Arkouda

APKOLOA

NumPy-like arrays at massive scale
pbacked by Chapel.

Michael Merrill (presenting)
Willlam Reus
Timothy Neumann
PAW-ATM 2019
November 17, 2019

We want some
of our
Data
Scientists
to drive
an F22!

Jupyter allows
Data
Scientists
to drive a
cool plane!

Why HPC enabled EDA?

“Hypothesis Testing”

Enrich

wme /-
Summarize .'
™ TS

—

Filter

%

Transform

We want to do EDA on 10s to 100s of terabytes...
In Data Science everyone talks about Al/ML, those things can only come from EDA!

Implications for Computing

= —

e Stay In memory

e Compute in small, reversible steps

e Enable introspection (code and state) So, basically Python...
* Use other people’s code

* Avoid boilerplate

» Maximize hinking ...but fast

tthinking + tcoding + twaiting

Hypothesis Testing on 50 Billion Records

Read from disk

Summarize Scalar Reduction
Histogram
Filter Vector Ops

Logical Indexing
Enrich Set Membership
Gather
[=lsieidag | Group by Key

Aggregate per Key
Get [tem

)
-

-
-

-
et

Export to NumPy

A = ak.read_hdf()

A.sum()
ak.histogram(A)
A+B,A==B,A&B
A[A == val]

ak.in1d(A, set)

B = Table[A]

G = ak.GroupBy(A)
G.aggregate(B, ‘sum’)
print(A[42])
A[:10**6].to_ndarray()

30-60
<1
<1
<1

Operation Approximate Time
(seconds) * A, Bare 50 billion-

element arrays

 Timings measured on
real data

* Hardware: Cray XC40

96 nodes

3072 cores

24 TB

Lustre filesystem

HPC Shell 1?1

* Vision: Expose HPC libraries to Python via Arkouda
 FFT, Tensor decomposition, Graph algorithms, Solvers
* Anything you could link into a Chapel application (via C or LLVM)

 Need to standardize a distributed array interface
* Need an “HPC shell”

Arkouda Design

Chapel-Based Server
Jupyter/Python3

: Ju pyter big_add_sum Last Checkpoint: 16 minutes ago (autosaved) a Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | Python3 O
+ x @ B A ¥ MRun B C M Code O

In [1]: import arkouda as ak

In [2]: ak.v = False
ak.startup(server="localhost",port=5555)

MPP
SMP

4.2.5
psp = tcp://localhost:5555

In [3]: ak.v = False

N = 10**8 # 10**8 = 100M * 8 == 800MiB # 2**25 * 8 == 256MiB
A = ak.arange(0,N,1)

B = ak.arange(0,N,1)

C = A+B

print(ak.info(C),C)

name:"id_3" dtype:"int64" size:100000000 ndim:1 shape:(100000000) itemsize:8
[0 24 ... 199999994 199999996 199999998]

Cluster
Workstation

In [4]: S = (N*(N-1))/2
print(2*S)
print(ak.sum(C))

9999999900000000

In [5]: ak.shutdown()

Laptop

Arkouda Implementation

* Python3 client and Chapel server
* Client implementation in Python3
e pdarray class
* rely on Python to reduce complexity
* integrate with and use NumPy
* Server Implementation in Chapel
e restricted interpreter
* symbol table — in memory object store
* rely on Chapel for the things it does well

Where to get Arkouda?

e GitHub: arkouda
e PyPl: arkouda

* Open source under the MIT license.

Conclusion

Load Terabytes of data...
... into a familiar, interactive Ul ...
... Where standard DS operations ...
... execute within the human thought loop ...

... and interoperate with optimized libraries.

It’s not crazy.

Backup slides

Why HPC Enabled EDA?

* We have data analyses which need to be done at a much larger scale...
because sampling to run at smaller scale alters what can be seen in
the data

 We need to enable our data scientists with tools they know... so why
not co-opt an interface or two

e “Python is the new bash”

e Because we can and it’s fun!

Arkouda Startup

1) In terminal:

2) In Jupyter:

> arkouda_server -nl 96

server listening on hostname:port

In [2]: import arkouda as ak
ak.connect(hostname, port)

4.2.5
psp = Tcp://n1d00104:5555
connected to tcp://nid00104:5555

13

Data Exploration with Arkouda and NumPy

In [9]:

In [10]:

A = ak.randint(0, 10, 10**11)

B = ak.randint(©, 10, 10**11)

C=A*B MPP
hist = ak.histogram(C, 20)

Cmax = C.max() (ArkOUda)
Cmin = C.min()

axecuted in 3.96s, finished 13:45:28 2019-09-12

bins = np.linspace(Cmin, Cmax, 20)
= plt.bar(bins, hist.to ndarray(), width=(Cmax-Cmin)/20)

execuled in 193ms, linished 13:45:28 2019-09-12 Logi n Node

1e10 (Python/NumpPy)

