
Overview of CSLA

1 | magenic.com

Framework of Choice
At Magenic, when we begin a software development project, 
we start with an assumption that we should avoid re-inventing 
the wheel. For example, when beginning a .NET development 
project, we start with the .NET Framework’s built in abilities 
before purchasing third party components or creating custom 
components. We do the same with the business logic of an 
application.

With this in mind, Magenic makes an assumption that the CSLA 
.NET Framework will be core to the architecture of a solution. 
During the early phases of a project, our architects need to justify 
why they believe CSLA .NET is not the proper Framework for the 
solution. Although we believe CSLA .NET is a great choice for 
many solutions, we do know that it does not fit all circumstances. 

CSLA .NET is the creation of Magenic CTO Rockford Lhotka. 
While it is not proprietary to Magenic, our consultants are very 
experienced with CSLA .NET and have assisted Lhotka on the 
framework. Since 2001, CSLA has evolved and changed in many 
ways, culminating in its latest release - CSLA 4. It is now one 
of the most widely used open source development frameworks 
for the .NET platform. It is covered under a very liberal license 
and has a vibrant, helpful and friendly community.

Overview of CSLA 4
CSLA 4 is a framework for creating business applications using 
object-oriented design concepts in a distributed computing 
environment. CSLA 4 supports development on the .NET, 
Silverlight, Windows Azure and Windows Phone 7 platforms. 
The commonality across these platforms allows sharing of 
business object code between .NET, Silverlight and Windows 
Phone 7, including running server-side code on Windows Server 
or Windows Azure. At the same time, CSLA 4 does provide 
targeted support for each platform where appropriate, allowing 
developers to exploit the power of the different platforms.

The primary goal of CSLA .NET is to enable creation of a rich, 
powerful and flexible business layer for an application. 

This business layer is composed of business domain objects 
that encapsulate the business logic (calculations, algorithmic 
processing, validation and authorization). These objects should 
be designed based on the business use cases for the application 
domain. With some reasonable care, it is possible to create a 
single set of business objects that work within both the .NET 
and Silverlight environments.

In many cases, Silverlight and Windows Phone 7 business objects 
may contain the exact same object code used for Windows 
applications, though there may be some small variations. 
Generally speaking, more than 90% of the object code will be 
shared between .NET and Silverlight. The differences are primarily 
due to the asynchronous nature of Silverlight programming and 
the more synchronous nature of traditional .NET programming. 
If developers are willing to apply the same asynchronous designs 
to .NET implementation, they can achieve 99% or 100% code 
sharing between the two platforms.

CSLA 4 Core Features
Regardless of platform, CSLA .NET is designed to do two things. 
First and foremost, it is designed to support developers as they 
create a powerful business layer based on rich business domain 
objects. Second, it is designed to enable a distributed application 
architecture centered on a concept called mobile objects.

To support the creation of rich domain objects, CSLA 4 includes 
subsystems that supply commonly required functionality, 
including:

■■ Full support for data binding in all .NET UI technologies
■■ Object status tracking (Is object new? Changed? Marked 

for deletion? etc.) 
■■ Standardized business rule processing 
■■ Standardized authorization at the object and property 

levels 

Interface

Interface Control

Business Logic

Data Access

Data Storage & Management



Overview of CSLA

2 | magenic.com

The concept of mobile objects is a technique that supports the 
use of rich business domain objects in distributed application 
environments. Specifically, the idea is that business objects are 
mobile, able to move physically from one computer or device to 
another to take advantage of the resources available on each.

CSLA .NET includes a component called the data portal which is 
responsible for providing the mobile object functionality. Using 
the data portal, business objects may come into existence on an 
application server so they can efficiently interact with the data 
access layer (and database). The objects may then physically 
move across the network to the client workstation or device 
(web server, Windows client, Silverlight client or Windows 
Phone 7 device) where they can efficiently interact with the user 
by being data bound directly to the UI. Once the user is done 
interacting with the object, the object may then move back to 
the application server so it can interact with the data access 
layer to update the database.

