POLYTECHNIC UNIVERSITY OF THE PHILIPPINES
BACHELOR OF SCIENCE IN COMPUTER SCIENCE

DISCRETE STRUCTURES II

Invento Management System

BSCS 2-1N
Group 3

Project Manager:

Designer:
Developer:

Systems Analyst:
Business Analyst:
Technical Writer:

Documentation

Annalyn Belen

Monika Jea Ng

Steve Pabular

John Nicolas Oandasan
Hazel Conception
Percian Cayaban

Instructor: Prof. Angie Payne

Table of Contents

i
ii
I Invento Management System | 1
[. C CW, 1
[Features| 1
1
[I__User Guide 2
Ul Process and Tools | 5
[Elowchart 5
[Databasel 5
[User Interfacel 6
[Development Tools| 6
LV___ _Code Documentation | 7
[Project Structure| 7
Main file] 7
V DV - o o e e e e e e 8
utils package| 9
ACCOUNTS.DY| - .+« o o o o e 9
....................................... 10
[dependencies.py| L 11
....................................... 11
itemdata.pyl e e e e e e 11
randompiC.PY| . . « .+« v v e e e e e e e e e e e e e e 13
OS.DY] . v o e e e 14
[customwidget package] 16
[Ctm'lreeView.pyl oo 16
(IntSpinBox.pyl. 17
LoginBeg.pyl 17
[SalesGraph.pyl. 17

i

Discrete Structures 11

Invento Documentation || Part

Pages| 18
cinPage.pyl 18
[RegisterPage.py| 18
[[nventoryPage.py| 19
[Tabs] 20
[AccountTab.py| 20
[DashboardTab.pyl 20
[ProductTab.py| 21
[SettingsTab.pyl 21
AboutTab.py| 21

il

Discrete Structures 11 Invento Documentation || Part I

Part 1
Invento Management System

Overview

Invento is an inventory management system that allows users to manage their
inventory of products, track sales, and view sales data in real-time. The system
supports multiple user roles, including Admin and User accounts, and provides other
variety of features.

Features

1.

Login and Registration - To access the system, users must first register an
account or log in with an existing account. This feature allows tracking whose
changes were implemented in the inventory. This also saves the current session for
future access.

Admin and User Accounts - Users can control the inventory and sales data.
Administrators had access to additional features, including the ability to reset
inventory, delete accounts, and manage user accounts.

Sales Graph - Displays a line graph of sales data for the past 7 days. The graph
updates in real-time as new sales data is entered into the system.

Product Management - Users and admins can add, edit, and remove products
from the inventory. Changes can be seen in the table displayed.

Account Settings - Users and admin can change their passwords and display
pictures. They could also personalize the themes of the program in settings.

Setup

This program requires the 3.10+ version of Python installed and the following packages:

e customtkinter

e Pillow

e matplotlib

Which can be installed with the following command:

pip install --upgrade customtkinter Pillow matplotlib

There also is a detailed setup guide available at https://github.com/steguiosaur/invento.

https://github.com/steguiosaur/invento

Discrete Structures 11 Invento Documentation || Part IT

Part 11
User Guide

The program can be executed by using the command python Main.py in a terminal.
If there aren’t any dependency conflicts and logged-in session, it will show the Login page
(Figure [1)) wherein it takes an input for the current registered accounts.

Log into your Account

Username

! Iinvento

MANAGEMENT SYSTEM d

Login now
ar

Create an account

Figure 1: Login page

On this page (Figure , you could register a new account by entering the required
information.

Create an Account

Username

Confirm Password

! invento

MANAGEMENT SYSTEM

d

Register now

Back to Login Page

Figure 2: Register page

To access the inventory management system, log in with a valid username and
password. If you do not have an account, Click the ”Create an account” button on the

Discrete Structures 11 Invento Documentation || Part IT

login page. Once you have created an account, you can log in and begin using the
system.

After logging in, the Dashboard Tab (Figure is shown. It displays the overall
changes done in the inventory and current number of users, products, categories, and
total sales.

