | 𝑦), the better will be the model’s
predictive accuracy.
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Predictive Accuracy
To make samples comparable, we calculate the expectation of this measure for each one
of the 𝑁  sample observations:

elpd = ∑
𝑁

𝑖=1
∫ 𝑝𝑡(�̃�𝑖) log 𝑝(𝑦𝑖 | 𝑦) d𝑦

where elpd is the expected log pointwise predictive density, and 𝑝𝑡(�̃�𝑖) is the distribution
that represents the 𝑦𝑖’s true underlying data generating process.

The 𝑝𝑡(�̃�𝑖) are unknown and we generally use cross-validation or approximations to
estimate elpd.
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Leave-One-Out Cross-Validation (LOO)
We can compute the elpd using LOO (Vehtari, Gelman and Gabry, 2015):

elpdloo = ∑
𝑁

𝑖=1
log 𝑝(𝑦𝑖 | 𝑦−𝑖)

where

𝑝(𝑦𝑖 | 𝑦−𝑖) = ∫ 𝑝(𝑦𝑖 | 𝜃)𝑝(𝜃 | 𝑦−𝑖) d𝜃

which is the predictive density conditioned on the data without a single observation 𝑖 (𝑦−𝑖). Almost
always we use the PSIS-LOOlxiv approximation due to its robustness and low computational cost.

lxivupcoming…
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Widely Applicable Information Criteria (WAIC)
WAIC (Watanabe and Opper, 2010), like LOO, is also an alternative approach to compute the elpd,

and is defined as:

êlpdwaic = l̂ppd −𝑝waic

where 𝑝waic is the number of effective parameters based on:

𝑝waic = ∑
𝑁

𝑖=1
varpost(log 𝑝(𝑦𝑖 | 𝜃))

which we can compute using the posterior variance of the log predictive density for each observation 𝑦𝑖:

𝑝waic = ∑
𝑁

𝑖=1
𝑉 𝑆

𝑠=1(log 𝑝(𝑦𝑖 | 𝜃𝑠))

where 𝑉 𝑆
𝑠=1 is the sample’s variance:

𝑉 𝑆
𝑠=1𝑎𝑠 =

1
𝑆 − 1

∑
𝑆

𝑠=1
(𝑎𝑠 − |(𝑎))2
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𝐾-fold Cross-Validation (𝐾-fold CV)
In the same manner that we can compute the elpd using LOO with 𝑁 − 1 sample
partitions, we can also compute it with any desired partition number.

Such approach is called 𝐾-fold cross-validation (𝐾-fold CV).

Contrary to LOO, we cannot approximate the actual elpd using 𝐾-fold CV, and we need to
compute the actual elpd over 𝐾 partitions, which almost involves a high computational
cost.

Bayesian Statistics, Jose Storopoli 351



Bayesian Statistics
Model Comparison

Pareto Smoothed Importance Sampling LOO (PSIS-LOO)
PSIS uses importance samplinglxv, which means a importance weighting scheme
approach.

The Pareto smoothing is a technique to increase the importance weights’ reliability.

lxvanother class of MCMC algorithm that we did not cover yet.
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Importance Sampling
If the 𝑁  samples are conditionally independentlxvi (Gelfand, Dey and Chang, 1992), we
can compute LOO with 𝜽𝑠 posterior’ samples 𝑃(𝜃 | 𝑦) using importance weights:

𝑟𝑠
𝑖 =

1
𝑃(𝑦𝑖|𝜃𝑠)

∝
𝑃(𝜃𝑠|𝑦−𝑖)
𝑃 (𝜃𝑠|𝑦)

Hence, to get Importance Sampling Leave-One-Out (IS-LOO):

𝑃(𝑦𝑖 | 𝑦−𝑖) ≈
∑𝑆

𝑠=1 𝑟𝑠
𝑖 𝑃(𝑦𝑖|𝜃𝑠)

∑𝑆
𝑠=1 𝑟𝑠

𝑖

lxvithat is, they are independent if conditioned on the model’s parameters, which is a basic assumption in any Bayesian (and frequentist) model
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Importance Sampling
However, the posterior 𝑃(𝜃 | 𝑦 often has low variance and shorter tails than the LOO
distributions 𝑃(𝜃 | 𝑦−1). Hence, if we use:

𝑃(𝑦𝑖 | 𝑦−𝑖) ≈
∑𝑆

𝑠=1 𝑟𝑠
𝑖 𝑃(𝑦𝑖|𝜃𝑠)

∑𝑆
𝑠=1 𝑟𝑠

𝑖

we will have instabilities because the 𝑟𝑖 can have high, or even infinite, variance.
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Pareto Smoothed Importance Sampling
We can enhance the IS-LOO estimate using a Pareto Smoothed Importance Sampling
(Vehtari, Gelman and Gabry, 2015).