Mobile objects are an incredibly powerful technique for 
exploiting the power of object-oriented design and programming 
in distributed environments. The CSLA .NET data portal abstracts 
the complexity of this concept. The result is that applications can 
switch between 1-tier, 2-tier, 3-tier and even 4-tier models with 
no change to code - the change is purely one of configuration.

CSLA 4 on Windows
CSLA 4 allows developers to easily build Windows applications 
using WPF, Silverlight, ASP.NET MVC, ASP.NET Web Forms and 
Windows Forms user interfaces on top of business objects. It 
also supports WCF service and asmx web services interfaces, 
using either SOAP or REST techniques. Technically, all of these 
interfaces could be created on top of the same set of business 
objects, though most applications require only one or two types 
of interface (Web Forms and WCF services for example).

CSLA 4 includes some UI controls in each major UI technology. 
These controls help minimize UI code and maximize productivity.
In WPF the following controls are provided:

■■ ViewModelBase and ViewModel – Simplify the creation 
of a viewmodel object for use with the MVVM design 
pattern

■■ Integration with, and simplification of, standard .NET 
authentication models 

■■ Undo capabilities to support implementation of Cancel 
buttons and complex layered UIs 

■■ Standardized interaction with a data access layer or ORM 
■■ Enhanced support for LINQ queries against business 

objects 
■■ Numerous general productivity features, useful in many 

business application scenarios 
■■ Asynchronous data access and asynchronous validation 

rules

Lhotka’s Using CSLA 4 ebook and video series (available at 
http://store.lhotka.net/) cover these subsystems in detail.

These subsystems are exposed through a set of base classes 
which developers inherit to create business objects. These base 
classes enable a set of object stereotypes:

■■ Editable root (single or collection) - An object that has 
read-write properties and can be directly retrieved and 
stored in a database 

■■ Editable child (single or collection) - An object that has 
read-write properties and is retrieved and stored in a 
database as part of some editable root 

■■ Dynamic list - A collection that contains editable root 
objects, integrating with data grid controls to auto-
update each object when the user leaves a row in the 
grid (not applicable to ASP.NET interfaces) 

■■ Read-only root (single or collection) - An object that has 
read-only properties and can be directly retrieved from 
a database 

■■ Read-only child (single or collection) - An object that has 
read-only properties and is retrieved from a database as 
part of some read-only root 

■■ Name/value list - A read-only root collection that 
contains only name/value pairs for use in populating 
combobox or listbox controls 

■■ Command - An object that executes code on the client 
and/or the server; often used to execute database code 
or server-side workflows

The end result of building business objects using CSLA .NET 
is that the objects are created in a consistent, standardized 
manner. So not only do the objects automatically gain 
substantial benefit from all of these subsystems, but the overall 
maintainability is radically improved thanks to the application’s 
consistent architecture, design and coding.



Overview of CSLA

3 | magenic.com

.NET principal objects for use when implementing custom 
authentication/authorization in a WCF service

CSLA 4 on Windows provides a great deal of flexibility in terms 
of data access. CSLA .NET is not a data access layer or an object-
relational mapping (ORM) tool. However, CSLA .NET does provide 
a level of formalization around how an application interacts with 
the data access layer or ORM. This formalized flexibility allows 
developers to use a wide range of data access technologies, 
including ADO.NET Entity Framework, raw ADO.NET, DataSets, 
LINQ to SQL, NHibernate, Paul Wilson’s ORM mapper and many 
other technologies.

CSLA 4 on Silverlight
CSLA 4 on Silverlight allows developers to easily build Silverlight 
user interfaces on top of business objects. By fully supporting 
Silverlight data binding, along with extra controls provided by 
CSLA .NET, it is possible to create Silverlight forms with nearly 
no UI code. Just like with CSLA 4 on Windows, most of the 
code is encapsulated in the business objects, maintaining clean 
separation between the presentation and business behaviors.