Dashboard Inventory Account Settings About

TOTAL SALES IN PAST WEEK

. TOTAL USERS

Total Sales

DASHBOARD . . CATEGORIES

INVENTORY

ACCOUNT RECENT MODIFIED PRODUCTS

ERCENGES Product Name Date Modified Account Permission
SETTINGS : : L

TOTAL SOLD

LOGOUT

Figure 3: Dashboard Tab

The Inventory Tab (Figure [4]), is where you manage the products, categories, and
sales, There also is the search functionality that enables quickly look up for an item you
desire to look into. If you wanted to sort the item based on stock, name, data modified,
etc., you can click the header of the table to trigger it into ascending and descending
order.

Dashboard Inventory Account Settings About

! . inve

Product Name tegory In-Stock Buying Price Selli Modified
19 0.0 202 -11 16:56

DASHBOARD

INVENTORY

Q, search Modify Category Add Remove

ACCOUNT
Product Name: item_10

SETTINGS CURRENT PRODUCT SALES Category. Category 2

Add Sales Remove Sales Current Stock: 4
0 & 0 Buying Price: 100.0
Selling Price: 200.0
Remove

Save Discard
LOGOUT

Figure 4: Inventory Tab

Discrete Structures 11 Invento Documentation || Part IT

In this page (Figure , is where you manage your account and view other accounts.
There are two levels of permission given for an account, the User Account and the
Administrator Account. User accounts can access the normal features given in the
program, like the inventory management feature. The latter, administrator account, can

access the whole features including account deletion, resetting the inventory, and changing
permissions for user accounts.

. Dashboard Inventory Account Settings About
B Qinve
MANAGEMENT SYSTEM

ACCOUNT LIST
ad m i n Account Name Administrator
n 1
0

DASHBOARD Change Photo

ACCOUNT SETTINGS
INVENTORY

Change Password! (i nt Password ADMINISTRATOR SETTINGS
ACCOUNT

SETTINGS Grant Admin Privileges

Remove Admin Privileges
Save Password Cancel Remove Account

Delete Account Change to User Delete All User
LOGOUT

Figure 5: Accounts Tab

The Settings Tab (Figure @ handles all theme changes and widget scaling. There
currently are two appearances, the Light and Dark appearance. The theme can be

changed into blue, dark-blue, and green. For the rest, you can find out by trying the
program.

. Dashboard Inventory Account Settings About
ERiny
MANAGEMENT SYSTEM
SETTINGS

Appearance Mode

Dark ~
DASHBOARD

Color Theme (requires restart)

INVENTORY blue -

ACCOUNT Table Theme

dark
SETTINGS

Ul Scaling

LOGOUT

Figure 6: Settings Tab

Discrete Structures I1 Invento Documentation || Part 111

Part 111
Process and Tools

This software is built using modular, object-oriented structure, with focus on
readability, maintainability, and extensibility. It follows a traditional
Model-View-Controller (MVC) architecture, with separate components managing the
user interface, logic, and database interactions.

Flowchart

Database

Invento uses a relational database to store product data, sales data, and account
information. The database is managed using the Python sqlite module, which
provides a simple and efficient interface for executing SQL queries and managing
database connection.

Discrete Structures I1 Invento Documentation || Part 111

User Interface

The user interface of this software is implemented using graphical user interface (GUI)
framework, such as TKinter and Customtkinter. We aimed for the interface design that
is minimal, intuitive and user-friendly, with a clean modern layout.

Development Tools
The following tools are used to develop the program.
</> Programming Language
Python 3.10
& Frameworks and Libraries

Customtkinter - GUI framework/package
TKinter - GUI framework
Pillow - image processing

Matplotlib - data visualization
€ Database and Configurations

SQLite3 - creates *.db file for database

Configparser - creates *.1ini file for configurations
(¢ Text editor or Integrated Development Environment (IDE)

Neovim - terminal based text editor

Pycharm - IDE
€) Version Control System (VCS)
Git - local VCS
Github - https://github.com/steguiosaur/invento.
& Creative Tools
GIMP - photo editor
Inkscape - vector graphics editor; used in logo creation
Canva - used in presentations
Figma - used for structuring GUI in early versions
Dia - flowchart
Bi Mark-up Language

Markdown - README files
ETEX - used for creating this documentation

https://github.com/steguiosaur/invento

Discrete Structures 11 Invento Documentation || Part IV

Part IV
Code Documentation

There were several naming conventions used in the code.