14

12 1

10 1

08 4

06 -

04+

0.2 -

0.0 -

14

Slightly more complicated Arkouda example

#!/usr/bin/env python3
import arkouda as ak

generate rmat graph edge-list as two pdarrays

def

gen_rmat_edges(lgNv, Ne_per_v, p, perm=False): RMAT Gen

number of vertices
Nv = 2%klgNv

number of edges
Ne = Ne_per_v * Nv

probabilities
a=p
b=1(1.0-a)/ 3.0
c=b

d=0>b

init edge arrays

ii = ak.ones(Ne,dtype=ak.int64)
jJ = ak.ones(Ne,dtype=ak.int64)
quantites to use in edge generation loop
ab = a+b
c_norm = ¢ / (c + d)[]
a_norm=a / (a + b)
generate edges
for ib in range(1, lgNv):
ii_bit = (ak.randint(@,1,Ne,dtype=ak.float64) > ab)
jj_bit
ii = 11 + ((2%k(ib-1)) * 1ii_bit)
3 =37 + ((2%k(ib-1)) * jj_bit)
sort all based on 11 and)) using coargsort
all edges should be sorted based on both vertices of the edge
iv = ak.coargsort((ii,jj))
permute into sorted order
ii = ii[iv] # permute first vertex into sorted order
j) = jjliv] # permute second vertex into sorted order
to premute/rename vertices
if perm:
generate permutation for new vertex numbers(names)
ir = ak.argsort(ak.randint(@,1,Nv,dtype=ak.float64))
renumber(rename) vertices

ii = ir[ii] # rename first vertex

j) = ir[jj] # rename second vertex
#
maybe: remove edges which are self-loops?7?7?
#

return pair of pdarrays
return (ii,jj)

connected_components.py Top (20,24) (Python)

(ak.randint(0,1,Ne,dtype=ak.float64) > (c_norm * ii_bit + a_norm * (~ 1ii_bit)))

src and dst pdarrays hold the edge list
seeds pdarray with starting vertices/seeds
def bfs(src,dst,seeds,printLayers=False):
holds vertices in the current layer of the bfs
Z = ak.unique(seeds)
holds the visited vertices
V = ak.unique(Z) # holds vertices in Z to start with
frontiers
F = [Z]
[] while Z.size != 0:
if printLayers:
print("Z.size = ",Z.size," Z = ",2)
fZv = ak.inld(src,Z) # find src vertex edges

W = ak.unique(dst[fZv]) # compress out dst vertices to match and make them unique
Z = ak.setdiffld(W,V) # subtract out vertices already visited
V = ak.unionld(V,Z) # union current frontier into vertices already visited

F.append(Z)
return (F,V)

src pdarray holding source vertices

dst pdarray holding destination vertices

printCComp flag to print the connected components as they are found

edges needs to be symmetric/undirected

def conn_comp(src, dst, printCComp=False, printLayers=False):
unvisited = ak.unique(src)

if printCComp: print("unvisited size = ", unvisited.size, unvisited) Components

components = []
while unvisited.size > 0:
use lowest numbered vertex as representative vertex
rep_vertex = unvisited[0]
bfs from rep_vertex
layers,visited = bfs(src,dst,ak.array([rep_vertex]),printLayers)
add verticies in component to list of components
components.append(visited)
subtract out visited from unvisited vertices
unvisited = ak.setdiffld(unvisited,visited)
if printCComp: print(" wvisited size = ", visited.size, visited)
if printCComp: print("unvisited size = ", unvisited.size, unvisited)
return components

ak.connect(server="localhost", port=5555)

(ii,jj) = gen_rmat_edges(20, 2, 0.03, perm=True)

src = ak.concatenate((ii,jj))# make graph undirected/symmetric

dst = ak.concatenate((jj,ii))# graph needs to undirected for connected components to work
components = conn_comp(src, dst, printCComp=False, printLayers=False) # find components

print("“number of components = ",len(components))
print(“representative vertices = ", [c[0] for ¢ in components])
ak.shutdown()

-:-—- connected_components.py Bot (58,0) (Python)

Connected

Python Implementation Details

* Python pdarray class: a shim for the distributed array on the Arkouda server
* Stores server-side name of array
* Has a NumPy-like dtype
* Has methods that translate operators into server commands

* Arkouda relies on Python to reduce complexity
* Scoping
* Reference counting
* Garbage collection
* Exceptions

* Arkouda integrates with and uses NumPy
* Dtypes
* Argument validation
* Type conversion

Chapel Implementation Details

* A restricted Chapel interpreter:
* Symbol table holding multi-type array wrappers
* Code to parse commands from Python and select functions, operators, and types

* Chapel does some things really well
* Makes parallelism easy (often implicit!)
* Abstracts away inter-node communication and data layout
 Compiler templates some functions
* Allows dynamic casts from generic arrays to typed arrays

* But some things are hard

* Large “select” statements for choosing functions, operators, types (an issue for all statically-
typed languages)

* Long compile times

* Far too many details to cover here...