The Silverlight controls provided by CSLA 4 include:

■■ ViewModelBase and ViewModel – Simplify the creation 
of a viewmodel object for use with the MVVM design 
pattern

■■ TriggerAction – Enable routing of arbitrary UI events to 
the viewmodel where behaviors are implemented

■■ PropertyStatus - Like the Windows Forms ErrorProvider, 
but manages validation, authorization and busy 
notification for each property

■■ BusyAnimation - A control that displays a busy animation; 
can be bound to an object to automatically show that the 
object is performing an asynchronous operation 

CSLA 4 enables a data access model on Silverlight where business 
objects invoke remote services to retrieve or update data. 
This model can be used to implement client/server or service-
oriented application designs. For example, ADO.NET Data 
Services might be used to expose data services from a server, 
while CSLA 4 would be used to create business objects and a 
Silverlight UI to interact with those data services.

■■ TriggerAction – Enable routing of arbitrary UI events to 
the viewmodel where behaviors are implemented

■■ PropertyStatus - Like the Windows Forms ErrorProvider, 
but manages validation, authorization and busy 
notification for each property

■■ BusyAnimation - A control that displays a busy animation; 
can be bound to an object to automatically show that the 
object is performing an asynchronous operation 

In Web Forms the following controls are provided:

■■ CslaDataSource - A Web Forms data source control that 
supports data binding to business objects 

■■ DataMapper - A component that simplifies the copying of 
form post values into business objects

CSLA 4 supports ASP.NET MVC development with the following 
controls:

■■ CslaModelBinder – Enables binding business objects 
to views with full support for CSLA .NET business, 
validation and authorization rules, along with existing 
DataAnnotations rules from .NET

■■ HtmlExtensions – Adds CSLA-specific extensions to the 
Html type, making it easy to leverage all features of 
business objects when creating views

■■ ViewModelBase – Simplifies the creation of viewmodel 
objects in cases where the MVVM design pattern is used 
within an MVC application

■■ Controller – Base class that helps minimize the code 
necessary to create a controller than interacts with 
editable business objects

In Windows Forms the following controls are provided:

■■ BindingSourceRefresh - Work around for a data binding 
refresh issue in Windows Forms 

■■ CslaActionExtender - Automate object management 
behind buttons such as Save and Cancel 

■■ ReadWriteAuthorization - Automatically enable/disable 
detail controls based on the object’s authorization rules

■■ CSLA .NET also includes functionality to assist in the 
creation of services and workflow activities

For WCF and asmx services the following components are 
provided:

■■ DataMapper - A component that simplifies the copying of 
data between business objects and data contract objects

■■ PrincipalCache - A component that temporarily caches 



Overview of CSLA

4 | magenic.com

Developers using Windows Server or Windows Azure can take 
advantage of some advanced CSLA 4 capabilities. Specifically, a 
CSLA 4 Silverlight application can interact with CSLA 4 running 
on the server, enabling 2-, 3- and 4-tier physical deployments of 
the application. In this model, .NET business objects (perhaps 
already supporting an ASP.NET MVC UI) are effectively extended 
directly into the Silverlight client. The standard object persistence 
models supported by CSLA 4 are now automatically used to 
support the Silverlight client, providing an incredibly high level 
of code and functionality reuse across the .NET and Silverlight 
platforms.

CSLA .NET Deployment Models 
and Mobile Objects
The CSLA .NET data portal enables the use of mobile object 

concepts in an application. This is largely transparent to the 

code, and the code that is written to interact with the data 

portal is very standardized. The benefit of using the data portal 

is flexibility. Developers can switch an application from a physical 

1-tier deployment to a 3-tier or even 4-tier deployment purely 
by changing configuration - no coding changes are required.

CSLA 4 supports 1-, 2- and 3-tier physical deployments for .NET 

applications.

Again, it is possible to switch between these physical models 

purely by changing configuration. The UI code, business object 

code and data access code remain entirely intact across all three 

deployment models.

In the 3-tier model, the business logic layer (the assembly[ies] 

containing the business object code) is deployed to both the 

client and application server. Business objects literally move 

between those two machines through the data portal.

The data portal uses standard .NET technologies such as WCF to 

manage the network communication. It is implemented using 

powerful design patterns such as channel adapter, provider and 

message router.