Pascal case is used for ClassNames
Camel case is used for objectNames

Snake case is used for function_names and method_names

Project Structure

Invento packages and main file.

@8 invento
Main

customwidget PageS tabs utils

customwidget modules

88 customwidget

CtmTreeView IntSpinBox LoginBg SalesGraph

pages modules

@8 pages

LoginPage RegisterPage InventoryPage
tabs modules
B8 tabs

AboutTab AccountTab DashboardTab ProductTab SettingsTab
utils modules
& utils

accounts assets dependencies icons itemdata randompic settings

Main file

Main.py or the main file, is responsible for executing the app. This can be triggered
by using the command python Main.py. It is located at the root of the project with
other packages.

@8 invento

customwidget PageS tabs utils Main

Discrete Structures 11 Invento Documentation || Part IV

</> Main.py

This first part of the code imports several modules from utils package. It calls
dependency_installer() function from dependencies module to automate the
installation of packages that are not installed.

from utils import accounts, itemdata, settings, dependencies, Assets
dependencies.dependency_installer() # install dependencies

After the installation of required packages, it proceeds to import several other
packages. Customtkinter and TKinter are responsible for creating the window where
the frames will be placed. The pages package imports all of its module [LoginPage,
RegisterPage, InventoryPage] to be added onto the frame dictionary.

from customtkinter import CTkFrame, set_appearance_mode, set_default_color_theme,
— set_widget_scaling

from tkinter import PhotoImage, Tk

from pages import *

class Main(Tk):
def __init__(self):
super () .__init__()

creates container for frames

container = CTkFrame(self)
container.pack(side="top", fill="both", expand=True)
container.grid_rowconfigure (0, weight=1)
container.grid_columnconfigure (0, weight=1)

self.frames = {} # create page dictionary

for £ in [InventoryPage, LoginPage, RegisterPagel]:
page = f.__name__
frame = f(container, self)
frame.grid(row=0, column=0, sticky="NSEW")
self.frames[page] = frame

In this part, the self.get _session() will display InventoryPage if there is an
account that is currently logged in. If not, it will display LoginPage instead.

initialize starting frame
self.get_session()

display selected page on top

def show_frame(self, page, id=None):
self.id = id
self.frames [page] . tkraise()

current logged in account
def get_session(self):
if accounts.get_session() is not None:
self.show_frame("InventoryPage")
else:
self.show_frame("LoginPage")

Discrete Structures 11 Invento Documentation || Part IV

The comment already explains what it does in this part.

create database and admin account if not exists
accounts.create_table()
itemdata.create_inventory_table()

initialize settings and themes
settings.initialize_config()
set_appearance_mode (settings.appearance_read())
set_default_color_theme(settings.theme_read())
set_widget_scaling(settings.int_scale_read())

start application

app = Main()

app.title("Invento")

app.resizable(True, True)

width = 1024

height = 576

x = (app.winfo_screenwidth()/2) - width/2

y = (app.winfo_screenheight()/2) - height/2
app.geometry (’%dxd+%d+%d’> % (width, height, x, y))
app.minsize (1024, 576)

app.iconphoto(True, PhotoImage(file=Assets.asset_path(’logo.png’)))
app.mainloop()

utils package

This package contains the overall functionality of the program. It includes all
modules that handle the database, file paths, generation of image, configurations, and
other miscellaneous functions.

B utils

accounts assets dependencies icons itemdata randompic settings

</> accounts.py

The accounts module handles all account related functionality. It connects itself
to the database file named invento.db and the database table named accounts and
sessions.

accounts sessions
Username Password Admin Username
admin hashedpassOedafc3 1 admin

The following are its functions:

% change pass(username, passwd, new_passwd, confirm passwd)

- Verifies password changes. Used by AccountTab on account settings.

«» count_non_admin_accounts()

- Used by DashboardTab to display current users.

Discrete Structures 11 Invento Documentation || Part IV

2
»

9,
o

2
»

R
**

2
»

R
**

R
**

2
»

R
**

create_table()

- Creates table for accounts, login session, and an admin account.

delete_all_users()

- Needs admin privileges to delete all users. Accessed by AccountTab.

delete_user (username)

- Accessed by AccountTab to delete an account.

get_all accounts()

- Displays current accounts in the table.

get_permission_level (username)

- Returns 1 if session is an admin account, else 0. Used to verify account permissions.

get_session()

- Returns the current logged in account.

grant_admin privilege(username)

- Gives a user account admin privileges. Requires an admin account.

login(username, passwd)

- Used by LoginPage to verify username and password.

logout ()

- Removes account in session. Changes frame to LoginPage.

register (username, passwd, confirm passwd, admin=False)

- Creates a new account in the database.

remove _admin privilege (username)

- Removes admin permission. Accessed by AccountTab.

