Arkouda: NumPy-like arrays at massive scale
backed by Chapel

Michael Merrill*, William Reus', and Timothy Neumann®
U.S. Department of Defense Washington DC, USA
Email: *mhmerrill@mac.com, Treus@post.harvard.edu, itirnothyneumannl@gmail.com

Abstract—Exploratory data analysis (EDA) is a prerequisite
for all data science, as illustrated by the ubiquity of Jupyter
notebooks, the preferred interface for EDA among data scientists.
In order to expand the scale of EDA, we have designed and built
a software package for using NumPy-like arrays and Pandas-
like data frames at massive scale. We have also integrated this
software package into our data science workflow. This software
package, called Arkouda, is primarily implemented in the Chapel
programming language. Arkouda is currently in process to
be open-sourced so our work can be shared with a broader
community. In the proposed talk we will cover the why, how,
and what of Arkouda.

I. SUMMARY

Exploratory data analysis (EDA) [1] [2] is a prerequisite
for all data science, as illustrated by the ubiquity of Jupyter
notebooks [3] [4], the preferred interface for EDA among data
scientists. The operations involved in exploring and transform-
ing the data are often at least as computationally intensive as
downstream applications (e.g., machine learning algorithms),
and as datasets grow, so does the need for HPC-enabled
EDA. However, the inherently interactive and open-ended
nature of EDA does not mesh well with current HPC usage
models. Meanwhile, several existing projects from outside the
traditional HPC space attempt to combine interactivity and
distributed computation using programming paradigms and
tools from cloud computing (e.g., Spark [S] and Dask [6]),
but none of these projects have come close to meeting our
needs for high-performance EDA.

To fill this gap, we have developed a software package,
called Arkouda, which allows a user to interactively issue
massively parallel computations on distributed data using func-
tions and syntax that mimic NumPy [7] and Pandas [8], the
underlying computational libraries used in the vast majority
of Python data science work-flows.

Data scientists in our organization are using Arkouda on
a daily basis to perform interactive, exploratory analyses of
terabytes of network meta-data which none of their existing
tools could handle. In these applications, users of Arkouda
have tended to iterate rapidly between multi-node execution
with Arkouda and single-node analysis in Python, relying on
Arkouda to filter a large dataset down to a smaller collection
suitable for analysis in Python, and then feeding the results
back into Arkouda computations on the full dataset. This
paradigm has already proved very fruitful for EDA. Our goal is
to enable users to progress seamlessly from EDA to specialized
algorithms by making Arkouda an integration point for HPC

implementations of expensive kernels like FFTs, sparse linear
algebra, and graph traversal. With Arkouda serving the role
of a shell, a data scientist could explore, prepare, and call
optimized HPC libraries on massive datasets, all within the
same interactive session.

Because our goal is to make HPC programming and usage
more approachable [9], we are seeking to open-source Ark-
ouda. Permission has been granted to open-source the package
and legal counsel is determining which open-source license to
leverage.

The computational heart of Arkouda is a Chapel [10] [11]
interpreter that accepts a predefined set of commands from a
client (currently implemented in Python) and uses Chapel’s
built-in machinery for multi-locale and multi-threaded ex-
ecution to evaluate computations at scale [12] [13]. EDA
operations in Arkouda currently scale to hundreds of HPC
nodes comprising tens of thousands of cores and hundreds of
terabytes of memory.

The Arkouda package represents a significantly sized
Chapel program which exercises many of the language’s
features. The server code is currently divided into 21 modules
consisting of over 8500 lines of code. The client consists
of one Python3 module with over 1000 lines of code. Total
package code size is relatively small in relation to the amount
of functionality it represents. By contrast, an MPI [14] [15]
implementation in a less Pythonic language like C, C++, or
Fortran would have required about an order of magnitude
more code, in order to implement functionality like multi-
resolution parallel constructs, distributions, parallel iterators,
memory managed objects, and other higher level language
features which Chapel enjoys.

Another distinctive feature of Chapel that we rely on in de-
veloping Arkouda is portability: our typical workflow includes
prototyping on a laptop, multi-locale testing and scaling on a
32-node infiniband cluster, and further scaling and deployment
on a supercomputer. The same code compiles and runs in all
three of these cases with no modifications and no platform-
specific code.

Maintaining interactivity (i.e., an unbroken human thought
loop) during analysis is vital to the users of Arkouda. The
primary performance metric for Arkouda is, therefore, the exe-
cution time of server-side operations. Most of these operations
are tuned to run at interactive speed from a Jupyter notebook
cell, for example sub-second addition of tera-scale arrays on
hundreds of nodes.



This talk will expand upon the above material and cover
topics like:

Why is HPC-enabled EDA necessary?

How can software enable low-latency hypothesis testing?
Why did we choose Chapel?

How did we implement the software and what challenges
did we face?

How does the code perform and scale?

Why is an integration point (shell) for HPC libraries
important?

What is the future vision for Arkouda?

ACKNOWLEDGMENT

We want to thank Brad Chamberlain and members of
the Chapel development team for their enthusiastic support,
discussions, and feedback. We would also like to thank our
interns for their willingness to incorporate Arkouda into daily
usage, and for providing feedback. There are many others we
would like to show gratitude to who have provided support
and feedback during the development.

[1]
[2]

[3]
[4]

[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]

[15]

REFERENCES

J. W. Tukey, Exploratory Data Analysis.
Wesley, 1977.

D. Donoho, “50 Years of Data Science,” Journal of Computational and
Graphical Statistics, vol. 26, no. 4, pp. 745-766, 2017.
https://jupyter.org.

J. Somers, “The Scientific Paper is Obsolete,” The Atlantic Daily
Newsletter, April 2018,
https://www.theatlantic.com/science/archive/2018/04/the-scientific-
paper-is-obsolete/556676/.

https://spark.apache.org.

https://docs.dask.org/en/latest/.

https://numpy.org.

https://pandas.pydata.org.

J. Dursi, “HPC is dying, and MPI is killing it,” April 2015,
https://www.dursi.ca/post/hpc-is-dying-and-mpi-is-killing-it.html.

B. L. Chamberlain, “Chapel,” in Programming Models for Parallel
Computing, P. Balaji, Ed. MIT Press, November 2015, ch. 6, pp.
129-159.

https://chapel-lang.org.

P. Husbands and C. Isbell, “The Parallel Problems Server: A Client-
Server Model for Interactive Large Scale Scientific Computation,”
Proceedings of VECPAR’98, June 1998.

P. Husbands, C. L. Isbell, and A. Edelman, “Interactive Supercomputing
with MITMatlab,” August 2001.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface standard,”
Parallel computing, vol. 22, no. 6, pp. 789-828, 1996.
https://www.mpi-forum.org.

Reading, MA: Addison-



