Skip to content

statmlben/rankseg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

15 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

dAI Python Github MIT PRs Welcome

🎲 RankSEG: A Consistent Ranking-based Framework for Segmentation

RankDice is a Python module for producing segmentation by RankDice framework based on an estimated probability.

Installation

Dependencies

rankseg requires Python 3.9 + Python libraries:

pip install -r requirements.txt

Source code

You can check the latest sources with the command::

git clone https://github.com/statmlben/rankseg.git

How-to-Use (on a batch)

RankDice

## `out_prob` (batch_size, num_class, width, height) is the output probability for each pixel based on a trained neural network
from rankseg import rank_dice
predict_rd, tau_rd, cutpoint_rd = rank_dice(out_prob, app=2, device='cuda')

Other existing frameworks (Threshold and Argmax)

## `out_prob` (batch_size, num_class, width, height) is the output probability for each pixel based on a trained neural network

## Threshold
predict_T = torch.where(out_prob > .5, True, False)

## Argmax
idx = torch.argmax(out_prob.data, dim=1, keepdims=True)
predict_max = torch.zeros_like(out_prob.data, dtype=bool).scatter_(1, idx, True)

Usage in pytorch-segmentation-rankseg (in subfolder)

## rankdice
$ python test.py -r saved/cityscapes/PSPNet/CrossEntropyLoss2d/T/05-04_13-08/checkpoint-epoch300.pth -p "rankdice"

TEST, Pred (rankdice) | Loss: 0.159, PixelAcc: 0.99, Mean IoU: 0.51, Mean Dice 0.59 |: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 84/84 [01:03<00:00,  1.33it/s]

    ## TESTING Restuls for Model: PSPNet + Loss: CrossEntropyLoss2d + predict: rankdice ## 
         test_loss      : 0.15925
         Pixel_Accuracy : 0.9879999756813049
         Mean_IoU       : 0.5099999904632568
         Mean_Dice      : 0.5929999947547913
         Class_IoU      : {0: 0.771, 1: 0.508, 2: 0.767, 3: 0.164, 4: 0.117, 5: 0.317, 6: 0.283, 7: 0.401, 8: 0.841, 9: 0.231, 10: 0.778, 11: 0.4, 12: 0.292, 13: 0.766, 14: 0.233, 15: 0.465, 16: 0.315, 17: 0.177, 18: 0.326}
         Class_Dice     : {0: 0.856, 1: 0.608, 2: 0.851, 3: 0.21, 4: 0.158, 5: 0.46, 6: 0.374, 7: 0.514, 8: 0.903, 9: 0.294, 10: 0.845, 11: 0.495, 12: 0.372, 13: 0.84, 14: 0.265, 15: 0.513, 16: 0.358, 17: 0.222, 18: 0.419}

## max
$ python test.py -r saved/cityscapes/PSPNet/CrossEntropyLoss2d/T/05-04_13-08/checkpoint-epoch300.pth -p "max"

TEST, Pred (max) | Loss: 0.159, PixelAcc: 0.99, Mean IoU: 0.49, Mean Dice 0.56 |: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 84/84 [00:12<00:00,  6.52it/s]

    ## TESTING Restuls for Model: PSPNet + Loss: CrossEntropyLoss2d + predict: max ## 
         test_loss      : 0.15925
         Pixel_Accuracy : 0.9879999756813049
         Mean_IoU       : 0.48500001430511475
         Mean_Dice      : 0.5649999976158142
         Class_IoU      : {0: 0.768, 1: 0.489, 2: 0.759, 3: 0.133, 4: 0.099, 5: 0.295, 6: 0.257, 7: 0.387, 8: 0.836, 9: 0.208, 10: 0.769, 11: 0.372, 12: 0.272, 13: 0.751, 14: 0.204, 15: 0.395, 16: 0.268, 17: 0.152, 18: 0.303}
         Class_Dice     : {0: 0.854, 1: 0.585, 2: 0.844, 3: 0.172, 4: 0.136, 5: 0.428, 6: 0.341, 7: 0.498, 8: 0.9, 9: 0.268, 10: 0.835, 11: 0.464, 12: 0.351, 13: 0.826, 14: 0.233, 15: 0.437, 16: 0.308, 17: 0.193, 18: 0.392}


## threshold at 0.5
$ python test.py -r saved/cityscapes/PSPNet/CrossEntropyLoss2d/T/05-04_13-08/checkpoint-epoch300.pth -p "T"

TEST, Pred (T) | Loss: 0.159, PixelAcc: 0.99, Mean IoU: 0.50, Mean Dice 0.57 |: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 84/84 [00:13<00:00,  6.45it/s]

    ## TESTING Restuls for Model: PSPNet + Loss: CrossEntropyLoss2d + predict: T ## 
         test_loss      : 0.15925
         Pixel_Accuracy : 0.9890000224113464
         Mean_IoU       : 0.4959999918937683
         Mean_Dice      : 0.574999988079071
         Class_IoU      : {0: 0.772, 1: 0.478, 2: 0.762, 3: 0.136, 4: 0.109, 5: 0.29, 6: 0.265, 7: 0.39, 8: 0.841, 9: 0.201, 10: 0.77, 11: 0.363, 12: 0.273, 13: 0.769, 14: 0.219, 15: 0.422, 16: 0.307, 17: 0.158, 18: 0.325}
         Class_Dice     : {0: 0.857, 1: 0.573, 2: 0.846, 3: 0.174, 4: 0.147, 5: 0.419, 6: 0.349, 7: 0.499, 8: 0.902, 9: 0.257, 10: 0.836, 11: 0.451, 12: 0.351, 13: 0.841, 14: 0.247, 15: 0.468, 16: 0.349, 17: 0.197, 18: 0.414}