<[> assets.py

The assets module locates the location of the ./assets/ folder in the project. Due
to different file pathing between platforms, Linux and Windows, using this module makes
it compatible on both operating systems.

from pathlib import Path

class Assets:

OUTPUT_PATH
ASSETS_PATH

Path(__file__) .parent
OUTPUT_PATH / Path("../assets")

@staticmethod
def asset_path(path: str) -> Path:

return Assets.ASSETS_PATH / Path(path)

10

Discrete Structures 11

</> dependencies.py

This module is responsible for automatically installing the required packages listed on
requirements.txt. It creates a loop, verifying if the package is installed or not. This
script only runs on initial execution of the program. It will be triggered again if the config

file config.ini is

deleted.

from os.path import isfile

import subprocess
import sys

def install(package):

subprocess.call([sys.executable, "-m", "pip",

def dependency_installer():
executes installer on first startup

if not isfile(

>./config.ini’):

with open("requirements.txt") as f:
ncies = f.read().splitlines()

depende

for package in dependencies:

try:

__import__(package)

except

ImportError:

install (package)

/> icons.py

The icons module manage the icons being used in Dashboard and ProductTab.

N
&

(a
(¢

Invento Documentation || Part IV

"install", package])

(e
(@

It changes according to appearance that was set in the configuration file.

</> itemdata.py

This module handles all inventory related functionality that accesses the database. It
connects on the database file named invento.db and controls three (3) tables named as

products, categories, and sales.

products
items category | in_stock | buying price | selling price
Golden Onion Spices 30 200.00 250.00
datemodified | modified by | permission_level
23-02-19 23:43 admin 1

11

Discrete Structures 11 Invento Documentation || Part IV

R
o

R
%

R
**

K7
o

2
**

R
**

2
»

2
»

K7
o

R
**

categories sales
category_name total_sales | date_sale
Drinks 11980.00 23-02-19

The following are its functions:

add_category(category_name)

- Used in category panel located in ProductTab.

add_product (item, category, in_stock, buying price, selling price)

- Adds the product to inventory table. Used in ProductTab’s add panel.

add_sales(earned)

- Used by the frame ” Current Product Sales” in ProductTab.

count_category ()

- Returns the number of category from the database to be displayed in
DashboardTab.

count_products ()

- Returns the number of products from the database to be displayed in
DashboardTab.

create_inventory_table()

- Responsible for creating the tables named accounts, categories, and sales in
the database.

delete_all products()

- Removes all listed products. Requires admin permission.

delete_product (product)

- Deletes a single selected product. Located at the remove panel in ProductTab.
edit_product(product, category, in_stock, buying price,

selling price, product_focus)

- Updates the product information based on input from modify panel.

get_all category()

- Returns all listed categories from the database to be accessed by the dropdown
option menu from ProductTab.

get_current_date_sales()

- Returns the sales of the current date. Unused functionality.

get_current_in stock(item name)

- Reads current number of stock an item have. Used to limit the maximum value
of the current stock in adding a sale. Used on ”Current Product Sales” panel in
ProductTab.

12

Discrete Structures 11 Invento Documentation || Part IV

K2

<% get_sales_data()
- Data is used by SalesGraph to be plotted in the line graph at DashboardTab.

R
**

get_selling price(item name)
- Used by add_sales and remove_sales to determine the price of the item.
add/remove_sales = number_of_product * product_price

%

% get_today_sales()
- Returns the total sales from the database to be displayed in DashboardTab.

R
**

reduce_sales(remove_earned)
- Used by the frame ”Current Product Sales” in ProductTab.

“% remove_category(category name)

- Removes the selected category in the database’s categories table.

% search_product (item name)

- Used by search entry in ProductTab that filters the entered product to be displayed
in the inventory table.