When the tails of the importance weights’ distribution are long, a direct usage of the
importance is sensible to one or more large value. By fitting a generalized Pareto
distribution to the importance weights’ upper-tail, we smooth out these values.
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Pareto Smoothed Importance Sampling LOO (PSIS-LOO)
Finally, we have PSIS-LOO:

êlpdpsis-loo = ∑
𝑛

𝑖=1
log

⎝
⎜⎛

∑𝑆
𝑠=1 𝑤𝑠

𝑖 𝑃(𝑦𝑖|𝜃𝑠)

∑𝑆
𝑠=1 𝑤𝑠

𝑖 ⎠
⎟⎞

where 𝑤 is the truncated weights.
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Pareto Smoothed Importance Sampling LOO (PSIS-LOO)
We use the importance weights Pareto distribution’s estimated shape parameter �̂� to assess its
reliability:

• 𝑘 < 1
2 : the importance weights variance is finite, the central limit theorem holds, and the estimate

rapidly converges.

• 1
2 < 𝑘 < 1 the importance weights variance is infinite, but the mean exists (is finite), the generalized
central limit theorem for stable distributions holds, and the estimate converges, but slower. The PSIS
variance estimate is finite, but could be large.

• 𝑘 > 1 both the importance weights variance and mean do not exist (they are infinite). The PSIS
variance estimate is finite, but could be large.

Any �̂� > 0.5 is a warning sign, but empirically there is still a good performance up to �̂� < 0.7.
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How the Normal distribution aroselxvii

lxviiOrigins can be traced back to Abraham de Moivre in 1738. A better explanation can be found by clicking here.

Binomial(𝑛, 𝑘) = (
𝑛
𝑘

)𝑝𝑘(1 − 𝑝)𝑛−𝑘

𝑛! ≈
√

2𝜋𝑛(
𝑛
𝑒
)

𝑛

lim
𝑛→∞

(
𝑛
𝑘

)𝑝𝑘(1 − 𝑝)𝑛−𝑘 =
1

√
2𝜋𝑛𝑝𝑞

𝑒− (𝑘−𝑛𝑝)2

2𝑛𝑝𝑞

We know that in the binomial: 𝐸 = 𝑛𝑝 and Var = 𝑛𝑝𝑞; hence replacing 𝐸 by 𝜇 and Var by 𝜎2:

lim
𝑛→∞

(
𝑛
𝑘

)𝑝𝑘(1 − 𝑝)𝑛−𝑘 =
1

𝜎
√

2𝜋
𝑒− (𝑘−𝜇)2

𝜎2
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QR Decomposition
In Linear Algebra 101, we learn that any matrix (even non-square ones) can be decomposed into a product of two matrices:

• 𝑸: an orthogonal matrix (its columns are orthogonal unit vectors, i.e. 𝑸𝑇 = 𝑸−1)
• 𝑹: an upper-triangular matrix

Now, we incorporate the QR decomposition into the linear regression model. Here, I am going to use the “thin” QR instead of the “fat”,
which scales 𝑸 and 𝑹 matrices by a factor of 

√
𝑛 − 1 where 𝑛 is the number of rows in 𝑿. In practice, it is better to implement the thin

QR, than the fat QR decomposition. It is more numerical stable. Mathematically speaking, the thing QR decomposition is:

𝑿 = 𝑸∗𝑹∗

𝑸∗ = 𝑸 ⋅
√

𝑛 − 1

𝑹∗ =
1

√
𝑛 − 1

⋅ 𝑹

𝝁 = 𝛼 + 𝑿 ⋅ 𝜷 + 𝜎
= 𝛼 + 𝑸∗ ⋅ 𝑹∗ ⋅ 𝜷 + 𝜎
= 𝛼 + 𝑸∗ ⋅ (𝑹∗ ⋅ 𝜷) + 𝜎

= 𝛼 + 𝑸∗ ⋅ 𝜷 + 𝜎
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