
Arkouda
αρκούδα

NumPy-like arrays at massive scale
backed by Chapel.

Michael Merrill (presenting)
William Reus

Timothy Neumann
PAW-ATM 2019

 November 17, 2019

We want some
of our
Data

Scientists
to drive
an F22!

Jupyter allows
Data

Scientists
to drive a
cool plane!

Why HPC enabled EDA?

Data

InspectSummarize

Enrich

Filter

Transform

Model

Output

“Hypothesis	Testing”

I/O

We want to do EDA on 10s to 100s of terabytes…

In Data Science everyone talks about AI/ML, those things can only come from EDA!

Implications for Computing

• Stay	in	memory	
• Compute	in	small,	reversible	steps	
• Enable	introspection	(code	and	state)	
• Use	other	people’s	code	
• Avoid	boilerplate	
• Maximize	 𝑡𝑡h𝑖𝑛𝑘𝑖𝑛𝑔

𝑡𝑡h𝑖𝑛𝑘𝑖𝑛𝑔 + 𝑡𝑐𝑜𝑑𝑖𝑛𝑔 + 𝑡𝑤𝑎𝑖𝑡𝑖𝑛𝑔

So,	basically	Python…

…but	fast

Hypothesis Testing on 50 Billion Records

• A,	B	are	50	billion-
element	arrays	

• Timings	measured	on	
real	data	

• Hardware:	Cray	XC40	
• 96	nodes	
• 3072	cores	
• 24	TB	
• Lustre	filesystem

5

Operation Example Approximate	Time	
(seconds)

Read	from	disk A	=	ak.read_hdf() 30-60

Scalar	Reduction A.sum() <	1

Histogram	 ak.histogram(A) <	1

Vector	Ops A	+	B,	A	==	B,	A	&	B <	1

Logical	Indexing A[A	==	val] 1	-	10

Set	Membership ak.in1d(A,	set) 1

Gather B	=	Table[A] 30	-	300

Group	by	Key G	=	ak.GroupBy(A) 60

Aggregate	per	Key G.aggregate(B,	‘sum’) 15

Get	Item print(A[42]) <	1

Export	to	NumPy A[:10**6].to_ndarray() 2

Enrich

Summarize

Filter

Transform

Inspect

I/O

HPC Shell !?!

• Vision:	Expose	HPC	libraries	to	Python	via	Arkouda	
• FFT,	Tensor	decomposition,	Graph	algorithms,	Solvers	
• Anything	you	could	link	into	a	Chapel	application	(via	C	or	LLVM)	

• Need	to	standardize	a	distributed	array	interface	
• Need	an	“HPC	shell”

Arkouda Design

7

MPP	
SMP	
Cluster	

Workstation	
Laptop

Jupyter/Python3
Chapel-Based	Server

ZMQ

Arkouda Implementation

• Python3	client	and	Chapel	server	
• Client	implementation	in	Python3	
• pdarray	class	
• rely	on	Python	to	reduce	complexity	
• integrate	with	and	use	NumPy	

• Server	Implementation	in	Chapel	
• restricted	interpreter	
• symbol	table	—	in	memory	object	store	
• rely	on	Chapel	for	the	things	it	does	well

Where to get Arkouda?

• GitHub:	arkouda	
• PyPI:	arkouda	

• Open	source	under	the	MIT	license.

Conclusion

It’s	not	crazy.

Load	Terabytes	of	data…	

…	into	a	familiar,	interactive	UI	…	

…	where	standard	DS	operations	…	

…	execute	within	the	human	thought	loop	…	

…	and	interoperate	with	optimized	libraries.

Backup slides

Why HPC Enabled EDA?

• We	have	data	analyses	which	need	to	be	done	at	a	much	larger	scale…	
because	sampling	to	run	at	smaller	scale	alters	what	can	be	seen	in	
the	data	

• We	need	to	enable	our	data	scientists	with	tools	they	know…	so	why	
not	co-opt	an	interface	or	two	

• “Python	is	the	new	bash”	
• Because	we	can	and	it’s	fun!

Arkouda Startup

13

> arkouda_server –nl 96

server listening on hostname:port

1)	In	terminal:

2)	In	Jupyter:

Data Exploration with Arkouda and NumPy

14

Login	Node	
(Python/NumPy)

MPP	
(Arkouda)

Slightly more complicated Arkouda example

RMAT	Gen
BFS

Connected	
Components

Python Implementation Details

• Python	pdarray	class:	a	shim	for	the	distributed	array	on	the	Arkouda	server	
• Stores	server-side	name	of	array	
• Has	a	NumPy-like	dtype	
• Has	methods	that	translate	operators	into	server	commands	

• Arkouda	relies	on	Python	to	reduce	complexity	
• Scoping	
• Reference	counting	
• Garbage	collection	
• Exceptions	
• Arkouda	integrates	with	and	uses	NumPy	
• Dtypes	
• Argument	validation	
• Type	conversion

Chapel Implementation Details

• A	restricted	Chapel	interpreter:	
• Symbol	table	holding	multi-type	array	wrappers	
• Code	to	parse	commands	from	Python	and	select	functions,	operators,	and	types	

• Chapel	does	some	things	really	well	
• Makes	parallelism	easy	(often	implicit!)	
• Abstracts	away	inter-node	communication	and	data	layout	
• Compiler	templates	some	functions	
• Allows	dynamic	casts	from	generic	arrays	to	typed	arrays	

• But	some	things	are	hard	
• Large	“select”	statements	for	choosing	functions,	operators,	types	(an	issue	for	all	statically-
typed	languages)	

• Long	compile	times	

• Far	too	many	details	to	cover	here…