R
**

sort_table(column, ascending)

- Sorts all columns in ascending and descending order. Triggered in the inventory
table header.

+ update_stock(item name, new_stock)

- Updates the stock after adding or removing a sale.

< view_inventory()

- Displays the inventory table in the ProductTab.

9,
**

view modified()

- Displays the recent modified products table in the DashboardTab.

e I

</> randompic.py

L e - -

admin.png alien.png person.png sample.png seven.png steve.png user.png

This module creates a somewhat high resolution 8x8 pixeled image that is symmetrical
in the center x-axis. It acts as a display photo that is different for every account.

In this part of the code, it creates the size, size of pixel boxes, and colors.

size = (128, 128)

box_size = size[0] // 8

white = (255, 255, 255)

random_color = (random.randint(0, 255), random.randint(0, 255), random.randint (O,
< 255))

13

Discrete Structures 11 Invento Documentation || Part IV

The variable random_color can generate a total of 16,777,216 different RGB color
values. This is randomized by the built-in random module of Python.

256 * 256 * 256 = 16777216

In this for loop, it paints the selected box per index with the result from the if-else
statement.

for i in range(4): # 4 boxes on x-axis
for j in range(8): # 8 on y-axis
if random.choice([True, False]):
color = random_color
else:
color = white
x1 = i * box_size

yl = j * box_size
x2 = (i + 1) * box_size
y2 = (j + 1) * box_size

draw.rectangle([x1, y1, x2, y2], fill=color)
draw.rectangle([(size[0] - x2), y1, (size[0] - x1), y2], fill=color)
We could calculate the total number of patterns this module could generate using this
simple permutation formula:

n" = 28 = 232 — 4294967296

Where n = number of colors, which is white and the random_color. And r = number
of pixels or boxes to be generated with a color. It can generate 4,294,967,296 different
patterns without considering the randomization of color value.

If we try to get the overall randomization with patterns and color value, it reaches an
almost incomprehensible total of permutations.

(16777216 + 1(white))*?

After all the generation of colors and image, it will be stored under the
./assets/image/ folder.

store account photo

path = Path("assets/image") / (username + ".png")

path.parent.mkdir(parents=True, exist_ok=True)
image.save(path)

<[> settings.py

This module is responsible for reading and writing the preset configuration in the file
config.ini.

B config.ini

[settings]
appearance = Dark
theme = blue
tablecolor = dark
scale = 100

14

Discrete Structures 11

Invento Documentation || Part IV

Dashboard Inventory Account Settings About

I invento

MANAGEMENT SYSTEM

SETTINGS

Appearance Mode

I

Light
DASHBOARD

Color Theme (requires restart)
INVENTORY

I

blue

ACCOUNT Table Theme

dark

I

SETTINGS
Ul Scaling

ABOUT 100%

LOGOUT

All the

Figure 7: Settings Tab

backend functionality that Settings Tab does is shown in this code.

from configparser import ConfigParser
from os.path import isfile

config = ConfigParser()
config.read(’config.ini’)

create config at first execute
def initialize_config():

if not

isfile(’config.ini’):

config_set()

default configuration

def config_

config.
config.
config.
config.
config.
config.

set():

add_section(’settings’)
set(’settings’, ’appearance’, ’Dark’)
set(’settings’, ’theme’, ’blue’)
set(’settings’, ’tablecolor’, ’dark’)
set(’settings’, ’scale’, ’1007)
write(open(’config.ini’, ’w’))

appearance [light, dark]
def appearance_save (appearance) :

config.
config.

set(’settings’, ’appearance’, appearance)
write(open(’config.ini’, ’w’))

color theme [blue, dark-blue, green]
def theme_save(theme):

config.
config.

set(’settings’, ’theme’, theme)
write(open(’config.ini’, ’w’))

table theme [light, dark]
def table_theme_save(table):

config.
config.

set(’settings’, ’tablecolor’, table)
write(open(’config.ini’, ’w’))

15

Discrete Structures 11 Invento Documentation || Part IV

zoom value [80%, 90%, 100%, 110%, 120%]
def scale_save(scale):

str_scale = str(int(scale * 100))

config.set(’settings’, ’scale’, str_scale)

config.write(open(’config.ini’, ’w’))

This second half of the code is used to initialize the preset configuration when the
program starts. You can see it being called on the Main module. It is also used to view
the current configuration that was set.

get current configuration

def appearance_read():
return (str(config.get(’settings’, ’appearance’)))

def theme_read():
return (str(config.get(’settings’, ’theme’)))

def table_theme_read():
return (str(config.get(’settings’, ’tablecolor’)))

def scale_read():
return (str(config.get(’settings’, ’scale’))+"%")

def int_scale_read():
return int(config.get(’settings’, ’scale’)) /100

customwidget package

All modules that can be seen here are mostly customized widgets that displays their
own functionality and can be called as objects. It is to be able to place them inside other
classes.