CSLA 4 supports 1-, 2-, 3- and 4-tier physical deployments for 

Silverlight and Windows Phone 7 applications. The 1- 2- and 

3-tier models employ the same architecture as CSLA 4 on 

Windows. The 4-tier model is a little different.

When using Silverlight or Windows Phone 7, the data portal 

is more advanced because business objects literally move 

between the Silverlight client or Windows Phone 7 device and 

the .NET server(s). This means the objects are moving between 

both different platforms and different machines. This is usually 

entirely transparent to the code, so the resulting functionality 

and code are the same as in a pure .NET application.

It is important to realize that in the 3- and 4-tier deployment 

models for .NET, Silverlight and Windows Phone 7, the business 
code and business objects are fully functional on each machine. 
This means developers have the flexibility to run logic on the 
client, the server or both as required to meet the application’s 
needs.

Also keep in mind that the server-side code is the same 
regardless of whether the code is hosted in Windows Server or 
Windows Azure.

Interface

Interface Control

Business Logic

Data Access

Data Storage & Management

1-Tier
Interface

Interface Control

Business Logic

Data Access

Data Storage & Management

2-Tier
Interface

Interface Control

Business Logic

Business Logic

Data Access

3-Tier

Data Storage & Management

Interface

Interface Control

Business Logic

Business Logic

Data Access

Business Logic

4-Tier

Data Storage & Management



Overview of CSLA

5 | magenic.com

Standardized Data Access
CSLA .NET is not a data access technology or an object-
relational mapping (ORM) tool. However, the data portal (which 
implements the mobile object concept) does impose a level of 
standardization and structure around how objects interact with 
the data access layer or ORM. This standardization remains very 
flexible, and leaves developers free to use nearly any data access 
technology they choose, including (but not limited to):

■■ ADO.NET Entity Framework 
■■ Raw ADO.NET (connections, data readers, etc.) 
■■ DataSet and TableAdapter objects 
■■ LINQ to SQL 
■■ LINQ to XML 
■■ NHibernate and other third-party ORM tools 
■■ Simple file I/O 
■■ Remote XML or JSON services

The data portal supports four models:

■■ Encapsulated invocation
■■ Factory implementation
■■ Encapsulated implementation
■■ Factory invocation

Perhaps the best model is encapsulated invocation, because this 
enables clean separation between the business and data access 
layers while maintaining the integrity of the business class by 
not breaking encapsulation. This is the preferred solution in 
most cases.

The factory implementation model also enables clean separation 
between the business and data access layers, but requires that 
the factory object directly interact with private members of the 
business object, which breaks encapsulation. However, this is a 
powerful and popular solution.

The simplest approach is encapsulated implementation, in 
which case the data access code is directly contained in the 
business class. While this is very simple and direct, it doesn’t 
provide clean separation between business and data access 
layers, which decreases flexibility and testibility.

The most complex approach is factory invocation. This is because 
the object factory concept built into CSLA .NET is already an 
abstraction layer with another layer of indirection; adding 
yet another abstraction layer into the mix is typically overkill. 
However, if an application requires truly extreme flexibility, this 
solution may make sense.

Summary
CSLA .NET is a powerful, time-tested framework that supports 
the creation of an object-oriented business layer for distributed 
application development. It helps developers encapsulate 
business logic in a set of rich business domain objects, and 
provides those objects with powerful features around data 
binding, business logic, validation and authorization.

CSLA 4 supports all common interface types on the .NET, 
Silverlight, Windows Phone 7, Windows Server and Windows 
Azure platforms.

More Information
CSLA Consulting – Visit Magenic at http://magenic.com. With 
five offices spread across the United States, Magenic services 
the whole country.

Rockford Lhotka’s Blog – Visit www.lhotka.net/weblog

CSLA .NET Site – Visit www.lhotka.net/cslanet

CSLA .NET Frequently Asked Questions – Visit www.lhotka.net/
cslanet/faq

CSLA Community Forums – Visit http://forums.lhotka.net

Engage Magenic today online at magenic.com 
or by calling our sales line at 877.277.1044


