
Theory of Operation and General Documentation
of the Ethernet Development Board v1.0 and its

Software Components

Stefan Gloor

February 2, 2020

Abstract

I created this Ethernet Development Board as a learning platform
for myself to develop network-enabled hardware and software. It of-
fers a stand-alone solution with an 100Base-TX Ethernet Controller
which can be used in conjuction with the on-board microcontroller.
Alternatively, the board can also be used as a daughterboard for an
Altera DE0-nano FPGA board to add 100Base-TX Ethernet function-
alities to it. This document is a collection of thoughts that went into
the development of this project and is meant as an addition to the
doxygen documentation, which describes the microcontroller software
in more detail. It can be used as a reference guide for future uses of
its components in different projects.

Contents
1 Hardware 1

1.1 Mechanical . 2
1.2 Capabilities . 2
1.3 Versions . 3

1.3.1 FPGA . 3
1.3.2 MPU . 3

1.4 Known Bugs . 4

2 Software 4
2.1 Capabilities . 4
2.2 Theory of Operation . 5

2.2.1 Memory Controller 5

1 Hardware
When looking at the block diagram (Figure 1) it becomes clear that the
two Ethernet channels can operate completely independent from one
another. This is why different board versions can easily be achieved

1

Ethernet Development Board v1.0 1 HARDWARE

RJ45 w/ LEDs
and magnetics

RJ45 w/ LEDs
and magnetics

Ethernet
PHY

Ethernet
controller

Quartz

FPGA Headers

Microcontroller

FTDI
USB Interface USB Connector

Button

LED Display

Digit Driver

MII

SPI

UART

UART

Figure 1: Block diagram illustrating the hardware of the development board.

by only populating the necessary components. Both systems (FPGA
and MPU control) can be used in conjunction with the USB debug in-
terface and the user button. However, the two serial interfaces can not
be used simultaneously, since they both use the same physical connec-
tions. Therefore the transmit line output of one system must remain
high-impedance at all times to prevent communication collisions. Since
the UART pins of the Altera DE0-nano board can be chosen arbitrar-
ily, a communication between the FPGA and the microcontroller could
be achieved by using the shared UART debug interface, when the USB
debug output is not needed. The seven-segment display can only be
driven by the microcontroller. The microcontroller can be programmed
in-system by the dedicated programming header. This header is de-
signed to be used in conjunction with a Microchip PICKit3. Of course
it would be possible to make it a field-programmable device by adding
an Ethernet or USB (through the serial FTDI interface) bootloader.

1.1 Mechanical
The mechanical dimensions of the device as well as the location of
the mounting holes were designed to match the ones on Altera’s DE0
nano board. That way the footprint of the stack (FPGA board +
EthernetDevBoard) is not bigger than the one of the DE0 nano alone.

1.2 Capabilities
Both Ethernet channels support IEEE 802.3 compliant 10Base-T/100Base-
TX with auto-negotiation. The FPGA channel supports MDI/MDI-X
(straight-through/crossover cable) detection and correction, Wake-on-
LAN, as well as faulty cable diagnostics. Power-over-Ethernet is not
supported by either version.

Stefan Gloor February 2, 2020 Page 2

Ethernet Development Board v1.0 1 HARDWARE

1.3 Versions
As mentioned before, two versions of the development board can be
achieved by populating the same PCB differently. I decided to create
a fully-featured "FPGA" version and a lightweight "MPU" version
which does not support communication with the Altera board. Since
the FPGA version is fully populated, any software that runs on the
MPU version is also fully compatible with the FPGA version. A third
possibility, a FPGA-only version would theoretically be possible but
has not been further tested, because it is not considered needed at
this stage of the project. A more detailed description of the version
differences can be found in the mechanical drawing document of the
same name and in the BOM documents.

1.3.1 FPGA

Since the FPGA channel is only using an Ethernet PHY chip (KSZ8091)
instead of a controller chip, MAC capabilities have to be implemented
in the FPGA design. The PHY chip basically does the low-end inter-
face to the physical medium (hence its name). The chip communicates
with the FPGA through MII (Media Independend Interface). It passes
the parsed bits recovered from the line to the FPGA. It does auto-
matic MDI/MDI-X detection and correction, auto-negotiation, cable
diagnostics etc.

Figure 2: Version "FPGA" of the development board.

1.3.2 MPU

The MPU Ethernet channel of the board uses a highly integrated eth-
ernet controller chip (ENC424J600). This controller chip offers PHY
and MAC capabilities. It has integrated DMA-enabled buffer memory
for sending and receiving packets. Which part of the memory is used
for transmission or reception respectively, can be chosen freely. This
offers great customizability for the target application. It does auto-
matic CRC insertion and checking, automatic padding, MAC address
insertion and filtering, auto-negotiation etc. on its own. It is connected
to the microcontroller using a serial SPI interface.

Stefan Gloor February 2, 2020 Page 3

Ethernet Development Board v1.0 2 SOFTWARE

Figure 3: Version "MPU" of the development board.

1.4 Known Bugs
• Component SW1 (Pushbutton): Has the wrong footprint/schematic

symbol. It is shorted out.
Workarounds:

– Remove upper right pin of the device (RJ45 jacks on the
left).

Solutions:

– Change footprint and schematic symbol.
– Choose different component with matching footprint.

• Component X5 (RJ45, Ethernet channel): Both LEDs are in-
verted.
Workarounds:

– Poll Link Status in software and manually set the LED state
accordingly in software. There is no workaround for the
activity indicator LED.

Solutions:

– Connect pin 11 and 13 of X5 both to GND instead of +3V3.