Jupyter Notebook

Illustrative results

Results in Fine-annotated Cityscapes dataset

  • Threshold, Argmax and rankDice are performed based on the same network (in Model column) trained by the same loss (in Loss column).
  • Averaged mDice and mIoU metrics based on state-of-the-art models/losses on Fine-annotated CityScapes val set. '/' indicates not applicable since the proposed RankDice/mRankDice requires a strictly proper loss. The best performance in each model/loss is bold-faced.
  • All trained neural networks and their config.json with different network and loss are saved in this link (12G folder: network/loss/.../*.pth + config.json)
Model Loss Threshold (at 0.5) Argmax mRankDice (our)
(mDice, mIoU) ($\times .01$) (mDice, mIoU) ($\times .01$) (mDice, mIoU) ($\times .01$)
DeepLab-V3+ CE (56.00, 48.40) (54.20, 46.60) (57.80, 49.80)
(resnet101) Focal (54.10, 46.60) (53.30, 45.60) (56.50, 48.70)
BCE (49.80, 24.90) (44.20, 22.10) (54.00, 27.00)
Soft-Dice (39.50, 35.90) (39.50, 35.90) /
B-Soft-Dice (41.00, 20.50) (27.60, 13.80) /
LovaszSoftmax (55.20, 47.60) (52.30, 45.10) /
PSPNet CE (57.50, 49.60) (56.50, 48.50) (59.30, 51.00)
(resnet50) Focal (56.00, 48.20) (55.80, 47.70) (58.20, 50.00)
BCE (51.40, 25.70) (47.60, 23.80) (55.10, 27.60)
Soft-Dice (49.10, 43.50) (48.70, 43.20) /
B-Soft-Dice (46.30, 23.10) (32.70, 16.40) /
LovaszSoftmax (56.80, 48.90) (55.40, 47.70) /
FCN8 CE (51.40, 43.70) (50.50, 42.60) (53.50, 45.30)
(resnet101) Focal (48.50, 41.20) (49.60, 41.60) (51.50, 43.70)
BCE (39.40, 19.70) (39.40, 19.70) (41.30, 20.60)
Soft-Dice (28.30, 24.30) (28.30, 24.30) /
B-Soft-Dice (29.10, 14.60) (29.10, 14.60) /
LovaszSoftmax (48.10, 40.40) (42.90, 35.80) /

Results in PASCAL VOC 2012 dataset

  • Threshold, Argmax and rankDice are performed based on the same network (in Model column) trained by the same loss (in Loss column).
  • Averaged mDice and mIoU based on state-of-the-art models/losses on PASCAL VOC 2012 val set. '---' indicates that either the performance is significantly worse or the training is unstable, and '/' indicates not applicable since the proposed RankDice/mRankDice requires a strictly proper loss. The best performance in each model-loss pair is bold-faced.
  • All trained neural networks with different network and loss are saved in this link (22G folder: network/loss/.../*.pth)
Model Loss Threshold (at 0.5) Argmax mRankDice (our)
(mDice, mIoU) ($\times .01$) (mDice, mIoU) ($\times .01$) (mDice, mIoU) ($\times .01$)
DeepLab-V3+ CE (63.60, 56.70) (61.90, 55.30) (64.01, 57.01)
(resnet101) Focal (62.70, 55.01) (60.50, 53.20) (62.90, 55.10)
BCE (63.30, 31.70) (59.90, 29.90) (64.60, 32.30)
Soft-Dice --- --- /
B-Soft-Dice --- --- /
LovaszSoftmax (57.70, 51.60) (56.20, 50.30) /
PSPNet CE (64.60, 57.10) (63.20, 55.90) (65.40, 57.80)
(resnet50) Focal (64.00, 56.10) (63.90, 56.10) (66.60, 58.50)
BCE (64.20, 32.10) (65.20, 32.60) (67.10, 33.50)
Soft-Dice (59.60, 54.00) (58.80, 53.20) /
B-Soft-Dice (63.30, 31.60) (54.00. 27.00) /
LovaszSoftmax (62.00, 55.20) (60.80, 54.10) /
FCN8 CE (49.50, 41.90) (45.30, 38.40) (50.40, 42.70)
(resnet101) Focal (50.40, 41.80) (47.20, 39.30) (51.50, 42.50)
BCE (46.20, 23.10) (44.20, 22.10) (47.70, 23.80)
Soft-Dice --- --- /
B-Soft-Dice --- --- /
LovaszSoftmax (39.80, 34.30) (37.30, 32.20) /

More results

  • All empirical results on different losses and models can be found here

Replication

If you want to replicate the experiments in our papers, please check the folder ./pytorch-segmentation-rankseg and its README file Pytorch-segmentation-rankseg

To-do list

PRs Welcome Github MIT

  • develop rank_dice for numpy and tf2
  • develop a scalablerank_IoU with GPU-computing
  • develop a scalable rank_dice with non-overlapping segmentation
  • debug for torch.backends.cudnn.flags(enabled=False, deterministic=True, benchmark=True) when enabled=True
  • CUDA code to speed up the implementation based on app=1