@8 customwidget

CtmTreeView IntSpinBox LoginBg SalesGraph

<> CtmTreeView.py

Shows the table widget and manages the table style. Used in DashboardTab,
ProductTab, and AccountTab.

Product Name In-Stock Buying Price Selling Price Date Modified

0 10.0 20.0

A40.0

120.0

100.0

Figure 8: Inventory Table

16

Discrete Structures 11 Invento Documentation || Part IV

</> IntSpinBox.py

Used in AccountTab to input product sales.

Figure 9: SpinBox

</> LoginBg.py

Inherited by LoginPage and RegisterPage to easily manage theme changes.

Log into your Account Log into your Account
I invento [~ invento

4

" a1

Figure 10: LoginBg Light and Dark Mode

</> SalesGraph.py
Displays a line graph and plots the sales per day in DashboardTab. It uses Matplotlib
to display the data.

TOTAL SALES IN PAST WEEK

3000
2000
1000 \
13 02

-14 02-15 02-16 02-17 02-18
Date

Total Sales

0z2-12 02-

Figure 11: SalesGraph

17

Discrete Structures 11 Invento Documentation || Part IV

Pages

The pages package handles all the frames for login, register, and the inventory. The
Main.py displays them accordingly to the user’s action.

@8 pages
LoginPage RegisterPage InventoryPage
</> LoginPage.py

The LoginPage module creates an environment inheriting the LoginBg where it allows
the user to access the inventory. This also allows the modification of a user, be recorded.

Loginto your Account

! Iinvento

MANAGEMENT SYSTEM

Login now

Create an account

</> RegisterPage.py

This module enables the creation of an account.

Create an Account

Username

! invento

MANAGEMENT SYSTEM

Register now

Back to Login Page

18

Discrete Structures 11 Invento Documentation || Part IV

</> InventoryPage.py
Holds all the tabs, buttons to traverse the tabs, and the logout button.

Dashboard Inventory Account Settings About

TOTAL SALES IN PAST WEEK

J1 invento

MANAGEMENT SYSTEM

TOTAL USERS 4500

. 1 3500

Total Sales

DASHBOARD . . CATEGORIES
| 3

INVENTORY 0206 0207 0208 0208 0210 02-11 02-12
Date

ACCOUNT RECENT MODIFIED PRODUCTS

PRODUCTS Product Name Date Modified Account Permission
1 0 item_7 2023-02-12 18:52:23 admin
item_8 2023-02-12 18:52:23 admin
ABOUT item_9 2023-02-12 18:52:23 admin
item_10 2023-02-12 18:52:23 admin

SETTINGS 1
1
1
1
item_1 2023-02-12 18:52:22 admin 1
1
1
1

TOTAL SOLD item_2 2023-02-12 18:52:22 admin

1320.0 item_3 2023-02-12 18:52:22 admin
item_4 2023-02-12 18:52:22 admin

((a
(@

LOGOUT

<

DASHBOARD

self.tabview.tab("Dashboard") .grid_columnconfigure(0, weight=1)
self.tabview.tab("Dashboard") .grid_rowconfigure(0, weight=1)
self.dashboardDisplay = DashboardTab(self.tabview.tab("Dashboard"))
self.dashboardDisplay.grid(row=0, column=0, sticky="nsew"

INVENTORY

self.tabview.tab("Inventory").grid_columnconfigure (0, weight=1)
self.tabview.tab("Inventory").grid_rowconfigure(0, weight=1)
self.inventoryDisplay = ProductTab(self.tabview.tab("Inventory"), controller)
self.inventoryDisplay.grid(row=0, column=0, sticky="nsew")