• Missing thermal relief pads on the entire board.
Workarounds:

– Preheat PCB prior to soldering.

Solutions:

– Add thermal relief pads.

2 Software

2.1 Capabilities
The following list summarizes the features supported in the current
version. The layer names refer to the OSI model.

1. Link Layer

• Ethernet driver

Stefan Gloor February 2, 2020 Page 4

Ethernet Development Board v1.0 2 SOFTWARE

– Transmission and reception of Ethernet packets with
variable lengths ranging from 64...1518 bytes.

– Provision of packet information; e.g. Broadcast or Uni-
cast flag, CRC error status etc.

• Address resolution protocol (ARP)
– Resolving the MAC address to a given IPv4 address us-

ing ARP requests.
– Replying to ARP requests using ARP replies.
– Storing the received ARP messages in a table with an

expiry time.
– Probing for IP address after it has changed or a Link

Status change occured.
2. Internet Layer

• Internet Protocol Version 4 (IPv4): Fixed Header length of
20 Bytes..

3. Transport Layer
4. Application Layer

2.2 Theory of Operation
Figure 4 shows a basic system overview of the microcontroller board.

2.2.1 Memory Controller

This software was written with the assumption that it is run on a
microcontroller which is not able to provide sufficient RAM to buffer
entire Ethernet frames itself. Instead, it is designed to be used in con-
junction with either an Ethernet controller, like ENC424J600, which
offers internal SRAM or with a separate, external memory chip. Cur-
rently it is logically connected to the internal memory of ENC424J600,
but it should be easily portable to a design which uses an external
storage device by altering a few functions. This is why this memory
controller only refers to a software component and not a physical de-
vice. A memory controller is used so several packets can be prepared
for transmission simultaneously. This allows the IP module to write
data to the buffer right after the memory field request, without being
blocked by the ARP module which needs to send a request for the
address resolution first.

The memory controller takes in a request for a memory field from
the Ethernet block. The length of the requested memory field is passed
to the memory controller, which then tries to fit the given number of
bytes it into free space in the buffer. If it fits, it returns a start memory
pointer back. Each protocol module is responsible for writing its data
(with the correct length!) to the given location in buffer space. The
start pointer is handed through the software stack, with each protocol
incrementing the pointer according to the upper layers data field. If,
for example, the Ethernet module is given a start address of 0x0000, it
will add its header length (2 MAC addresses + EtherType field = 18

Stefan Gloor February 2, 2020 Page 5

Ethernet Development Board v1.0 2 SOFTWARE

RJ45

PHY

MAC

Control
SRAM Transmit/Receive

Buffer 24 kByte

Security
Engines

Ethernet
Controller

Memory Controller

Ethernet Driver

ARP

IPv4

Microcontroller

Figure 4: General system overview

Bytes) to the pointer value and hand over the start address of 0x0012
to the upper lP layer, which then adds its header length to the pointer
value and gives the resulting address to the upper laying TCP module.

Figure 5 shows the basic operating principle of the memory con-
troller. It uses memory fields, which are represented by an Assigned-
flag, a starting and an ending address, and a length. The algorithm
places the different fields with variable length at some point in free
buffer space. It is also able to wrap fields around the end of the trans-
mit buffer area. The fields can be freed up and reassigned again in
an arbitrary order. The problem with this implementation is, that, if
fields 0 to 2 are assigned, then field 1 gets cleared and reassigned to a
new frame with a shorter length it creates a memory gap between the
end of field 1 and the start address of field 2. This memory gap will
not be used until field 2 gets reassigned. This leads to scenarios where
the algorithm returns an Out-of-Memory error although there is still
space left inbetween assigned fields. This is also partly due to the fact

Stefan Gloor February 2, 2020 Page 6

Ethernet Development Board v1.0 2 SOFTWARE

TX Frame Request

Length = 0?

Memory full?

Memory empty?

Check next field

Length >= RX
buffer start address

Start address
= 0x0000

Return Field
address

Return Out
of Memory

Current field
assigned?

Start address = End ad-
dress of previous field + 1

Start address +
length >= RX

buffer start address?

Is the current
field the last one
and the first one
is unassigned?

End address = length-
((RX buffer start ad-
dress - 1)-start address

Does this cause
any overlaps with
other already
assigned fields?

End address=Start
address + length

Check for overlaps to any
other already assigned fields

Any overlaps
detected?

N

N

N

Y

Y

All fields checked

N

Y
Y

N

Y

Y

Y

N

N

for all fields

N

Yes, and all
fields checkedY

Figure 5: Flow chart of the buffer memory allocation algorithm

that this implementation uses a fixed number of memory fields.
After reset, there exists a finite number of memory fields which

are all unassigned, with an undefined start and ending address. If the
Ethernet module requests memory for storing an outgoing frame some
invalid conditions (if the passed length equals zero) and some special
edge cases (if the memory is already entirely full or completely empty)
are catched. After this, all remaining unassigned fields are checked
in a loop. After the start address is set, the algorithm checks for
any resulting overlaps in this temporary configuration. If there are no
overlaps, the Assigned-flag is set and the field information is returned
back to the Ethernet module. The memory controller can also return
an Out-of-Memory error when the algorithm couldn’t fit the required
frame length in the buffer. If the data transmission is completed, the

Stefan Gloor February 2, 2020 Page 7

Ethernet Development Board v1.0 2 SOFTWARE

field has to be freed up manually by the module which wrote data into
the buffer.

Stefan Gloor February 2, 2020 Page 8

	Hardware
	Mechanical
	Capabilities
	Versions
	FPGA
	MPU

	Known Bugs

	Software
	Capabilities
	Theory of Operation
	Memory Controller