ACCOUNT

self.tabview.tab("Account") .grid_columnconfigure(0, weight=1)
self.tabview.tab("Account") .grid_rowconfigure (0, weight=1)
self.accountDisplay = AccountTab(self.tabview.tab("Account"))
self.accountDisplay.grid(row=0, column=0, sticky="nsew")

ABOUTMENU

self.tabview.tab("About") .grid_columnconfigure(0, weight=1)
self.tabview.tab("About") .grid_rowconfigure(0, weight=1)
self.aboutDisplay = AboutTab(self.tabview.tab("About"))
self.aboutDisplay.grid(row=0, column=0, sticky='"nsew")

SETTINGS

self.tabview.tab("Settings").grid_columnconfigure(0, weight=1)
self.tabview.tab("Settings") .grid_rowconfigure(0, weight=1)
self.settingsDisplay = SettingsTab(self.tabview.tab("Settings"), controller)
self.settingsDisplay.grid(row=0, column=0, sticky="nsew")

19

Discrete Structures 11 Invento Documentation || Part IV

Tabs

This package contains all the frames for InventoryPage. Every core functionality of
this program is accessed in this part. Each tabprovides a different set of features and
functionality.

@8 tabs

AboutTab AccountTab DashboardTab ProductTab SettingsTab

</> AccountTab.py

The AccountTab module provides the functionality for managing accounts. Users can
update their password and delete their account. Administrators on the other hand, has
more access to modify its own and other user accounts.

Dashboard Inventory Account Settings About

ACCOUNT LIST

H it Name Administrator
admin \ 1

DASHEOARD Change Photo

ACCOUNT SETTINGS
INVENTORY
Change Password ADMINISTRATOR SETTINGS
ACCOUNT

SETTINGS Grant Admin Privileges

Remove Admin Privileges

Save Password Cancel Remove Account

Delete Account Change to User Delete All User

LOGOUT

</> DashboardTab.py

The DashboardTab provides an overview of the inventory’s modification and sales.

! . MANAGEMEN!

Dashboard Inventory Account Settings About

TOTAL SALES IN PAST WEEK

. TOTAL USERS

Total Sales

DASHBOARD . . CATEGORIES

INVENTORY
ACCOUNT

PRODUCTS
SETTINGS

TOTAL SOLD

LOGOUT

20

Discrete Structures 11 Invento Documentation || Part IV

</> ProductTab.py

The ProductTab provides the functionality to manage the inventory of the business.

Users can basically, add, edit, and delete products in the inventory. It also does track
the sales in this part.

. Dashboard Inventory Account Settings About
B Qinven
MANAGEMENT SYSTEM

Product Name In-Stock

Buying Price Selling Price

19

DASHBOARD

100.0
INVENTORY

Search Iten Q, search Modify Category Add Remove
ACCOUNT

Product Name: item_10
SELles CURRENT PRODUCT SALES Category Category_2

T Add Sales Remove Sales Current Stock: 4
0 -0 Buying Price: 100.0

Selling Price: 200.0
Remove

Save Discard
LOGOUT

<[> SettingsTab.py

This part provides options for customizing the application’s appearance, theme, and

scaling.

. Dashboard Inventory Account Settings About
B Qinven
MANAGEMENT SYSTEM

SETTINGS

Appearance Mode

Dark ~
DASHBOARD

Color Theme (requires restart)
INVENTORY blue -

ACCOUNT Table Theme

dark
SETTINGS

Ul Scaling
ABOUT

LOGOUT

</> AboutTab.py

Shows a short description of the program, the team who created this project, and the
core features.

21

	Title page
	Contents
	I Invento Management System
	Overview
	Features
	Setup

	II User Guide
	III Process and Tools
	Flowchart
	Database
	User Interface
	Development Tools

	IV Code Documentation
	Project Structure
	Main file
	Main.py

	utils package
	accounts.py
	assets.py
	dependencies.py
	icons.py
	itemdata.py
	randompic.py
	settings.py

	customwidget package
	CtmTreeView.py
	IntSpinBox.py
	LoginBg.py
	SalesGraph.py

	Pages
	LoginPage.py
	RegisterPage.py
	InventoryPage.py

	Tabs
	AccountTab.py
	DashboardTab.py
	ProductTab.py
	SettingsTab.py
	AboutTab.py

